Andreas Schäffler (Hrsg.)

Cornelius Bollheimer

Roland Büttner

Christiane Girlich

Funktionsdiagnostik in Endokrinologie, Diabetologie und Stoffwechsel

Indikation, Testvorbereitung und -durchführung, Interpretation

Andreas Schäffler (Hrsg.) Cornelius Bollheimer Roland Büttner Christiane Girlich

Funktionsdiagnostik in Endokrinologie, Diabetologie und Stoffwechsel

Indikation, Testvorbereitung und -durchführung, Interpretation

Unter Mitarbeit von Charalampos Aslanidis, Wolfgang Dietmaier, Margarita Bala, Viktoria Guralnik und Thomas Karrasch

Prof. Dr. med. Andreas Schäffler

Klinik und Poliklinik für Innere Medizin I Klinikum der Universität Regensburg 93042 Regensburg

ISBN 978-3-642-00735-4 Springer Medizin Verlag Heidelberg

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes.

Springer Medizin Verlag springer.de

© Springer Medizin Verlag Heidelberg 2009

Die Wiedergabe von Gebrauchsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutzgesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Produkthaftung: Für Angaben über Dosierungsanweisungen und Applikationsformen kann vom Verlag keine Gewähr übernommen werden. Derartige Angaben müssen vom jeweiligen Anwender im Einzelfall anhand anderer Literaturstellen auf ihre Richtigkeit überprüft werden.

Planung: Hinrich Küster

Projektmanagement: Gisela Zech, Meike Seeker

Lektorat: Michaela Mallwitz, Tairnbach Layout und Einbandgestaltung: deblik Berlin

Eibandabbildungen: links: © photos.com; rechts: © Pasieka/SPL/Agentur Focus, Hamburg

Satz: TypoStudio Tobias Schaedla, Heidelberg

SPIN: 12546336

Geleitwort

Der Schwerpunkt Endokrinologie in der Inneren Medizin besticht schon Studenten wegen der Klarheit und Schönheit der Regelkreise, die im Gesunden, aber auch beim Kranken das Verständnis von Physiologie und Pathophysiologie erlauben. Dementsprechend spielen Messparameter wie Labortests und noch mehr funktionelle Prüfungen von Regelkreisen eine wichtige Rolle in der Diagnostik und fungieren damit als Grundlage der entsprechenden Therapie. Alle Lehrbücher der Inneren Medizin und natürlich auch der Endokrinologie enthalten daher diesbezüglich Daten und Hinweise. Es fehlte bislang aber eine zusammenfassende Darstellung der diagnostischen Verfahren für alle Bereiche von Endokrinologie und Stoffwechsel, die auch hinsichtlich der praktischen Anwendung hinreichend detailliert ist.

Das vorliegende Werk, das im Wesentlichen von 4 Oberärzten der Inneren Medizin mit dem Schwerpunkt Endokrinologie und Stoffwechselerkrankungen geschrieben wurde, füllt diese Lücke. Man merkt den Texten die breite praktische Erfahrung und die Begeisterung für das pathophysiologische Verständnis von Erkrankungen seitens der Autoren an. Es bleibt zu hoffen, dass diese Begeisterung sich auf die Leser und Nutzer überträgt und vielleicht sogar dazu beiträgt, dass sich der eine oder andere Nachwuchsinternist diesem spannenden Gebiet zuwendet.

Ich wünsche dem Buch und den Autoren den verdienten Erfolg und danke diesen für das Engagement, das ein solches Buch erst möglich gemacht hat.

Prof. Dr. med. Jürgen Schölmerich Direktor der Klinik und Poliklinik für Innere Medizin I am Klinikum der Universität Regensburg

Regensburg, 2009

Hinweis

Die Indikationsstellung, Durchführung, Dosisauswahl und Applikation sowie die Testinterpretation obliegen der Verantwortung des entsprechenden Arztes. Verlag, Herausgeber und Autoren können hierfür keine Gewähr übernehmen, obwohl bei der Darstellung große Sorgfalt auf der Basis des aktuellen wissenschaftlichen Standes verwandt wurde.

Es wird ausdrücklich darauf hingewiesen, dass viele Normwerte von der verwendeten Nachweismethode und damit vom jeweiligen Labor abhängig sind. Zudem können Normbereiche auf unterschiedlichen Kollektiven basieren. Der Anwender ist in jedem Fall verpflichtet, sich hier mit dem für ihn relevanten Labor zu verständigen.

