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GENERAL REMARKS. The principal subject ef these lectures is
te be the present status eof the pregram ef guantizatien eof gene-
ral relativity and ef general-relativistic theeries. Because of
the unfamiliarity ef many mathematicians with the physical ideas
in current quantum theery, I shall attempt te give a brief sum-
mary of the pertinent ideas later en. I shall alse emphasize in
my leotures the classical (i.e. nen-quantum) aspects of the pre-
gram, in particular the cencept eof ebservables. I shall alse, if
time permits, give a brief acceunt eof the present status ef the theo_
ry of motion . Ferhaps it will be necessary te relegate this te-

pic te a seminar.

REFERENCES. For relativity I suggest any standard textbeok
as backgreund. A thereugh greunding in Riemannian and related geo-
metries is desirable fer any study in general relativity. Fer the
fundamental ideas in quantum theery prebably Dirac's boek (Ox-
ferd, 194%7) is a geed centemperary intreductien fer mathematicians,
theugh J.v.Neumann's eld beek is gtill excellent. Ter a mers phy-
8ical slant Behm's recent beek ocan be recemmended. Fer guantum
field theery there are new available, in additien te G.Wentzel's
eld beek (Vienna, 1943), a beek by S.S.Schweber and a series of
articles by Sohwinger, Temenaga, Feynman, and Dysen, te mentien
but the mést impertant.

Turning te the pregram of gquantizatien ef general relativi-
ty, I mentien a series of eld articles by L.Resenfeld (Annalen
4. Phyeik, 1930, Inst,H.Peincaré, 1932), my ewn articles in the
Physical Review (1049 te date), and various status reperts in
Helvetica Physica Acta (Suppl.IV,1956, which is the repert of ihe

1955 coenference at Berne), Reviews of Medern Physics (July,1957)



and the separately issued preceedings ef the Chapel Hill cenferen-~
ca of January, 1957 One article by 0.EKlein will be feund in the
N.Behr "Festschrift", whiech has been published as a beok. Addi-
tional references may suggest themselves in the ceurse ef eour le-

ctures and seminars.

QUTLINE OF LECTURES. The fellewing preliminary eutline is
meant te be flexible, in accerdance with the wishes ef the parti-
cipants.

1. Physical metivatien ef the pregram ef guantizatien.

?. Formal preperties ef gensral-relativigtic theeriea with

an actien principle.

3. Bummary ef cencepts ef gquantum theery.

4, Technical repert en the status ef the program ef quanti-~

zatien.

Bb. Censtructien of ebservables in general reliativity.

6. Theery of motien.

1. PHYSICAL MOTIVATION. At present we have twe majer theore-
tical struotures in theeretiocal physics, which have net been fu-
sed tegether, quantum theery and relativity. Quantum theery repre-
sents the fermal and coemplete cedificatien ef eur recegnitien that
it is impessible to determinéd simultaneeusly with cemplete accu~
racy any twe dynamical variables ef a system which are canenical-
1y cenjugate (in the sense ef Hamilten's mschanics). Accerding
to quantum theery there is a streng mutual interactien between a
physical system and an ebserver that prevents the censtructien
ef a cemplete set of Cauchy data and their integratien in the ceour-
ss of time, as had been envisaged by Laplacs. Gensral relativity,

on the other hand, prebably represeants the mest perfect example



of a (nen"quantum) field theery new available and certainly ac~
coeunts better than any ether theoery for all the knewn facts abeut
the gravitational field.

With twe such cemprshengive thseretical structures availa=-
ble, it appearsg enly reasonable that one should attempt te extend
eaoch inte the field cevered by the ether, se that the attemptsd
integration sheuld either result in an irrecencilable clasgh and
centradictien; eor in success. Fither event would have the grea-
tegt heuristic value fer the develepment ef physical theery ag a

whele. At pregent we have net yet reached that stage.

2, GENERAL~RELATIVISTIC THECRIES WITH AN ACTION PRINCIFPLE.
We shall call a theery general-relativistic er generally cevariart
if its laws take the same ferm in every resasonable curvilinear
coordinate system. Fer this definitien it is net essential that
this form be that of tensor equatiens, theugh tenser laws are an
impertant example. If we consider a set of dynamical laws that
may be interpreted as the Euler-Lagrange equatiens of a variatie-~
nal principle - and all prepesed theories in physics pessess this
property - , then it is necessary and sufficient fer the relati-
vistic invariance of these laws that fer any twe ceerdinate systems
chesen the actien integrals ef the sams form ars equivalent, in

that they differ at mest by a surface integral,
(2.1) July, P ak s j’LEyB'(x“') atyr + t})l“p 2z,

wWhere the y' are the transforms ef the y. This general principle
makes ne reference te the Riemannian nature ef apace-time, or a-
Dy ether assumed geeomstric structurs.

