Marcus Pichler

Nachhaltige IT im Rechenzentrum

Entwicklung und Darstellung eines Modells zur Messbarkeit von Effizienz im Rechenzentrum

Marcus Pichler

Nachhaltige IT im Rechenzentrum

Entwicklung und Darstellung eines Modells zur Messbarkeit von Effizienz im Rechenzentrum

ISBN: 978-3-8366-3318-5

Herstellung: Diplomica® Verlag GmbH, Hamburg, 2009

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtes.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Die Informationen in diesem Werk wurden mit Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen werden und der Verlag, die Autoren oder Übersetzer übernehmen keine juristische Verantwortung oder irgendeine Haftung für evtl. verbliebene fehlerhafte Angaben und deren Folgen.

© Diplomica Verlag GmbH http://www.diplomica-verlag.de, Hamburg 2009

Danksagung

Leave the world better than you found it, take no more than you need, try not to harm life or the environment, make amends if you do.

Paul Hawken

Herzlich bedanken möchte ich mich bei Herrn John Thompson, BA, und Herrn DI Mag. Dr. Georg Oberdammer für ihre Unterstützung und Hilfestellungen bei dieser Studie. Weiters möchte ich den Herren Ing. Rainer Anschober, Robert Auer und DI (FH) Franz Willerroider für die Bereitstellung und Unterstützung bei der Sammlung der vorhandenen Daten danken. Speziell danken möchte ich Herrn Gerhard Gois für die Korrekturlesung und die Ideen zur Rechenzentrumsinfrastruktur. Ebenfalls herzlich bedanken möchte ich mich bei Herrn Andreas Kranabitl, der zur Idee dieser Studies vieles beigetragen und mir mein Studium ermöglicht hat. Herrn Martin Niemer möchte ich für die Unterstützung bei der Quellenfindung zu Beginn dieser Studie herzlich danken. Ein großer Dank gilt Herrn Ing. Michael Demker, der mich immer wieder mit neuen Ideen versorgt und, wo es möglich war, unterstützt hat. Ein großes Danke möchte ich Clemens Gull für die Unterstützung bei der Erstellung des Excel Sheets aussprechen.

Ein besonderer Dank gilt meinen Eltern Christa und Engelbert, die mir viele Aufgaben aus dem Alltag abgenommen und mir so das Studium um ein Vielfaches erleichtert haben.

Von ganzem Herzen danken möchte ich Kerstin, die mich mit ihrer unendlichen Liebe auch in schwierigeren Zeiten immer wieder gestärkt, unterstützt und Verständnis gezeigt hat, um mir diesen Traum zu erfüllen.

Inhaltsverzeichnis

D	anks	agung			1
In	halts	sverzei	chnis		ii
\mathbf{A}	bbild	ungsv	erzeichn	is	ix
Ta	abelle	enverz	eichnis		xi
1 Vorwort					1
	1.1	Ziel d	ieser Stud	lie	3
	1.2			nachhaltiger Entwicklung und nachhaltigen Informations-	3
	1.3	Privat	e Interess	sen	5
	1.4	Gesch	äftliche Iı	nteressen	5
	1.5	Überb	olick über	die Kapitel	5
2	Mö	glichke	eiten zur	Effizienzsteigerung bei Servern	7
	2.1	Virtua	alisierung		7
		2.1.1	Systemy	rirtualisierung	8
			2.1.1.1	Full Virtualization mit Binary Translation	10
			2.1.1.2	Paravirtualisierung	10
			2.1.1.3	Hardware Assisted Virtualization	11
			2.1.1.4	$\label{thm:continuous} Vergleich \ der \ x86-System virtualisierungsarchitekturen \ .$	12
			2.1.1.5	VMware ESX Server	13
		2.1.2	Einspar	ungspotential von Virtualisierung	14
			2.1.2.1	Berechnung der eingesparten Leistungsanforderung der Guests	15
			2.1.2.2	Berechnung der Leistungsanforderung des Hosts	15