Unserem Chef und klinischen-wissenschaftlichen Lehrer, Herrn Prof. Dr. Jürgen Schölmerich gewidmet.

Vorwort

Auf dem deutschen Markt existieren einige hervorragende Lehrbücher für Endokrinologie, Diabetologie und Stoffwechsel. Ziel dieses Werkes ist eine detailierte und praxisrelevante Darstellung der Funktionsdiagnostik sowie deren Interpretation auf diesen Fachgebieten. Hierbei schlägt das Buch einen großen Bogen zwischen einem bloßen »Kochbuch« bzw. einem bloßen Leitfaden, einem ausführlichen Lehrbuch für Endokrinologie und Werken der klinischen Chemie bzw. der Hormonanalytik. Ergebnis ist ein umfassendes und praxisrelevantes Destillat, das für jeden Anwender das simultane »Nachschlagen« in diversen Werken erspart.

Das Neue an diesem Buch ist die einheitliche und umfassende Erklärung aller relevanten Funktionstests mit ausführlicher Darstellung von Indikationen, Kontraindikationen, Nebenwirkungen, Testvorbereitung, Rahmenbedingungen, konkreten Handlungsanleitung der eigentlichen Testdurchführung sowie der Interpretation der Testergebnisse. Eine einheitliche Gliederung zieht sich durch das gesamte Werk, und es werden immer konkrete Normbereiche und Cut-off-Werte angegeben, auch für besondere Situationen (Geschlecht, Alter, BMI, Pubertätsphasen, Zyklusphasen, akute Erkrankungen, Medikamente etc.). Hier zieht sich ein umfassendes Tabellenwerk durch das Buch.

Ein besonderes Merkmal dieses Buches ist die Betonung der Testvorbereitung, Testdurchführung und Testinterpretation (ohne hier den Duktus eines Lehrbuches aufzunehmen) sowie des interdisziplinären Charakters (Gynäkologie, Fertilitätsmedizin, Andrologie, Radiologie, Dermatologie, Neurochirurgie, Humangenetik, Chirurgie, Urologie, Pädiatrie, Endokrinologie, Diabetologie, Stoffwechsel).

Durch die Rubriken »Fallstricke« und »Praxistipps« erhält jeder Funktionstest einen besonders persönlichen und praxisrelevanten Charakter mit vielen Ratschlägen, die eben weit über den theoretischen Hintergrund vieler Lehrbücher hinausgehen. Die Autoren haben sich viel Mühe gegeben, sich auf bestimmte Normwerte oder Cut-off-Werte festzulegen, um dem Anwender die Möglichkeit zu geben, ohne erneutes Nachschlagen von Primärliteratur das Testergebnis profunde zu interpretieren.

Andreas Schäffler

Regensburg, 2009

Verzeichnis von Herausgeber und Autoren

Herausgeber

Schäffler, Andreas, Prof. Dr. med. Klinik und Poliklinik für Innere Medizin I Klinikum der Universität Regensburg 93042 Regensburg

Autoren

Bollheimer, Cornelius, Priv.-Doz. Dr. med. Büttner, Roland, Priv.-Doz. Dr. med. Girlich, Christiane, Dr. med. Schäffler, Andreas, Prof. Dr. med. Klinik und Poliklinik für Innere Medizin I Klinikum der Universität Regensburg 93042 Regensburg

Unter Mitarbeit von

Aslanidis, Charalampos, Prof. Dr. rer.nat. Institut für Klinische Chemie und Laboratoriumsmedizin Klinikum der Universität Regensburg 93042 Regensburg

Dietmaier, Wolfgang, Priv.-Doz. Dr. rer. nat. Institut für Pathologie Klinikum der Universität Regensburg

93042 Regensburg

Bala, Margarita, Dr. med. Guralnik, Viktoria, Dr. med. Karrasch, Thomas, Dr. med. Alle: Klinik und Poliklinik für Innere Medizin I Klinikum der Universität Regensburg