If we censider in particular an infinitesimal coerdinate

transformation, and if we restriot ourselves te an action prinei-



ple in which L is a functien enly ef the y's and their first par-

tial derivatives yA e then we have the principle
E

A’ i -
3t sy, + *ro 574, 5 +Fp,p %0

er

A - ;
(2.2) 581 SyA + e - B0

where the symbel 8L atands fer 94L - (3%°L),p , the se-called
variatienal derivative of L, and the field CF, which I shall ecall
the "generatingd density”, is determined by the structure eof the
Lagrangian- 5 is the gymbel fer the infinitesimal transfermatien
law, in thie case of the field variables, representing the (infi-
nitesimal) change ef the field as a functien ef the ceerdinates.

Because we assume general-relativistic cevariance, SyA in=-
velves a set of feur arbitrary functiens, the "descripters® ef
the infinitesimal ceerdinate transformatien &% = 5% %. Tt fel-
lows that Hg.(2.2) invelves differential identities betwsen the
field equatiens, whese structure depends en the assumed transfer-
matien law ef the field variables. Because the (centracted) Bian-
chi identities are an example of such identities, we shall call
the identities between the field esquatiens that are related te
their cevariance Bianchi identities. Let, fer instance, the tran-
sfermatien law be of the form
(2.3) gyA = GApU(yB‘ yB,a) §p=0 + dApfp s
then we have

54y (0 € 5y ¥ 2 8P1 * 68 =0
and thus

A
(%L ¢,

o xp + [ed ¥ A _
o 5 o), ot [B7L g, - (o

o A 0
i b L)’o_]{:' w0



Because the functiens £F are arbitrary, we can, by integrating
this equatien ever a four~dimensional demain and cenverting the

first term inte a surface integral, cenclude that

o

(2.4) (cAp

A A
- b
§ L):a- dAp L =0 ,

a get of four differential identities between the field eguatiens

(2.5)

Frem the precedure that we have used in the derivation of these
identities it is clear that the erder ef the differential iden-
tities equals the highest differential erder ef the £P  that eco-
ours in the transfermation law ef the type (2.3), whereas the
differential erder of the field variables yA, which are arguments
of the ceefficients o;d,..., i85 immaterial.

Even if the field equatiens cannet be interpreted as a set
of Euler-Lagrange egquatiens, they will net lend themselves te an
erdinary Cauchy-type initial-value preblem, provided the variables
eccurring in them are net all individually invariant, SyA =0 .
Even with given initial values en a given three~dimersional hyper~-
surface ef the field variables and°§ given (finite) number wr
their derivatives, it is always pessible te change the valuss or
the field variables elsewhere by a ceordinate transfermatien,
whioch is restrioted to be the identity transfermaetien en the iri-
tial hypersurface, hence the values of the field variables off
the hypersurface cannet be determined by the initial values on
the hypersurface.

With differential identities ef the typs (2.4), we can pro-
Ve in detail just hew the eguatiens differ frem an erdinary set.

Consider the ene term in Fgs.(2.4) which contains third-ecrder de-



rivatives of the field variables. This term is
o AT 2 o AT ~BR

2.6 3 = 3 9 L +... =m0

( ) GAp ( L)}T cAu yB,pTU

Suppose, for the sake of simplicity we cheese as an initial hyper-

gsurface ene en which xC = 0. Ther it fellews that

(2.7) c °® AAB

= 0
Au 4

AAB g 440 5BO

But this matrix A}B alse represents the set of ceeifficients ef
the secend=erder "time" derivatives in the field eguations them=-
Balves,

(2.8) sln = - AAE £,

w e

Vg, 00

It follews frem Eq.(2.8) that the matrix AAB is gingular and
that it pessesses (at least) feur sigenvecters that beleng to the
eigenvalue O

We arrive at twe cenclusiens

(1) (At least) feur ef the highest "time" derivatives of the
field variables are net determined by the field squatiens.

(2) (At least) feur linear cembinatiens ef the field equatiens
are free of pecond~erder time derivatives and thus represent re-
gtrictiens en the cheice eof the field variables and their first-
erder derivatives en an initial hypersurface. Such relatienghips
are often called censtraints, an expressien that was eriginally
used in cennsctien with the Hamiltenian fermulation ef the theery.

In passing, I sheuld like te nete that relatienships ef the
ferm (2.2) play a rele in ths theery of metilen, a tepic te which
I hepe to coeme back teward the end ef thsgse lecturess.

