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GENERAL REMARKS. The prinoipal subjeot of these le o tures is 

to be the present status of the program of quantization of gene­

ral relativity and of general-relativistio theories . Beoause of 

the unfamiliarity of many mathematioians with the physioal ideas 

in ourrent quantum theory, I shall attempt to give a brief sum­

mary of the pertinent ideas later on . I shall also emphasize in 

my leotures the olassioal (i.e. non-quantum} aspeots of the pro­

gram, in partioular the oonoept of observables . I shall also, if 

time permits, give a brief aooount of the present status of the theo_ 

ry of motion . Perhaps it will be neoessary t. relegate this to-

pio to a seminar . 

REFERENCES. For relativity I suggest any standard textbook 

as baokground . A thorough grounding in Riemannian and related geQ­

metries is desirable for any study in general relativity . For the 

fundamental ideas in quantum theory probably Dirao's book (Ox­

ford, 1947) is a good oontemporary introduotion for mathematioia ns , 

though J . v.Neumann's old book is still exoellent . For a more phy­

sioal slant Boh~'s reoent book oan be reoommended. For quantum 

field theory there are now available, in addition to G.Wentzel's 

old book (Vienna, 1943), a book by S.S.Sohweber and a se r ies of 

artioles by Sohwinger, Tomonaga, Feynman, and Dyson, to mention 

but the m.st important . 

Turning to the program of quantization of general relativi­

ty, I mention a series of old artioles by L . Rosenfeld (Annalen 

d. Physik, 1930, InstJH.Poinoare, 1932), my own articles in the 

Physioal Review (1949 to date), and various status reports in 

Helvetioa Physiba Aota (Suppl . IV,1956. whioh is the report o f the 

1955 oonferenoe at Berne), Reviews of Modern Physios (July,1957) 
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and the separately issued pro o eedings of the Chapel Hill o onferen­

o e of January, i957 One artiole by O. Klein will be found in the 

N. Bohr "Festsohrift", whioh has been published as a book . Addi­

tional referenoes may suggest themselves in the oourse of our le­

otures and seminars . 

OUTLINE OF LECTURES . The following preliminary outline is 

meant to be flexible, in aooordanoe with the wishes of the parti­

o ipants . 

1. Physioal moti v ation of the program of quantiza~ion . 

2. Formal properties of general-relativistio theories with 

an aotion prinoiple . 

3. Summary or oonoepts of quantum theory . 

4 . Teohnioal report on the status of the program of quanti­

zation . 

5. Construotion of observables in general relativity . 

6. Theory of motion . 

1. PHYSICAL MOTIVATION . At present we have two major theore­

tioal struotures in theoretioal physio., whioh have not been fu­

sed together, quantum theory and relativity . Quantum theory repre­

sents the formal and oomplete oodifi oation of our reoognition that 

it is impossible to determ i ne simultaneously with oomplete aocu­

raoy any two dynamioal variables of a system whioh are oanonical­

ly conjugate (in the sense of Hamilton's meohanics) . Aooording 

to quantum theory there is a strong mutual interaction between a 

physical system and an observer that prevents the oonstruotion 

of a complete set of Cauohy data and their integration in the oour­

se of time, as had been envisaged by Laplaoe . General relativity, 

on the othe r hand, pro b ably represents the most perfeot example 
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of a (pon-quantum) field theo~y now available and c e~tainly ac­

counts bette~ than any othe~ theo~y fo~ all the known facts about 

the g~avitational field . 

With two such comp~ehensive theo~etical st~u c tures availa­

ble, it appears only reasonable that one should attempt to extend 

each into the field cove~ed by the other, so that the attempted 

integ~ation should either result in an irreconcilable clash and 

contradiction, or in success . Either event would have the grea­

test heuristic value fo~ the development of physical theory as a 

whole. At present we have not yet reached that stage . 