93042 Regensburg

Abkürzungsverzeichnis

ACTH	adrenokortikotropes Hormon	FSH	follikelstimulierendes Hormon
ADA	American Diabetes Association	fT3	freies T3-Hormon
ADH	antidiuretisches Hormon	fT4	freies T4-Hormon
AFP	α ₁ -Fetoprotein	GEP	gastroenteropankreatisch
AGS	adrenogenitales Syndrom	GEP-NET	gastroenteropankreatische neuroen-
AIRE	»auto-immune regulator«		dokrine Tumoren
AMH	Anti-Müller-Hormon	GEP-System	gastroenteropankreatisches System
APA	aldosteronproduzierendes Adenom	GFR	glomeruläre Filtrationsrate
APC	aldosteronproduzierendes Karzinom	GH	»growth hormone«
APS	autoimmunpluriglanduläres Syndrom	GHRH	»GH releasing hormone«
APUD	»amine precursor uptake and	GIST	gastrointestinaler Stromatumor
	decarboxylation«	GNAS	»guanine nucleotide-binding protein,
ARQ	Aldosteron/Renin-Quotient		α-stimulating activity polypeptide«
ARR	Aldosteron-Renin-Ratio	GnRH	»gonadotropin releasing hormone«
AT	Angiotensin	GSHA	glukokortikoid supprimier barer
AVS	»adrenal vein sampling«		Hyperaldosteronismus
	(Nebennierenvenenkatheter)	HA	Hyperaldosteronismus
BBS	Bardet-Biedl-Syndrom	HC	Hämochromatose
BE	Broteinheit	HCG	humanes Choriongonadotropin
bEB	basaler Energiebedarf	HDL	»high density lipoprotein«
BMI	Body Mass Index	HIV	»human immunodeficiency virus«
BZ	Blutzucker	HMG	humanes Menopausengonadotropin
CASR	»calcium sensing receptor«	HNF	»hepatocyte nuclear factor«
CBG	kortisolbindendes Globulin	HOMA	»homeostasis model assessment«
CEA	karzinoembryonales Antigen	HPLC	»high pressure liquid chromatography«
CFTR	zystisches Fibrose-Transmembran-	HPT	Hyperparathyreoidismus
	Rezeptorgen	hTg	humanes Thyreoglobulin
CLIA	Chemolumineszenzimmunoassay	HWZ	Halbwertszeit
COMT	Catecholamin-O-Methyl-Transferase	iCa	ionisiertes Kalzium
CRF	»corticotropin releasing factor«	IDF	Internationale Diabetes Föderation
CRH	»corticotropin releasing hormone«	IFG	»impaired fasting glucose«
DGFF	Deutsche Gesellschaft zur Bekämpfung	IGF-1	»insulin-like growth factor-1«
	von Fettstoffwechselstörungen und	IGF-BP-3	»IGF-binding protein-3«
	ihren Folgeerkrankungen e. V.	IGT	»impaired glucose tolerance«
DHEA	Dehydroepiandrosteron	IHA	idiopathischer Hyperaldosteronismus
DHEA-S	Dehydroepiandrosteronsulfat	IHH	idiopathischer hypogonadotroper
EDTA	Ethylendiamintetraazetat		Hypogonadismus
ELISA	»enzyme-linked immunosorbent	iPTH	intaktes Parathormon
	assay«	IRMA	immunradiometrischer Assay
f. n.	falsch negativ	KEV	konstitutionelle Entwicklungs-
f. p.	falsch positiv		verzögerung
FAI	freier Androgenindex	KG	Körpergewicht
FHH	familiäre hypokalzurische Hyper-	KM	Kontrastmittel
	kalzämie	KOF	Körperoberfläche
FMTC	familiäres, medulläres C-Zellkarzinom	LDL	»low density lipoprotein«