The differential identities, and in particular the relatiens

(2.%7), lead to cemplications if ws attempt te pass ever frem the
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Lagrangian te the Hamiltenian ferm ef the theeory, a step that is
often censidered preliminary te quantizatien. Ordinarily, in a
field theery, ene intreduces the se-called canenical mementum den=-
gities by the definitien

(2.9) 7"t =

With their help, one then defines the Hamiltenian density
(2.10) H=y .

where all "time" derivatives have been expressed in terms ef the

new osanenical fleld variablese, the yA (and pessibly their "apa-

tial" derivatives, v, ) and the 7%. The cemplete set of caneni-
n

s

cal field equations is

= A = g4
Va0 BA B, T g §+ H ,
(2.11)
9 A A A
3 = - (3hn
L\ = MA,SI{‘BH (9 m,m

Moreover, given seme functienal ef the canenical field variables
en an initial hypersurface x? = conatant and eof the ceordinates

xa, say ', we have the general dynamical law

al’
(2.12) - = (" H) + 9 ]
ax® ox°

where the symbel H represents the Hamiltenian, i.e. the integral
fﬂd% , and the symbel (,) is a Poiason bracket, defined with the

help of the "functienal derivatives™

J[.ﬁi 2B 24 9B 7 ge

Sr— 4 x .

(2.13}0 . ) (4,B) = - —
a, (™) e () ertx) 3y, (x)

The functienal derivatives eof a Junctienazl are defined {if thay

exist) by the relatienship



(2.14) s4 = ff.?..i Sy (x) st 4 578 (x)] a’x
By, (x) A Imh(x)

where SyA{x), Swh(x) are arbritery infinitesimal variatiens ef
the arguments ef the funotienal. The definitiens (2.10) threugh
(2.14) are the natursl analegs ef the cerrespendingd definitiens
in classicsl mechanics. The Hamiltenian fermalism, when it werks,
enables us te replace the Euler-Lagrange field equatiens (2:5)
by a set ef first~erder eguatiens, selved with respeoct te their
"time" derivatives. The Hamilterian fermalism is thus ideally
suited te the fermulatien of initial-value preblems in field thee-
vy

The succeass ef the precedure just sketched depends en eur
ability te express the quantities yAio whelly in terms ef the
canenical variables, and this is pessible enly if the Jacebian

of the transfermatien - gk is nen~-zere. Hewever, we see

V4,0
immediately that: the matrix ef the partial derivatives,

(2.15) = = N4,

is singular. Hence, theugh the "velecities yA & determine the
2

mementum densities ot uniquely, the reverse dees net held. Fur-
thermore, the wA ag functiens ef the "velooities" are net al-
gebraically independent ef sach ether, but matisfy (at least}

feur relatiens net invelving any "time" derivatives. These rela-

tiens are called primary censtraints. They are satisfied selely

a3 the result ef the defining equatiens (2.9) and bear ne rela-
tien te the field eguatiens.

The further develepment ef the Hamiltenian theery has shewn
that it is possible te censtruct a Hamiltenian density ef the ty-

pe (2.10), which hewsver is net unigque but invelves feur arbi-

10



trary functiens, multiplied by the feour primary censtraints. Fi-
xirg these arbitrary functiens is equivalent te inftreducing ceor-
dinate cenditiens. Witheut such cenditiens, the fermal Cauchy pre-
blem cannet be uniguely defined, hence the arbitrary functioens
in the Hamiltenian density.

If the primary censtraints are satisfied en eoene hypersurfa-
ce xo = genst., we mus} require that they remain satisfied, i.e.
that their Peissen brackets with the Hamiltenian vanish. This re-
quirement leads te four additienal cenditiens en. the canenical

field variables, the se-called secendary censtraints. Iteratien,

i.e. tha constructien ef higher time derivatives ef the primary
censtraints, dees net lead te additienal cenditiens. The tetal
number of censtraints in general relativity and in similar theo-
ries is eight at each peint ef the initial hypersurface. These

censtraints and the Hamiltenian ferm a functien greup.

3. CONCEPTS OF QUANTUM THEORY. Histerically, quantum thesery
began with Schrédinger's celebrated eguatien. Subsequent devele-
pments have shewn, hewever, that there exist many equivalent fer-
mulatiens, ef which the "Schrodinger representation’ is but ones,
and I shall attempt te give a fairly general descriptien.