2. GENERAL-RELATIVISTIC THEORIES WITH AN ACTION PRINCIPLE . 

We shall call a theo~y general-relativistic or generally covariaLt 

if its laws take the same form in every reasonable au~vilinear 

coordinate system . For this definition it is not essential t ha t 

this fo~m be that of tensor equations, though tensor laws are an 

important example . If we conside~ a set o f dynamical laws that 

may be interpreted as the Eule~-Lagrange equations o f a variatio­

nal p~inciple - and all p~oposed theo~ies in physics posse s s t his 

p~ope~ty - , then it is necessa~y and sufficient for the relati­

Vistic inva~iance of these laws that for any two aoo~dinate systems 

chosen the action integrals of the same fo~m are eqUivalent, in 

that they differ at most by a su~face integ~al, 

(2.1) 

whe~e the y' a~e the t~ansfo~ms of the y . This gene~al p~inciple 

makes no ~efe~ence to the Riemannian natu~e of space-time, or a­

ny othe~ assumed geomet~ic st~uctu~e . 

If we conside~ in pa~ticula~ an infinitesimal coordinate 

t~ansfo~mation, and if we ~estrict ou~selves to an action p r in c i-
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pIe in whioh L is a funotion only of the y's and their first par-

tial derivatives y , then we have the prinoiple 
A,p 

-oAL SYA + -oAp L SYA + rP SO ,p ,p 

or 

(2.2) 

where the symbol SAL stands for -oAL - (-oAPL),p , the so-oalled 

variational derivative of L, and the field CP, whioh I shall oall 

the "generatin~ density", is determined by the struo ture of the 

Lagrangian ~ i is the symbol for the infinitesimal transformation 

law, in this oase of the field variables, representing the (infi-

nitesimal) ohange of the field as a funotion of the ooordinates. 

Beoause we assume general-relativistic covariance, SYA in­

volves a set of f our arbitrary functions, the ·desc r iptors· of 

the infinitesimal ooordinate transformation ~a!5 S X a . It fol-

lows that Eq . (2 . 2) involves differential identities between the 

field equations, whose structure depends on the assumed transfor-

mation law of the field variables . Because the (oontracted) Bian-

chi identities are an example of such identities, we shall call 

the identities between the field equations that are related to 

their covarianoe Bianchi identities . Let, for instance, the tran-

sformation law be of the form 

(2 . 3) 

then we have 

and thus 
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Because the funotions ~p are arbitrary, we oan, by integrating 

this equation over a four-dimensional domain and oonverting the 

first term into a surfaoe integral, oonolude that 

(2.4) 

a set of four differential identities between the field equations 

From the prooedure that we have used in the derivation o f these 

identities it is olear that the order of the differential iden-

tities oquals the highest differential order of the ~p that 0 0 -

ours in the transformation law of the type (2.3), whereas the 

differential order of the field variables YA' whioh are arguments 

of the ooeffioients 0, d, . . . , is immaterial. 

Even if the field equations oannot be interpreted as a set 

Qf Euler-Lagrange equations, they will not lend themselves to an 

ordinary Cauohy-type initial-value problem, provided the va r iables 

Qoourring in them are not all individually invariant, oy = 0 , A . -

Even with given initial values on a given three-dimensional h ype r ­

surfaoe of the field variables and o , given (finite) number ~t 

their derivatives, it is always possible to ohange t h e values Qr 

the fiold variables elsewhere by a ooordinate transformation, 

whioh is restrioted to be the identity transformation on the ini-

tial hypersurfaoe, henoe the values of the field variables o f f 

the hypersurfaoe oannot be determined by th~ initial values on 

the hypersurfaoe. 

With differential identities of the type (2,4), we oan pro-

ve in detail just h~w the eq u ations di ff er from an ordina r y set . 