	Later the market Harman	DDC	Discount of the second of
LH	luteinisierendes Hormon	PRC	Plasmareninkonzentration
LHRH	LH-releasing-Hormon	PRF	»prolactin-releasing factor«
LI	Lateralisierungsindex	PTH	Parathormon
Lp(a)	Lipoprotein (a)	PTHrP	Parathormon-»related« Peptid
LPI	»labile plasma iron«	PWS	Prader-Willi-Syndrom
MAO	Monoaminooxidase	Quicki-Index	»quantitative insulin sensitivity check
MAR	»mixed antiglobulin reaction«	ECLI	index«
MELAS	»mitochondrial myopathy,	rFSH	rekombinantes humanes FSH
	encephalopathy, lactic acidosis,	rhTSH	rekombinantes humanes TSH
NATNI 4 / 0	stroke-like episodes, diabetes«	RIA	Radioimmunoassay
MEN-1/-2	multiple endokrine Neoplasie Typ 1	RQ	respiratorischer Quotient
MIDC	bzw. Typ. 2	SD	Schilddrüse
MIBG	Meta-lodo-Benzyl-Guanidin	SHBG	sexualhormonbindendes Globulin
MIDD	»maternally transmitted, diabetes,	SI	Selektivitätsindex
	deafness«	SOP	»standard operating procedure«
MIH	»Muellerian inhibiting hormone«	SRY	»testis-determining factor«
MLPA	»multiplex ligation-dependent probe	STH	somatotropes Hormon
	amplification«	Tbc	Tuberkulose
MNH	makronoduläre Hyperplasie	TBG	thyroxinbindendes Globulin
MODY	»maturity onset diabetes of young	TFR	Transferrinrezeptor
	people«	Tg-Ak	Thyreoglobulinantikörper
MUAN	multinoduläre unilaterale adreno-	TPO	thyreoidale Peroxidase
	kortikale noduläre Hyperplasie	TRAK	TSH-Rezeptorantikörper
NNR	Nebennierenrinde	TRH	»thyreotropin releasing hormone«
NSE	neuronenspezifische Enolase	TSH	»thyroid stimulating hormone«
NTBI	»non-transferrin bound iron« (nicht	UAH	primäre unilaterale adrenale
	transferringebundenes Eisen)		Hyperplasie
NTIS	»non-thyroidal illness syndrome«	U _{osm}	Urinosmolalität
NTx	Nierentransplantation	VHL	von-Hippel-Lindau-Erkrankung
OGTT	oraler Glukosetoleranztest	VIP	vasoaktives intestinales Polypeptid
PAC	Plasmaaldosteronkonzentration	VLDL	»very low density lipoprotein«
PADAM	partielles Androgendefizit des	WDHA	wässrige Diarrhö, Hypokaliämie,
	alternden Mannes		Achlorhydrie
PAH	primäre unilaterale adrenale	WHO	World Health Organization
	Hyperplasie		
pAVK	periphere arterielle Verschluss-		
	krankheit		
PC-1	Prohormon-Convertase-1		
PCO	polyzystisches Ovarsyndrom		
PCR	»polymerase chain reaction«		
PEG	Polyethylenglykol		
PHA	primärer Hyperaldosteronismus		
pHPT	primärer Hyperparathyreoidismus		
P _{Na}	Plasmanatrium		
POMC	Pro-opiomelanocortin		
P _{osm}	Plasmaosmolalität		
PP	pankreatisches Polypeptid		
PRA	Plasmareninaktivität		

Die Autoren

Prof. Dr. med. Andreas Schäffler

(Herausgeber und Autor)
Prof. Dr. med. Andreas Schäffler ist als Geschäftsführender Oberarzt an der Klinik und Poliklinik für Innere Medizin I des Universitätsklinikums Regensburg (Direktor: Prof. Dr. med. Jürgen Schölmerich) tätig und leitet den Bereich Endokrinologie, Diabetologie und Stoffwechsel. Er ist Internist, Endokrinologe und verfügt über die Zusatzbezeichnungen »Diabetologie« sowie »Laboranalytik in der Inneren Medizin« der Bayerischen Landesärztekammer.

PD Dr. med. Cornelius Bollheimer

PD Dr. med. Cornelius Bollheimer ist als Internist und Endokrinologe an der Klinik und Poliklinik für Innere Medizin I als Oberarzt tätig und zusätzlich verantwortlich für den Bereich »Klinische Ernährungsmedizin«.

PD Dr. med. Roland Büttner

PD Dr. med. Roland Büttner ist als Internist und Endokrinologe an der Klinik und Poliklinik für Innere Medizin I als (Personal-)Oberarzt tätig.

Dr. med. Christiane Girlich

Dr. med. Christiane Girlich ist als Internistin und Endokrinologin an der Klinik und Poliklinik für Innere Medizin I als Oberärztin tätig.