In classical mechanics the "state™ ef a physical gysten is
determined uniguely by the locatien of its representative peint
in phase space, i.e. by the numserical values of all its caneni-
cal ceerdinates qk, P - In quantum mechanics the state is a unit
vecter in a Hilbert space. Whereas the apprepriate group of tran-
sformatiens in classical mechanics is the greup of canonical tran-
sfermatiens, the analegous greup in quantum theery is the greup

ef all unitary transxormatiens. In classical mechanics every phy-

11
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sical variable is capable ef generating an infinitesimal transfer-
matien. In guantum theery every "obassrvable" A generates an infi-

nitesimal unitary transfermatien in Hilbert aspace,
(3.1) 5U = —u_iﬁ- A

411 phyeically meaningful quantities are, therefere, represented
as Hermitian linear eperaters in Hilberti space. The symbel i
stands fer Planck's eriginal quantum ef actien, h, divided by 27
and equals 1,05444 x 10727 erg sec. We can ocenstruot a cemplete
set of base vecters in Hilbert space, se-te-speak a ceerdinate sy~
stem, 1if we censtruct the joint eigen vecters ef a cemplete sei of
cemmuting opersters. By this expressien we mean the fellewing. One
operater, aay 14, may be highly degenerate. Te identify ite eigen-
furetiens uniquely, we take a set ef commuting eperaters Qyr--aQps
so that a set of eigenvalues qﬂ(k = 1,...;0) identifies exactly
one jeint eigenvecter. The cemplete set of cemmuting eperaters cer-
regpends asppreximately te the set of cenfiguratien variables in
classical mechanics, whlioh alse generate a set ef cemmuting infini-
tesimal canenical transfermatiens.

All ether eperaters will either cemmute with all qk (ir which
case they may be censidered functiers ef the qk), er they will ha-

ve noenevanishing cemmutaters. In particular there will be eperaters

Py such that their coemmutaters with the q are
_ - 1
(3.2) Epk, qa] e skl

Theme will be assumed te be the guantum analegs ef the canenjcal
momentum gempenents. Commutaters ef the type (3.2) ere generally

the analegs ef the cerrespeding Peissen brackets ef classical mecha-
nics, which alse are raprasentativ;s ef the ocemmutaters eof infini-

tesimal canenical transfermatiens.

12



The fermal scheme ef guantum theery is related te physics
by twe seis ef rules. One refers te the eutceme of ebservatiens,
the ether sets ferth a dynamical law. If an experiment is perfor=-
med te measure the value ¢f a physical guantity A, then the enly
pessible outcoemes of the measurement can be the eigenvalues of the
eperater A . If the system is in a state desoribed by the Hilbert
vecter{®» , then the average of many measurements of A will be

given by the "bracket" (i.e. scalar preduct)

(3.3) O <fA|>

If i>‘ happens te be an eigen veoter ef A , Pelenging te the ei-
genvalue a', then the "expectation value" ef the measurement will
be a', and mereever the expectatien value of A2 will be 3'2,
hence the scatter of ebservatiens will be zere, the outceme of
the measurement will invariably be a'. In all ether cases the re-
sults of a measurement, repeated many times, will scatter.

The ether rule intreduces a dynamical law. Let |£> and I§>

be twe different states of which the physical system is capable.

Then fer an ebservable A we have the general rule
(3.4) L&lald =3 GlmallD + él%ﬂ 12
at t

This dynamical law is the precise analeg te the law of metien in
Hamiltenian classical mechanics.

The fermulatien ef these twe rules is "repregentatier-nva-
riant", that is te say, if we perform the fellewing unitary (and

possibly time~dependent) transfermatiens

(3.5) D' =l £I' = Lvt

AV T yaut , wut =1,

13
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nething will change. By means ef such unitary transfermatiens we
may digtribute the time-dependence in any desired manner betwsen the Hil~-
bert vecters and the Hermitian eperaters, the ebservables. In partiw-

cular we speak ¢f a "Schredinger representatien™ if

(3.6) Ly - o1 - % HE da,
P > :EH|> , > =3 |>0 ,Ek—o

and ¢f a "Helisenberg representatien" 1if

a dq dA _ DA i
(3.7) s> =0, —k=.i-[n,q1,.-.-——-+%[n,m,
at at 17 k at 3t

T+ ig remarkable hew much can be accemplished with this ‘bare
skelesten of rules. Fer instanoe it is a fairly easy task te shew
that if twe eperaters p and x satisfy cemmutatien relatiens
of the kind (3.2) and 3f we assume fer the Hamiltenian H +the
ferm

(3.8) (x2 + p?)

o]
]
N 1=+

( the ene-dimensienal harmenic escillater), then the enly eigen-—

values of H are

(3.9) € I(n+%)t i B2 DL B e
n

Anether simple exampls, which bears a clese relatienship te the
peesible representatiens ef the three-dimensienzsl erthegensl greup,
ig the fellewing. Let Lx’ Ly, and Lz be three epsraters which sa-

tiafy the oyclic cemmutatien relatiens

(3.10) {Lx,Ly] = i L, » ete.

and lst the Hamiltenian be
H=4 (L 2+12+1 2),
2 x ¥ z

Then the eigenvalues eof H are

14
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(3.11) € 447 505+ , 3 =o0,%1,2,2,...,
J 2 2 2
and the individual eperaters Lx,n,p have the fellewing eigenva-
lues
(3-12) I—': = mt » m = “j:"j+1;°v"1+j

Tn this system {(the three-dimensienal retater) H and Lx form a
cemplete set of cemmuting eperaters.