				sierung
				Berechnung der gesamten Einsparungen durch Virtualisierung
			2.1	1.2.4.1 Beispielrechnung
	2.2	Energ	iesparende	Hardware
		2.2.1	Effiziente	Netzteile
			2.2.1.1	80 PLUS Zertifizierung
			2.2.1.2	Einsparungspotential von effizienten Netzteilen
		2.2.2	CPU Pov	ver Saving Features
			2.2.2.1	Einsparungspotential von CPU Power Saving Features
3	Mö	glichke	eiten zur	Effizienzsteigerung bei Storage
	3.1	Thin 1	Provisionin	ıg
		3.1.1	Einsparu	ngspotential von Thin Provisioning
	3.2	Data-	Deduplicat	tion
		3.2.1	Einsparu	ngspotential von Data–Deduplication
		3.2.2	Data-Dec	duplication bei Backupdaten
1	Mög tur	glichke	eiten zur l	Effizienzsteigerung der Rechenzentrumsinfrastruk-
	4.1	Sollwe	erte für Ter	mperatur und Luftfeuchtigkeit
	4.2	Ermit	tlung der I	Kühlungsanforderung
	4.3	Arten	von Klima	ageräten
		4.3.1	Air Coole	ed DX Systems
		4.3.2	Air Coole	ed Self-contained Systems
		4.3.3	Glycol Co	ooled Systems
		4.3.4	Water Co	oolod Systems
			water oc	poled Systems
		4.3.5		Vater Systems
		4.3.5 4.3.6	Chilled V	
	4.4	4.3.6	Chilled V	Vater Systems
	4.4 4.5	4.3.6 Free (Chilled W Leistungs Cooling	Vater Systems
		4.3.6 Free C	Chilled V Leistungs Cooling lung der K	Vater Systems

		4.6.2	Abluttöffnungen	47
	4.7	Platzie	erung der Klimageräte	47
	4.8	Kühlu	ngsarchitekturen	49
		4.8.1	Room–based Cooling Architecture	50
		4.8.2	Row-oriented Cooling Architecture	51
		4.8.3	Rack-oriented Cooling Architecture	51
	4.9	Racks		52
		4.9.1	Hot-Aisle - Cold-Aisle Prinzip	53
	4.10	Kühlu	ng von Bladeservern	54
		4.10.1	Luftströmung	55
			4.10.1.1 Air Distribution Unit	55
			4.10.1.2 Air Removal Unit	56
			4.10.1.3 Eigene klimaneutrale Infrastruktur	57
	4.11	Unterl	orechungsfreie Stromversorgung	59
		4.11.1	Leerlaufverlust	60
		4.11.2	Proportionaler Verlust	60
		4.11.3	Quadratischer Verlust	60
5	Mod	dell zu	r Bewertung der Effizienz im Rechenzentrum	61
	5.1	Ermitt	tlung der Daten zur Berechnung der Effizienz	62
	5.2	Total	Facility Power	63
	5.3	IT Eq	uipment Power	63
		5.3.1	Steady–State Constant	64
	5.4	Data (Center infrastructure Efficiency und Power Usage Effectiveness	65
	5.5	Auslas	stung der IT-Geräte	67
		5.5.1	Deployed Hardware Utilization Ratio of Servers	67
		5.5.2	Deployed Hardware Utilization Ratio of Storage	67
	5.6	Effizie	nz der IT–Geräte	69
		5.6.1	Hardware Compute Load	69
		5.6.2	IT Hardware Power Overhead Multiplier	69

6	Bev	vertung	g des Rechenzentrum I der SPAR AG	71
	6.1	Beschi	reibung des Excel Sheets zur Bewertung	71
		6.1.1	Ergebnisse	71
		6.1.2	Übersicht	72
		6.1.3	RZ1 Original Layout	73
		6.1.4	RZ1 Optimiertes Layout	73
		6.1.5	Rackbewertung	73
		6.1.6	Stammblätter (Server Stb, Storage Stb, Netzwerk Stb und Zubehör Stb)	74
		6.1.7	Storage Data	74
		6.1.8	Free Cooling SZG	75
		6.1.9	Virtualisierung	75
		6.1.10	Power Save	75
	6.2		clung der erforderlichen Daten für die clung der Effizienz	76
		6.2.1	Ermittlung von IT Equipment Power	76
		6.2.2	Ermittlung von Total Facility Power	76
			6.2.2.1 Ermittlung der Leistung für die Klimatisierung \dots	78
			6.2.2.2 Ermittlung des Verlusts der USV	79
			6.2.2.3 Ermittlung der Größe des Rechenzentrums	79
			6.2.2.4 Ermittlung der Kühlungsanforderung	80
	6.3	Berech Effizie	nung der Metriken zur Messung der nz	81
		6.3.1	Data Center infrastructure Efficiency und Power Usage Effectiveness	82
			6.3.1.1 Methode APC optimiert	82
			6.3.1.2 Methode APC pessimistisch	82
			6.3.1.3 HP Cooling Load Factor	83
		6.3.2	Deployed Hardware Utilization Ratio	84
		6.3.3	Deployed Hardware Utilization Ratio of Servers	84
		6.3.4	Deployed Hardware Utilization Ratio of Storage	84
		6.3.5	IT Hardware Power Overhead Multiplier	85