Inhaltsverzeichnis

Vorb	emerkungen zur Präanalytik bei	1.11	Intravenöser Glukagontest mit
Horm	nonbestimmungen 1		C-Peptidbestimmung15
Körpe	erhaltung, Blutentnahme, Probenmaterial,	1.12	Intravenöser Glukosetoleranztest16
Logis	tik, Temperatur2	1.13	Hungerversuch, Insulinomdiagnostik 17
Körpe	erhaltung2	1.14	Glukagontest, Insulinomdiagnostik19
Stauu	ıngszeit2	1.15	Tolbutamidtest, Insulinomdiagnostik20
Verwe	eilkatheterverfälschung2	1.16	C-Peptidsuppressionstest, Insulinom-
Patier	ntenbezogene Einflussfaktoren		diagnostik21
BMI-V	Vert 2	1.17	HbA _{1c} und Fruktosamin22
Gesch	nlecht 2		
Alter	2	2	Lipidstoffwechsel25
Zeitp	unkt der Blutentnahme 3	2.1	Cholesterinstoffwechsel und
Ernäh	irung3		Triglyzeridstoffwechsel26
Medil	kamente3	2.2	Parameter der lipidologischen
Begle	iterkrankungen4		Spezialdiagnostik in der Routine28
Gravi	dität und Laktation4		
Rolle	der Laboreinrichtung4	3	Protein- und Nukleotidstoffwechsel 31
Welch	ne Rolle spielen Erfahrung und	3.1	Harnstoff
interd	disziplinäres Denken?5	3.2	Harnsäure
	ärung vor der Testdiagnostik5		
Chara	ıkteristika und Aussagekraft von	4	Schilddrüse (peripher) 35
	ionstests5	4.1	Schilddrüsenhormone (fT3, T3, fT4, T4), TBG 36
		4.2	Schilddrüsenantikörper
1	Kohlenhydratstoffwechsel 7		(TPO, TRAK, Tg-Ak)37
1.1	Oraler Glukosetoleranztest (75 g, 2 h)	4.3	Tumormarker hTg38
	aus venöser Plasmaglukose8	4.4	Calcitonin- und Pentagastrintest39
1.2	Oraler Glukosetoleranztest (75 g, 2 h)	4.5	SOP zur Diagnostik und Therapie vor
	aus venösem Vollblut		und nach Applikation jodhaltiger
1.3	Oraler Glukosetoleranztest (75 g, 2 h)		Kontrastmittel (Regensburger Schema)40
	aus kapillärem Vollblut10		,
1.4	Oraler Glukosetoleranztest (75 g, 2 h)	5	Nebenschilddrüse 43
	aus kapillärer Plasmaglukose10	5.1	Basales Parathormon (PTH)44
1.5	Oraler Glukosetoleranztest (50 g, 1 h),	5.2	Intraoperatives Parathormon46
	Screening auf Gestationsdiabetes	5.3	Selektive Halsvenenkatheterisierung
1.6	Oraler Glukosetoleranztest (75 g, 2 h),	3.3	mit PTH-Bestimmung47
	Screening auf Gestationsdiabetes	5.4	S-Kalzium (frei, gesamt)49
1.7	Oraler Glukosetoleranztest im	5.5	Kalziumausscheidung im Urin50
1.,	Kindesalter	5.6	S-Phosphat51
1.8	Oraler Glukosetoleranztest (75 g, 2 h)	5.7	Phosphatausscheidung im Urin52
1.0	mit Insulin und C-Peptid12	3.,	Thosphatausserielaung im omit
1.9	Oraler Glukosetoleranztest (75 g, 5 h),	6	Gastrointestinaltrakt53
٠.,	postprandiale Hypoglykämie13	6.1	Gastrin und Sekretintest (Gastrinom)54
1.10	Oraler Glukosetoleranztest (75 g, 5 h),	6.2	Sammelurin für 5-OH-Indolessigsäure,
1.10	Akromegaliediagnostik14	0.2	Serotonin (Karzinoid)55
	AKTOITIEgaileulagilostik14		Scrotoriii (Naiziriola)33