T have said that the unitary transfermatiens in Hilbert spa-
ce are the analeg ef the canenical transfermatiens in classical
physice. This analegy is net perfect, insefar as fer a given oclas-
sical system and its quantum analeg it cannet be said that the
greup ef canenical transfermatiens and the greup ef unitary tran-
afermatiens are isemerphioc; they are net. Hewever, these transfer-
matiens that determine the invariance preperties and the symmetry
character eof the physical system, and their cemmutater algebra,
are generally the same. And these invariant transfermatiens are
gdenerated by cerrespending censtants ef the metien. Thus the Ha-
miltenian eperater generates the evelutien ef the system in the
ceurse ef time, the cempenents ef the linear mementum generate
displacements ef the ceerdinate erigin;: the compenents ef the an-
gular mementum generate erthegenal transfermatiens, etc. Because
the tranefermations ef quantum theery are linear transfermatienrs
it is preper te speak ef representatiens ef certain greups. Fer
instance, in the example of a quantum system given in Eqe. (3.10),
(3.11), the eperaters Lx,,n. ferm all the representatiens ef the
(preper) erthegenal greup. The irreducibile representatiens are
characterized by the gquantum nupber j, wiieh takes all integrasl
and half-edd values. The rank ef each irreducibile representatier

equals (2j+1).

15



Iv. the medern desvelepmeni ef guantum theery, the precess of
quantizatien has been extended frem mechanics te field theeries.
The axiematics ef guantum field theery has been develeped much
less well than that of guantum mechanics. Roughly speaking ene
may cenceive of a field theery as of a mechanical system with an
infinite number of degrees of freedem. Fer instance, 1f we assign
te sach degrees of freedem efaphysical system a Hilbert space and
if we form the Hilbert space ef the whele system as the Erenscker
preduct of the partial Hilbert spaces, then we eblain a space with
a nen-denumerable number of dimensiens, i.e. ne Hilbert space at
all. This difficulty has been met, im part, by the specificatien
that enly these states ef a system are te be admitted which differ
from the state ef lewest energy, the greound state, oenly with re-
apect te a finite number ef degrees of fresedem (which enes is no%
specified). This restrictien is, hewever, net invariant with re-
spect te seme very impertant canenical transfermations; there ars
many ether preblems ef this type that have been met only partial-
ly. Although apparently "fermal", many of these difficulties have
their physical implicatiens. Physicists have werked out a number
¢f werking rules that enable them te perferm the quantizatien ef
some very simple field theeries successfully. The enly realigtic
theory with which we are well satisfied is quantum electredynamics,
that is the theery ef the electremagnetic field coeupled te the field
of electrens and pesitrens accerding te Dirac's theery. The exten-
sien te nuclear ferces and mesen fields has been enly partially
successful; we de net knew whether we de net understand the dyna-
mical laws imperfectly, whether eur precedure ef guantizatien is
defective, er whether the principal blame attaches te eur metheds

of appreximatien.

16



4, QUANTIZATION PRCCEDURES TN GENERAL: RELATIVITY. It might
appear that with the Hamiltenian fermulatien of general relati-
vity the greundwerk has been laid fer a successful gquantizatien.
One weuld hepe te replace the classical dynamical variables (the
canenical field variables) by quantum eperaters ebeying the cane-
nical cemmutatien relatiens, and te admit as physical enly states
whick permit the censtraints te be satisfied. One obvieus diffi-
culty is that there are dynamical variables that are canenically
coenjugate te the cengtraints. Now it is very easy te show that 1f

twe oeperaters A, B satisfy a cemmutation relatiern e¢f the form
{4.1) [4,B] =t o1 ,

where ¢ 18 an erdinary number and T stands fer the identity o=
perater, then neither A ner B possesges proper eigen vecters.

For if, e.g.fa> were an eigenvecter ef A, se that

(4.2) alad = ar]a>, <a'|A = g éll,

then

(4.3) Q'IEA,E]Ia'>=o, <c_‘|irJI|a> T ig ,

an obvieus centradictien. The only ether peoessibility is that the
operatien BIaﬁ} does net lead te a Hilbert vecter.