Consider the one term in Eqs . (2.4) whioh oontains third-~ r der de-
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rivatives of the field variables . This term is 

(2.6) C 0' caATL) _ 
AJ.L ,TO' 

C 0' (lA T (lBP Ly +" . " .0 
AJ.L B,PTO' 

Suppose, for the sake of simplicity we choose as an initial hyper­

surface one on which xO = O. Then it follows that 

(2.7) c 0 A AB 0 
AJ.L !!L, 

But this matrix AAB also represents the set of coeffi c ients of 

the second-order "time" derivatives in the field equations them-

selves , 

(2.8) 

It follows from Eq . (2.8) that the matrix AAB is singular and 

that it possesses (at least) four eigenvectors that belong to the 

eigenvalue ) 

We arrive at two conclusions: 

(1) (At least) four of the highest "time" derivatives of the 

field variables are not determined by the field equations . 

(2) (At least) four linear combi nations of the field equations 

are free of second-order time derivatives and thus represent re-

stri c t ions on the choice of the field Variables and their first-

order derivatives on an initial hypersurface. Such relationships 

are often called constraints, an expression that was originally 

used in connection with the Hamiltonian formulation of the theory . 

In passing, I should like to note that relationships of the 

form (2.2) playa role in the theory of mot i o n , a topic to which 

I hope to come back toward the end of these lectures . 

The differential identities, and in particular the relations 

(2.7), lead to complications if we attempt to pass over from the 
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Lagrangian to the Hamiltonian form o~ the theory, a step that is 

often considered preliminary to quantization . Ordinarily, in a 

field theory, one introduces the so-called canonical momentum den-

sities by the definition 

With their help, one then defines the Hamiltonian density 

(2.10) H = Y TTA - L 
A,O 

where all "time" deri~atives have been expressed in terms of the 

new canonical field variables, the YA (and possibly their "spa-

tial" derivatives, y ) and the TTA . The complete set of c anoni-
A,m 

oal field equations is 

- d H A = _<A H , 
Y A, 0 - A ' TT , 0 0 

(2 . 11) 

Woreover, given some funotional ef the canonical field va riables 

on an initial hypersurface x O = constant and of the coordinates 

x~, say r, we have the general dynamical law 

(2.12) 

where the symbol B represents the Hamiltonian, i . e . the integral 

!Hd 3• , and the symbol (,) is a Poi .sson bracket, defined with the 

help of the "functional derivatives" 

dB 

dYA (x) 

The functional derivatives of a functional are defined (if they 

exist) by the relationship 
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(2.14) OYA(x) 

where OYA(x), o~A(x) are arbritary infinitesimal variations of 

the arguments of the funotional. The definitions (2.10) through 

(2.14) are the natural analogs of the oorresponding definitions 

in olassioal mechanics. The Hamiltonian formalism, when it works, 

enables us to replace the Euler-Lagrange field equations (2:5) 

by a set of first-order equations, solved with respeot to their 

"time" derivatives . The Hamiltonian formalism is thus ideallY 

suited to the formulation of initial-value problems in field theo-

X, " .' . 

The success of the procedure just sketched depends on our 

ability to express the quantities YA a wholly in terms of the 
~ 

canonical variables, and this is possible only if the Jacobian 

of the transformation YA,a is non-zero . However, we see 

immediately that ' the matrix of the partial deri vati ves, 

(2.15) !.:t £ 1\ AB , 

OYA,a 

is singular. Hence~ though the "velooities y determine the 
A,a 

momentum densities ~A uniquely, the reverse does not hold . Fur­

thermore, the ~A as functions of the "velocities" are not al-

gebraically independent of each other, but satisfy (at least) 

four relations not involving any "time" derivatives. These rela-

tions are called primary c,onstraints. They are satisfied solely 

as the result of the defining equations (2.9) and bear no rela-

tion to the field equations . 