6.3	Seltene GEP-NET-Tumoren (VIP, Glukagon,	10.10	17-OH-Pregnenolon/17-OH-Progesteron-
	Somatostatin, PP)56		Quotient (ACTH-Test)107
		10.11	Androgenprofil (Testosteron,
7	Nebennierenmark 59		Androstendion, DHEA-S)107
7.1	Sammelurin für Katecholamine und		
	Metanephrine60	11	Hypothalamus111
7.2	Serummetanephrine63	11.1	Insulinhypoglykämietest112
7.3	Clonidinhemmtest	11.2	Exercise-Test113
7.4	Glukagonstimulationstest64		
	,	12	Hypophysenvorderlappen
8	Nebennierenrinde 67		und Austestung der glandotropen
8.1	Zona fasciculata68		Achsen
8.1.1	Dexamethasonhemmtests	12.1	Adrenokortikotrope Achse116
8.1.2	Freies Kortisol im 24-h-Sammelurin70	12.1.1	CRH-Test116
8.1.3	Mitternachtskortisol		Sinus-petrosus-inferior-
8.1.4	ACTH-Kurztest72		Katheteruntersuchung118
8.2	Zona glomerulosa73	12.2	Thyreotrope Achse120
8.2.1	Aldosteron/Renin-Quotient (ARQ)73		Basales TSH und TRH-Test120
8.2.2	Orthostasetest	12.3	Gonadotrope Achse122
8.2.3	NaCl-Infusionstest		LHRH-Test (männliches Geschlecht)
8.2.4	Oraler Kochsalzbelastungstest und		LHRH-Test (weibliches Geschlecht)
0.2.	Aldosteron im Sammelurin		Hypophysen-Priming
8.2.5	Fludrokortisonsuppressionstest81		(pulsatiler GnRH-Test)125
8.2.6	Captoprilsuppressionstest	12.4	Somatotrope Achse
8.2.7	Aldosteron und selektive		Basales IGF-1
0.2.7	Nebennierenvenenkatheterisierung85		Basales IGF-BP-3
8.3	Zona reticularis88		IGF-1-Generationentest
8.3.1	Nebennierenandrogene		GHRH-Test und Arginininfusionstest129
8.3.2	Androgensuppressionstest88		GH-Sekretionsprofil131
0.5.2	Androgensuppressionstest	12.4.5	Prolaktin
9	Gonaden (männlich) 91	12.3	FIOIAKIII
9.1	Testosteron, freies Testosteron, SHBG,	13	Hypophysenhinterlappen 135
9.1	freier Testosteronindex92	13.1	Durstversuch
0.2	Gonadotropine: FSH basal und LH basal93	13.1	Durstversuch130
9.2	•	1.4	Endaksinalasissha Indikationan
9.3	HCG-Test	14	Endokrinologische Indikationen zur Gendiagnostik
9.4	Spermiogramm94	1.1.1	
10	Consider (weiblish)	14.1	MEN-1 (Menin-Gen)
10	Gonaden (weiblich)	14.2	MEN-2 (RET-Protoonkogen)141
10.1	Estradiol, Progesteron	14.3	Adrenogenitales Syndrom
10.2	AMH (Anti-Müller-Hormon)		(21-Hydroxylase-Gen)
10.3	Gonadotropine: FSH basal und LH basal100	14.4	Hämochromatose (HFE-Gen)144
10.4	Gestagentest	14.5	Anderweitige Genmutationen147
10.5	Östrogen-Gestagen-Test	4-	
10.6	Clomiphentest	15	Endokrinologische Indikationen
10.7	HMG-Test104		zur Karyotypisierung151
10.8	Metoclopramidtest	15.1	Klinefelter-Syndrom152
10.9	17-α-OH-Progesteron (ACTH-Test;	15.2	Ullrich-Turner-Syndrom
	Late-onset-AGS)105		

Inhaltsverzeichnis

Anhang	155
Nützliche Formeln und Definitionen für die	
klinische Praxis	156
Nützliche Adressen und Links	157
Literatur	157
Stichwortverzeichnis	165

Vorbemerkungen zur Präanalytik bei Hormonbestimmungen

```
Körperhaltung, Blutentnahme, Probenmaterial, Logistik, Temperatur – 2
Körperhaltung – 2
Stauungszeit – 2
Verweilkatheterverfälschung - 2
Patientenbezogene Einflussfaktoren - 2
BMI-Wert - 2
Geschlecht – 2
Alter – 2
Zeitpunkt der Blutentnahme - 3
Ernährung – 3
Medikamente – 3
Begleiterkrankungen - 4
Gravidität und Laktation - 4
Rolle der Laboreinrichtung - 4
Welche Rolle spielen Erfahrung und interdisziplinäres Denken? - 5
Aufklärung vor der Testdiagnostik – 5
Charakteristika und Aussagekraft von Funktionstests - 5
```

Mehr als bei allen anderen Laboruntersuchungen ist die Präanalytik sowohl für die basalen Hormonbestimmungen als auch für die dynamischen endokrinologischen Testverfahren von exorbitanter Bedeutung. In Einzelfällen ist die Testvorbereitung so wichtig, dass die Güte eines Testverfahrens und somit die Interpretation damit steht und fällt. Anbei sind exemplarisch Prinzipien der Präanalytik mit einigen Beispielen aufgeführt. Die Darstellung der ausführlichen Testvorbereitung und Testdurchführung ist bei jedem einzelnen Test in den entsprechenden Kapiteln ausführlich dargestellt.

Körperhaltung, Blutentnahme, Probenmaterial, Logistik, Temperatur

Körperhaltung

Zum Beispiel:

- Sitzende Position für mindestens 10 min für die Abnahme von Aldosteron und Renin zur Berechnung des Aldosteron/Renin-Quotienten.
- Aufrechte K\u00f6rperhaltung/Umhergehen f\u00fcr 2 h f\u00fcr die Abnahme von Aldosteron und Renin im Rahmen des Orthostasetests.