Censider new a censtraint of the theory, C. Then the enly
admissible Hilbert veoters are thess fer which C‘) EQ , Lie,
eigenvecters of C . It follews that for this whele sget e¢f guan-
tum states an eperater D which is caneniocally cenjugate te C leads
outside Hilbert space and thus can have ne expectatien value or
other sensible physical preperty. In fact, because the elgenvalue

et = 0, the same holds true for any eperator which dees net zcem-

mute with all the constraints. Hence, because gdeneral relativity

17



in the Hamiltenian fermulatien has twenty canenical field varia-
bles, gyv’ W“V, there are enly four algebraically independent ob-
servables per space peint. There are eight censtraints, i.e. cem~-
binatiens ef variables required te have the value O, and eight
additienal variables cenjugate te the ocenstraints. This result
weuld net be unsatisfactery in itself; the electremagnetic field
has the same number ef independent variables. But unfertunately
the gtructure of the censtraints in general relativity in se com-
plicated that se far ne ene has succeded in asocertaining these
cembinatiens ef canenical variables that cemmute with all the cen-
strainte. Fermally, we can define the oebaservables as the selu-
tiens ef a set of partial differential squatiens, but that is net
much help. Dirac has made some pregress in separating the cen-
straints frem the remainder ef the variables threugh a canenical
tranasfermatien. But he has se far succeded only with the primary
censtraints. The ingulatien ¢f the secondary censtraints is s much
more fermidable, and as yet quite unselved problem.

The discussien sketched eut in the preceding paragraphs leads
us te & new definitien ef ¥observables" beth in classical and in
quantum theery : Instead of censidering every dynamical variable
as ebservable, we define as ebservables these variableg that cem~
mute (or have vanishing Peissen brackets) with all the censtraints.
Classically, ene can shew that the censtraints are the generaters
of ceordinate transfermatiens, se¢ that the ebservables as defined
here are ceordinate~invariant quantities (net scalars). They are
alse the enly gquantities that can be subject te predictien frem
initial data, that is te say, any fermulatien ef a Cauchy preblsenm
in general relativity must be in tsrmg eof the ebservables. The

diescevery of the observables ef general relativity woeuld alse ha-
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ve physiczal interest quite asides frem the pregram ef guantizatien:
thie discevery (er censtructien) weuld alse permit us te cast all
statements of the theery inte manifestly ceerdinate-invariant ferm.
In the fellewing sectien I shall repert en the constructien ef
ebservables witheut reference te the Hamiltenian theery. But first,
I shall repert briefly en twe ether appreaches te the preblem ef
quantizatien, threugh the Lagrangian fermalism and with the help
of ceerdinate cenditiens.

The Hamiltenian fermulatien ef a field theery is well suited
toe the fermulatien ef centinuatien but tends te disguise its es-
gasctially feur-dimensieral, cevariant nature. For the invariant-
theoretical examinatien the eriginal Lagrangian fermulatien is pre-
ferable. I shall new discusse hew ene can ocenstruct, within the
Lagrangian formalism, a greup ef transfermatioens that permits us
to censtruct cemmutaters between ebservables. We begin again with

an actien integral ef the ferm
(4.4) s = fuly, (x), v, ,(x)]a’s
’ AT YA, p '

which transferms in accerdance with Eg.(2.1); the cevariance ef
the theery is thereby assured. We shall new censider transfermaticns

of the variables ef the feorm

= a
8y, = £, (yB,yB’p,r )
(4.5)

5 = ¢ = B¢ | + ?B%¢ + 3¢
Va0 Tae 2B, p 2'VB,op T %pta

In ether werds, the new variables are te depend en the values eof
the eld variables at the same werld peint &and en the values of
their first partial derivatives. The resulting change in the La-

grangian density ag a functien or its arguments will be the fol-
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lowing
t, = pf - 3t - e
5L D,p BLfA 3 LfAJp
(4.6)
= A WP £ = aAp R
fASL c‘p,c 2, I D,

For the time being, the field Dp, and hence the field Cp, is
arbitrary. Unless we restrict semehow the functions fA’ the infi-
nitesimal transfermatien (4.5) will lead te the appareance of se-
cend=-erder derivatives in the (eriginally first-erder) Lagrangian
density., We shall call the transfermatien (4.5) canonical if onse
can find a field CF which prevents the appsarance of such secend-~
order derivatives ef gfflﬁgriabloa, and we shall call the transfer-
mation invariant (camonical) if a 0P-field can be found se that
8'lL, veanishes altegether. In what fellews we shall be cencernsd
with invariant transfermations. We shall ocall CP the generating
densgity, and an integral ef the ferm chazp the generater of the
canenical (er invariant) transfermatien. Generaters eof invariant
transfermatiens are defined by the Identlity

(4.7) fASAL +of =o

o2

enly up te & ocurl,

(4.8) cP' = P + &["”’],V

However, with suitable boundary cenditiens the additien ef such
& ourl dees net change the value ef the generating integral ever
a three-dimensienal hypersurface , er changes it, at any rate,

only by a twe-dimensional surface integral,

(4.9) F' = ¢P'az =71+ ?APU as .
P po
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Furthermoere, the Bianchi identities (2.4) shoew that there are

cheices of fA’

(4.10) k, BE . ER
with arbitrary §p, whose generating density,

4. 11 gP = .o P g7 sh
(d.11) - &

vanishee. In general relativity the transfermatiens (4.10) are
the infinitesimal ceerdinate transfermatiens, which are certainly
invariant, and whese generating density, we see, vanishes.