7	Opt	imieru	ngspoten	atial des Rechenzentrum I der SPAR AG	87
	7.1	Server			87
		7.1.1	Berechnu	ng der Einsparungen durch Virtualisierung	87
		7.1.2	Berechnu Hardware	ng der möglichen Einsparungen durch energiesparende	88
				Einsparungen durch den Einsatz von effizienten Netzteilen	89
				Einsparungen durch den Einsatz von CPU Power Save Features	89
	7.2	Storag	e		90
		7.2.1	Mögliche	Einsparungen durch den Einsatz von Thin Provisioning	90
		7.2.2	Mögliche	Einsparungen durch den Einsatz von Data-Deduplication	. 91
	7.3	Infrast	ruktur .		93
		7.3.1	Mögliche	Einsparungen durch den Einsatz von Free Cooling	93
		7.3.2	Optimier	ung des Rechenzentrum Layouts	94
				Optimierende Maßnahmen für die gesamte Luftzirkulation	94
		7.3.3	Optimier	ende Maßnahmen einzelner Racks	97
			7.3.3.1	Leistungsanforderungen an einzelne Racks	99
8	Zus	ammer	nfassung	und Ausblick	101
Lit	terat	urverz	eichnis		105
Al	okürz	zungsv	erzeichni	s	117
Gl	ossai	r			119
Ar	nhan	g			123
\mathbf{A}	Gru	ndlage	en		125
	A.1	Auswin	rkungen d	er verschiedenen Ressourcen auf Leistung und Energie .	125
	A.2	Berech	nung der	Verbrauchswerte	127
		A.2.1	Berechnu	ng des Energieverbrauchs	127
		A.2.2	Berechnu	ng des CO_2 -Ausstoßes	128
В	RZI	der Si	PAR AG		131

\mathbf{C}	RZI der SPAR AG - optimiert	133
D	Durchschnittliche Temperaturen am Flughafen Salzburg 2006	135
${f E}$	Leistungsanforderung pro Rack	137

Abbildungsverzeichnis

2.1	Arten der Server–Virtualisierung	8
2.2	x86–Prozessor Ring Architektur	9
2.3	Full Virtualization	10
2.4	Hardware Assisted Virtualization	12
2.5	VMware Layer	13
2.6	Unterschied bei Netzteilen	19
2.7	Verhalten zwischen CPU Vollauslastung und Idle	22
2.8	Auswirkungen durch Aktivierung der p–State Steuerung	24
3.1	Einsparungen bei Verwendung von Thin Provisioning	26
3.2	Ausnutzung des Storage bei Verwendung von Thin Provisioning $\ \ldots \ \ldots$	27
3.3	Verwendung von Data–Deduplication aus Anwendungssicht	28
3.4	Ohne Verwendung von Data–Deduplication	29
3.5	Verwendung von Data-Deduplication	29
4.1	Aufteilung der Abwärme im Rechenzentrum	34
4.2	Air Cooled DX System	35
4.3	Air Cooled Self-contained System	36
4.4	Glycol Cooled System	37
4.5	Water Cooled System	39
4.6	Chilled Water System	41
4.7	Freikühlleistung in Abhängigkeit zur Außenlufttemperatur	43
4.8	Einsparungen durch Free Cooling	44
4.9	Beispiel eines Druckbodens mit Kabeltrassen	46
4.10	Typische Aufstellung einer Klimaanlage	48
4.11	Bessere Aufstellung einer Klimaanlage	49

4.12	Kühlungsarchitekturen	50
4.13	Einsatz von Abdeckleisten	52
4.14	Rackaufstellung Font-to-back	53
4.15	Rackaufstellung mit Hot-Aisle – Cold-Aisle	53
4.16	Air Distribution Unit	55
4.17	Air Removal Unit	56
4.18	Thermisch neutrale Racks	57
4.19	Thermisch neutrale Einzelracks	58
4.20	Nutzung der USV Eingangsleistung	59
5.1	Energieaufteilung im Rechenzentrum	61
5.2	Messpunkte zur Effizienzberechnung	62
5.3	Mögliche Werte von DCiE und PUE	66
6.1	Effizienzwerte als Spinnendiagramm	81
7.1	Einsparungen von Data-Deduplication in TB	92
A.1	Strommix der Salzburg AG	128
B.1	Rechenzentrum I der SPAR AG	131
C.1	Rechenzentrum I der SPAR AG - optimiert	133