Stauungszeit

Zum Beispiel:

Hyperkaliämie bei zu langer Stauung.

Verweilkatheterverfälschung

Erfolgen multiple Blutentnahmen aus einer Venenverweilkanüle oder einem zentralvenösen Zugang, muss unbedingt vor jeder Abnahme ein Leeraliquot (z. B. 2-ml-Monovette) vor der eigentlichen Analyse abgezogen werden, da sonst Verdünnungseffekte die Hormonwerte verfälschen.

Probenbeschriftung

Eigentlich trivial, kann aber bei engen zeitlichen Abnahmen aus unterschiedlichen Orten und noch dazu in Abhängigkeit von Stimulationen essenziell sein.

Zum Beispiel:

- Mindestens 12 Röhrchen für ACTH mit 3 anatomischen Lokalisationen vor und nach Stimulation mit CRF zu unterschiedlichen Zeitpunkten bei der Sinus-petrosus-inferior-Katheteruntersuchung
- Selektiver Nebennierenvenenkatheter f
 ür Kortisol/Aldosteron.
- Seitengetrennte Halsvenenkatheterisierung für PTH.

Logistik, Probenanzahl und Temperatur

Gerade wenn für selten bestimmte Spezialparameter viele Monovetten anfallen (z. B. ACTH-Bestimmung beim Sinus-petrosus-inferior-Katheter) und die Proben auch noch gekühlt (z. B. ACTH) sein müssen, empfiehlt sich eine Ankündigung im Zentrallabor. Wichtig ist, dass gekühlte Proben mit 4°C-Kühlakkus transportiert werden und nicht direkt auf Eis, da sonst die Proben anfrieren können und hämolysieren.

Art der Monovette

Hier ist im Einzelfall nachzuschlagen. Serummonovetten für eine Vielzahl von Hormonen, EDTA-Monovette z. B. für ACTH oder HbA_{1c} , Li-Heparin (z. B. für Karyogramm), NaFluorid-Monovette (z. B. für Glukose).

Patientenbezogene Einflussfaktoren

BMI-Wert

Viele Hormone sind abhängig vom Körpergewicht, wie z.B. Insulin oder Leptin.

Geschlecht

Alle Sexualsteroide sind geschlechtsabhängig.

Alter

Erwachsenenalter

Viele Hormone nehmen im Alter physiologischerweise ab, daher sind altersentsprechende Referenzwerte zu beachten, z.B. für Estradiol, Testosteron, DHEA-S, IGF-1.

Kindesalter und Pubertät

Für viele Hormone gelten altersentsprechende Normbereiche im Kindesalter, z.B. für IGF-1. In der Pubertät ist die Interpretation der Hormonanalytik besonders herausfordernd und muss eng an den Pubertätsstatus (Tanner-Stadien) angepasst werden.

Zeitpunkt der Blutentnahme

Zeitpunkt im Menstruationszyklus

Estradiol, FSH, LH, 17-α-Hydroxyprogesteron und Progesteron sind stark zyklusabhängig. Eine Hormonanalytik bei der Frau sollte immer zwischen dem 3. und 5. Zyklustag erfolgen.

Tageszeit

Viele Hormone folgen einer diurnalen Rhythmik.

Zum Beispiel:

- So steigt Kortisol in den frühen Morgenstunden an und kommt um Mitternacht zum Erliegen (von Bedeutung z. B. für das Mitternachtskortisol).
- GH wird v. a. nachts sezerniert.
- Testosteron muss zwischen 8.00 und 10.00 Uhr abgenommen werden.

Schichtarbeit, Jet-Lag, Zeitverschiebungen

Diese Faktoren können Hormone beeinflussen, wie z. B. Prolaktin, GH, Kortisol, Sexualsteroide.

Ernährung

Kohlenhydrate

Eine ausgewogene kohlenhydratreiche Ernährung ist 3 Tage vor einem OGTT einzuhalten.

Natriumchlorid und Kalium

Eine salzreiche Kost (mindestens 9 g) und Ausgleich einer Hypokaliämie sind Vorbedingungen für die Bestimmung des Aldosteron/Renin-Quotienten.

Magnesium

Eine Hypomagnesiämie hemmt die PTH-Sekretion.

Lipide

Fettreiche Ernährung beeinflusst LDL-Cholesterin und Triglyzeride. Der Lipidstatus muss nüchtern abgenommen werden.