Witheut preef we shall state the fellowing

{a) The invariant transfermatiens ferm a greup (this is ob-
vieus).

(b) The transfermatiens (4.10) ferm an invariant subgreoup.

(c) Thers is a ons-te-ene relation betwsen the members ef the
facter group {(with respect te the invariant subgreup) and the ner~
trivial generatoers. By defining as the (medified) Peissen bracketas
¢f the generators theose generaters cerrsspending te the commuta-
tors of the facter groeup, we ebtain a cemmutater algebra of the
pessible generaters ' . It remains to establish the nature of
the pessible generaters.

It fellews from the defining equatien (4.7) that the genera-
ting densities of the invariant tranefermatiens satisfy equatiens
ef centinuity if the field squatiens are satisfied. With suitable
beundary cenditiens the integrals, the generaters, are therefore
constants of the motion. We have construcied a cemmutater algebra
between the censtants of the motien. Becauss we inslude all cenw=
stants ef the metien, including these +hat depend explicitly en

the coordinates (cf.Eq.(4.5)), we have obtained a se® that ig e~
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quivalent te the gquantities that we have previeusly called ob-
servables. Te any ebservable quantity it is pessible te cen-
gtruct that constant of the metien which equals the ebservable
at a chosen coerdinate time. Cenversely, ne censtants ef the me~
tien can be cerrelated teo ﬂuantities that are net ebservables,
because enly ef the ebservables can ene predict the values at eone
time froem initial data given at a different time.
A careful analysis has shewn twoe further statements te be

true

(d) The generater [° is related te the transfermation law of
another observable Z& under the transformatien law (4.5) by the

relatienship

(4.12) s& =(¢A, D),
where the symbel ( , ) denetes the commutater bracket defined
by (e).

(s) Whenever a Hamiltenian fermalism is available, then the
commutater brackets defined by (¢) ara analegous te the cemmuta-
tor brackets introduced by Dirac. In the case ef general relati-
vity the Dirac brackets are Peigsen brackets, restricted te eb-
saervables.

Finelly, I shall censgider a theery which is relativistical-
ly invariant but which has been cast inte a regtricted ceoerdina-
te frame. We assume that the ceoerdinate frame has been restricted

by four ceonditions eof the ferm
(4.13) ad¥ g +8 =0 ,

where the ceefficients a and B8 are funotiens ef the undiffe-

rentiated field variables Ty Fer the coerdinate ceonditiens te

Ao

be effective, it is also necessary that the ceefficients a o
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be lirearly indspendent of each other and of the rows (or columns)

X AB
ef the matrix /x » se that the determinant ef the 4x4 matrix

4,14) = JAe °
( 7pv @ N CAv

does net vanish. In that case it is pessible to proeduce either
Lagrangian er Hamiltenian equatiens by adding a quadratic ferm

of the coordinate cenditiens (4.13) with nen-singdular ceefficients
teo the eriginal Lagrangian. The resulting differential equatioens
of the modified theery will be equivalent te these of the erigi-
nal theery if we require that en an initial hypersurface the can-
ditionz (4.13) themselves are sa*isfied and their first time de-
rivatives vanish. This scheme is the natural extensien ef one first
proepesed by E.Fermi in electredynamics. Hewever, if we preceed

to develep the Hamiltenian fermalism of the modified theery, then
we find that again we have a theery with (eight) censtraints. Tho-
8e variables whese Peimson brackets with the censtraints (i.e.
with the ceerdinate cenditiens and their first time derivatives)
vanish are the ebservables of the unmedified theory.

It is alse pessible to censtruct an equivalent cemmutator
within the Lagrangian formalism. We censider the set of all the-
se transfermatiens which de net change the Lagrangian and which
change the ceordinate cenditioens at mest by a linear combinatien
of themséltves. Again there will be an invariant subgreup censi-
sting ef the transfermatiens generated by ceerdinate cenditiens
themselves, and the facter group will be represented by the nen-
trivial observables and their commutater algebra.