Tabellenverzeichnis

2.1	Einsparungspotential von Virtualisierung	15
2.2	Beispiel von Einsparungen durch Virtualisierung	17
2.3	80 PLUS Server Zertifizierungsstufen	19
2.4	Jährlicher durchschnittlicher Energieverbrauch pro Server	20
2.5	Reduktion der Leistungsanforderung bei Verwendung von 80 PLUS Server Netzteilen	21
2.6	Enable Power Saving Features	23
3.1	Typische Fibre Channel Festplatten für den Einsatz im SAN	28
3.2	Einsparungspotential bei Data-Deduplication	30
4.1	Umrechnungstabelle für Wärmeeinheiten	32
4.2	Ermittlung der Daten zur Berechnung der Abwärme	33
4.3	Air Cooled DX System	35
4.4	Air Cooled Self-contained System	36
4.5	Glycol Cooled System	38
4.6	Water Cooled System	40
4.7	Chilled Water System	42
4.8	Einsparungen durch Free Cooling im Bereich des Flughafens Salzburg im Jahr 2006	44
5.1	Messwerte	62
5.2	Data Center Power Consumption, Total Facility Power	63
5.3	IT Equipment Power	64
5.4	Variablen zur Berechnung der typischen Leistungsanforderung	65
5.5	Deployed Hardware Utilization Ratio	68
6.1	Ermittlung der IT Equipment Power	76

6.2	Ermittlung der Gesamtleistung	77
6.3	Ermittlung der Leistung für die Klimatisierung	78
6.4	Ermittlung der USV Daten	79
6.5	Ermittlung der Größe des Rechenzentrum I	79
6.6	Ermittlung der Kühlungsanforderung	80
6.7	Methode APC optimiert	82
6.8	Methode APC pessimistisch	83
6.9	Methode HP Cooling Load Factor	83
6.10	Deployed Hardware Utilization Ratio Berechnung	84
6.11	IT Hardware Power Overhead Multiplier	85
7.1	Einsparungen durch Virtualisierung	88
7.2	Einsatz von effizienten Netzteilen	89
7.3	Einsatz von CPU Power Save Features	89
7.4	Storage Daten	90
7.5	Typische Fibre Channel Festplatten für den Einsatz im SAN $\ \ldots \ \ldots$	91
7.6	Zugewiesene Storage Kapazitäten	91
7.7	Einsparungen bei Verwendung von Data–Deduplicaton	93
7.8	Einsparungen bei Verwendung von Free Cooling im Raum Flughafen Salzburg	93
7.9	Optimierende Maßnahmen für die Luftzirkulation	96
7.10	Optimierende Maßnahmen einzelner Racks	98
7.11	Leistungsanforderung an einzelne Racks	99
8.1	Einsparungspotential bei Servern im SPAR Rechenzentrum I	101
8.2	Einsparungspotential bei Storage im SPAR Rechenzentrum I	102
8.3	Einsparungspotential bei der Infrastruktur im SPAR Rechenzentrum I .	103
A.1	Variablen zur Berechnung der durchschnittlich benötigten Leistung . .	126
A.2	Strompreisberechnung	127
A.3	Berechnung des CO_2 Verbrauchs	129
D.1	Durchschnittliche Temperaturen am Flughafen Salzburg im Jahr 2006 .	135
E.1	Power Usage	141

1

${f Vorwort}$

In den letzten 30 Jahren erwärmte sich die bodennahe Atmosphäre der Erde um 0,6 °C und der CO₂-Gehalt in der Luft ist der höchste seit 650.000 Jahren. Im 21. Jahrhundert wird eine weitere globale Erderwärmung zwischen 1,8 °C und 4 °C erwartet. Die genaue Temperaturveränderung im 21. Jahrhundert hängt davon ab, wie schnell sich der globale Ausstoß von CO₂ senken lässt. Durch die von der UNO geforderte Halbierung des globalen CO₂-Ausstoßes bis 2050 könnte unter der gefährlichen 2 °C Marke geblieben werden. Industrienationen wie Österreich müssten dazu ihren CO₂-Ausstoß um 60% bis 80% reduzieren. Auf Grund der langen Abbauzeit von CO₂ ist aber eine weitere Erwärmung von 0,5 °C unvermeidbar.[77]