Alkohol

Alkohol führt zur Erhöhung der Triglyzeride.

Fasten

Übertriebenes Fasten erhöht die Harnsäure- und die Ketonkörperwerte im Urin.

Medikamente

Letztlich müssen alle Medikamente hinterfragt werden. Viele Hormone reagieren auf eine unübersehbare Vielzahl von Medikamenten. Hier sind die bekanntesten Beispiele aufgeführt:

- Dopaminantagonisten, Antiemetika, Neuroleptika, Antikonvulsiva erhöhen die Prolaktinspiegel.
- Katecholamine, Heparin und viele intensivmedizinische Medikamente beeinflussen den TSH-Wert.
- Unter Einnahme einer hormonellen Kontrazeption sind Analysen der Sexualsteroide nur sehr eingeschränkt möglich.
- Bei intramuskulär verabreichten Hormonpräparaten wie Testosteron sollte der Spiegel immer nur unmittelbar vor der nächsten Applikation abgenommen werden (Talspiegel).
- Steroide supprimieren die adrenokortikotrope Achse.

Begleiterkrankungen

Niereninsuffizienz

- Verminderung des Erythropoetinspiegels.
- Verminderung des 1,25-Dihydroxycholecalciferols.
- Hyperprolaktinämie.
- Sekundärer, hyperreninämischer Hyperaldosteronismus bei Nierenarterienstenose.
- Erhöhung des Calcitoninspiegels.

Leberinsuffizienz

- Verminderung des 25-Hydroxycholecalciferols.
- Hyperinsulinämie.
- Erhöhung der Östrogene beim Mann.
- Sekundärer Hyperaldosteronismus.
- Angiotensinogenmangel.
- Verminderung von Albumin, dem Hauptbindungsprotein für viele Hormone und Stoffwechselprodukte.

Herzinsuffizienz

- Sekundärer Hyperaldosteronismus.
- Erhöhung des atrialen natriuretischen Peptides.
- Verdünnungshyponatriämie.

Tumoren

Paraneoplastische Syndrome wie Hyperkalzämie (Freisetzung von »PTH-related peptide«) und SIADH (inadäquat vermehrte ADH-Sekretion).

Akuter Stress und lebensbedrohliche Erkrankungen

- Stresshyperglykämie.
- Erhöhung der Katecholamine und des Kortisols.
- Hyperprolaktinämie.
- Insulinresistenz.
- Low-T3-Syndrom.
- Suppression der somatotropen und gonadotropen Achse.

Ein OGTT unter Stress (z.B. Myokardinfarkt) macht keinen Sinn (falsch positive Resultate).

Hypoproteinämische Erkrankungen

Durch Reduktion der Transportproteine Albumin, thyroxinbindendes Albumin, thyroxinbindendes Präalbumin, CBG (kortisolbindendes Globulin), TBG (thyroxinbindendes Globulin) und SHBG (sexualhormonbindendes Globulin) wird die Konzentration der entsprechenden Gesamthormone beeinflusst.

Gravidität und Laktation

Vermehrung des intravasalen Volumens

Hierdurch kann die Konzentration vieler Proteine abnehmen.

Prolaktin, Sexualsteroide und Gonadotropine

Eine Bestimmung in der Gravidität macht wenig Sinn. Prolaktin ist von Bedeutung für die Laktation.

Schwangerschaftsabhängige Effekte

Die Konzentration mancher Hormone, wie z. B. das TSH, ändert sich im Verlauf einer Schwangerschaft (durch die schilddrüsenstimulierende TSH-Wirkung von β -HCG kann TSH im 1. Trimenon supprimiert sein, ohne dass eine Hyperthyreose vorliegt).

Die Nierenschwelle für Glukose von 180 mg/dl erniedrigt sich in der Gravidität, sodass hier physiologischerweise eine Glukosurie auftritt.

Rolle der Laboreinrichtung

Die Auswahl des Labors ist von entscheidender Bedeutung, sowohl für die Zuverlässigkeit und Schnelligkeit der Bestimmung als auch für die individuelle Testdiagnostik im Rahmen komplexer Testverfahren.

Jeder Hormonwert und dessen Interpretation hängen vom Referenzbereich und der Spezifität und Sensitivität des verwendeten Assays ab. Generell ist hier endokrinologischen sowie pädiatrischendokrinologischen Speziallabors im Umfeld einer Unversitätsklinik der Vorzug zu geben. Von Vorteil