The intreduoctien ef the ceerdinate ceuditions has apparently
medified the situatien insefar as all the eriginal field varia-

bles can be made the subyeect of a Cauchy problem, with the ini=~
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tial data being restricted by the ceerdinate cenditiens, and the
field egquatiens sugmented by the time derivatives of the ceerdi-
nate conditiens. Howsver, even with ceordinate cenditiens added,
the preblem of findingd the observables ef the eriginal theery is
net facilited, and the remaining variables, theugh their time-de-
pendance 1s new fixed by the ceerdinate cenditiens, cannet be in-
oluded naturally in the cemmutater algebra that we can hepe will

lead to guantum theery.

h. OBSERVABLES IN GENERAL RBELATIVITY. As I have mentioned
before, the censtructien ef trus observables in general relativi-
ty by means ef the defining equatiens ir any ef the fermalism de-
scribed in Sectioen 4 is extremely diffiocult, if at all pessible.
Newman has prepesed a scheme that permits the censtructien of eb-
servables by means of a pewer series expansien, which starts with
the Be-called linsarized theery ef gravitatien and then improves
systematiocally. The lewest nen-trivial erder begins with plane
gravitatienal waves and werks with these nermal modes, their am-
plitudes and phases. The resulting ebservablss are highly noen-le-
cal, and 1t is net knewn whether the methed cenverges.

Arnewitt, Deser, and Migner have prepesed a scheme feor the
censtructien of a special ceerdinate gystem en the agsunptien that
the metric eof & Riemannian manifeld satisfies reaseonable beundary
cenditiens at spatial infinity. By means of & set of nen-linear
partial differential equatiens they want te censtruct a special
coeardinate system that is uniquely determined except for Lerentsz
transfermatiens (or a set ef transfermatiens isenerphic te the Leo-
rentz greup). In that special ceordinate system the cempenents of

the metric tenser weuld all beceme ebservables. They prepese teo
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complete the program ef quantizatien by using methoeds due teo J.
S8chwinger. Their papers will be submitted te the Physical Review
in the ceurse of this summer and fall.

Komar alse censtructs a special ceerdinate system, but by
means of local conditiens and withoeut reference te beundary cen-
daitiens. Gdhénisu and Debevers, and independently Kemar, disce-
vered abeut 1955 that if Finstein's field equatiens are satisfied
then there exist feur algebraically independent scalars ef the
Rismann-Christeffel curvature tenser, whibh may, fer instance, be
ebtained as the selutiens ef a characteristic-value preblem. This

problem may be pesed mest simply in the ferm
% . (Al
(5.1) & A, eu ™ oy )] v o

The skew-symmeiric characteristic tenser V is ef ne further in-
terest in this cennectien. There are, hewever, twe independent
pairs ef cenjugate complex eigen—valuss }\ in general, cerrespon-
ding te feour real numbers at each werld peint. We shall denete
thege feur numbers by the symbels AF(p = 1,...,4). Except for
cases pessessing special symmetry, the four funotiens Af(xP)

are algebraically independent of each ether, that is to say, the
determinant

(5.2) J= det[A#plio .

B/

dees net vanish identically.

We shall now define a set of ten new functioens y“v,

(5.3) yHY = gPY AH 4¥
P <
These ten functions may be interpreted as ths scalar predusts ef

the gradient fields ef the feur scalars AH, but alse as the cem~

penents of the centravariant metric tenser in the special ceerdi-
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nate system ef the "intrinmic coeerdinates AMN.

We now clalm that the ten functiens T“V(Ap) are ebservables
in the sense that for any chesen values of the four arguments AP
and fer any ocheice ef the superscripts u,7v the value of that
quantity is cempletely determined by the intrinsic preperties of
the Riemann-Einsteinian manifeld and independent of the choice of
the eriginal ceerdinate system in which the calculatien was ocar-
ried out.

Because these ebservables may be censidered as the cemponents
of the metric in a particular ceerdinate system, the set of the
observables YHY(4P) is complete : Enewledge of all these guanti-
ties gives us tetal infermatien about the proeperties ef the mani-
feld. Hewever, these observables are redundant : They are cennected
by & system of differential squatiens that reduces the actusal num-
ber ef degress of freedom. Let us censider the new ebservables in
terms of the intrinsic ceerdinate system Ap, which in their ca-
paoity ef coerdinates we shall denote by §p, regserving the de~
éignation 4P for the set ef guantities that are determined as
the eigenvalues of the Riemann tenser, Eq.(5.1). Then we have twe
sets of eguatiens that mugt be satisfied, Einstein's fielda agua-
tiens,

(5.4) My (EPY] =0,

and the ceerdinate cenditiens
(5.5) AP (%) = £P

Koemar has shewn that the tetality of these conditiens reduces the
number of initial data that may be chesen en a hypesrsurface Z(AP)=0
te four data per peint. Then the Riemann-Einstein manifeld (i.e.

a Riemannian manifeld that satisfies the field equatiens) is cem-
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