Rechenzentren sind für 0.3% des gesamten CO_2 –Ausstoßes oder 170 Mt CO_2 und somit für die Erderwärmung und ihre Folgen mitverantwortlich. Bis 2020 wird mit einer Vervierfachung dieses Ausstoßes gerechnet. [54]

Durch die bereits erfolgte Erwärmung haben schon 1700 Tier- und Pflanzenarten begonnen, polwärts zu wandern, zuletzt mit einer Geschwindigkeit von 6 km pro Jahrzehnt. Heute verschieben sich ihre Lebensräume bereits mit 50 km pro Jahrzehnt. Wissenschaftler gehen in Schätzungen davon aus, dass hier eine Steigerung auf bis zu 100 km pro Jahrzehnt möglich ist. Es wird angenommen, dass bei einer globalen Temperaturerhöhung von 2 °C rund 25% und bei 3 °C ein Drittel der bekannten Arten durch den Verlust des natürlichen Lebensraumes verschwinden könnte. Speziell Arten, die keine Auswanderungsmöglichkeit haben, sind davon betroffen. Dazu zählen unter anderem Korallenriffe im Pazifik oder Tiere und Pflanzen in den Alpen. In Österreich

sind beispielsweise die Baumarten Fichte und Buche sowie die Tierarten Bachforelle und Schneehase betroffen.[77]

Die Jahresdurchschnittstemperaturen werden in Österreich von 2,5 °C bis über 5 °C ansteigen. Niederschläge werden in den Wintermonaten um bis zu 40% zunehmen, in den Sommermonaten hingegen zwischen 10% und 50% abnehmen. Wetterextreme wie Hitzetage über 30 °C werden zunehmen und bis zur Hälfte aller Niederschläge könnten als Starkniederschläge fallen. Die Anteile der verschiedenen Baumarten am Gesamtbestand werden wird sich verändern. Trockenheitstolerante Baumarten wie Eichenarten werden vermehrt wachsen. Die Wassertemperaturen werden steigen und dadurch den Lebensraum von Kaltwasserfischarten wie der Bachforelle um bis zu 25% verkleinern. In den Alpen werden die Gletscher um bis zu 75% abnehmen, Tiere in den Alpen werden in höhere Lagen ausweichen. [77]

Zu den negativen Auswirkungen des Stromverbrauchs von Rechenzentren auf die Umwelt kommen Platz- und Kühlungsprobleme für die entsprechende Infrastruktur hinzu. Bis 2011 werden in über 70% der U.S. Rechenzentren Produktionsstörungen aus den genannten Gründen auftreten.[61] Bestehende Rechenzentren wurden für eine Kapazität von 1 kW bis 1,5 kW pro Quadratmeter gebaut, im Jahr 2008 hingegen werden diese bereits mit 3 kW bis 4 kW geplant. Man rechnet sogar mit einem Anstieg auf bis zu 6 kW pro Quadratmeter bis zum Jahr 2011.[61] Diese Rechenzentren können teilweise bereits heute einsetzbare und speziell zukünftige high-density Infrastruktur nicht mehr unterbringen, falls die Stromdichte im Rack weiter um 15% pro Jahr zunimmt. Denn bis vor einigen Jahren war es nur möglich diese Racks mit einer Ausstattung von 2 kW bis 3 kW zu bestücken, heute sind bereits bis zu 30 kW möglich.[60]

Verschärfend kommt hinzu, dass Rechenzentren auf mindestens zehn Jahre und Server auf eine Lebensdauer von drei bis vier Jahren ausgelegt sind. Durch die ständig kleiner werdenden Formfaktoren der Server steigt die Packungsdichte stetig an. So entsteht mehr Hitze auf demselben Platz, die mittels Klimatisierung wieder abgeführt werden muss.[43] Traditionellerweise wird jeweils ein Server pro Anwendung, Aufgabe oder Service installiert. Dadurch kommt es in vielen Rechenzentren zu einer zu geringen Auslastung der jeweiligen Hardware. Diese Server haben meistens nur eine Auslastung von 5% bis 15% ihrer Kapazität und sind 80% des Tages idle.[82]