The further development of the Hamiltonian theory has shown 

that it is possible to c onstruct a Hamiltonian density of the ty­

pe (2.10), which however is not unique but involves four arbi-
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trary f unctions, multiplied by the four primary constraints . Fi-

xi n g these arbitrary funct i ons is equivalent to introdu c ing c oor-

dinate cond i tions. Without su c h c onditions, the formal Cau c hy p r o-

blem cannot be uniquely defi n ed, hence the arbitra r y fu nc tions 

in the Hamiltonian density . 

ce 

If the primary constraints are satisfied on one hype r su r fa­

x O = const . , we mus~ require that they remain satisfied, i . e . 

that their Poisson bra ckets with the Hamiltonian vanish . This r e-

quirement leads to four additional conditions on. the o anoni o al 

field variables, the so-called seoondary oonstraints . Iteration, 

i.e . th~ o OD5tr uc tion of hi gher time derivatives of the p ri ma r y 

co n straints, does not lead to additional oonditions. The tota l 

number of oonstraints in general relativity and in similar theo-

ries is eight at each point of the initial hypersu r fa o e . Th ese 

oonstraints and the Hamiltonian form a f unotion group . 

3· CONCEPTS OF QUANTUM THEORY . Hi storioally, quantum theo r y 

began with Sohr~dinge r 's oelebrated equation . Subseque n t develo-

pments have shown, however, that there exist many equiv a le n t fo r -

mulations, of whioh the "Sohr~dinger representation " is but one, 

and I shall attempt to give a fairly general desoription . 

In olassioal meohanios the "state" of a physioal system is 

determined uniquely by the looation of i ts representative point 

in phase spaoe, 

oal ooordinates 

i.e . by the numerioal values of all its o ano n i­

k 
q ,Pk In qua n tum meohan io s the state is a uni t 

veotor in a Hilbert spaoe . Whereas the approp r iate gro u p of tra n _ 

sformations in olassioal mechani o s is the g r oup of oa n oni c al tr an -

sformations, the analogous group in quantum theo r y is t h e g r oup 

of all unitary transxormations . I n o lassioal me oha n i cs eve r y p hy -
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sic&l v&ri&b1e is c&p&ble of gener&ting &n infinitesimal tr&nsfor-

mation . In qu&ntum theory every "observable" A generates an infi-

nitesima1 unit&ry transformation in Hilbert space, 

(3.1) 8u = - ..... A 
t 

All physioally meaningful qu&ntities &re, therefore, represented 

&s Hermiti&n line&r operators in Hilbert sp&ce . The symbol t 
stands for Planok's original quantum of &otion, h, divided by 2w 

&nd equals 1,05444 x 10-27 erg seo. We oan oonstruot a complete 

set or b&se veotors in Hilbert spaoe, so-to-spe&k a coordinate sy-

stem, if we oonstruot the joint eigen veotors of a complete Bet of 

commuting operators. By this expression we me&n the following . One 

operator, say q1' may be highly dogonerate. To identify its eigen­

fUnotions uniquely, we take a set of commuting oper&tors ql"' " qn' 

so that a set of eigenv&lues q~(k = 1, . .. ,n) identifies exaotly 

one joint eigenveotor. The oomplete set of commuting oper&tors cor-

responds approxim&tely to the sot of oon~iguration v&riables in 

classioal meohanios, whioh also generate a set of oommuting infini-

tesimal canonic&l transformations . 

All other operators will either commute with all qk (in which 

oase they may be considered functions of the qk)' or they will ha­

ve no~vanishing commut&tors. In partioular ther~ will be operators 

Pk suoh that their oommutators with the qk &re 

~ 1. 
f 

These will be assumed to be the qu&ntum analogs of the oanonioal 

momentum oomponents . Commutators of the type (~.2) ~re generally 

the analogs of the oorrespoding Poisson braokets of classioal mecha-

nios, which also are representatives of the oommutators of infini-

tesimal canonical transformations . 
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The formal scheme of quantum theory is related to physics 

by two sets of rules. One refers to the outcome of observations, 

the other sets forth a dynamical law . If an experiment is perfor-

med to measure the value of a physical quantity A, then the only 

possible outoomes of the measurement can be the eigenvalues of t h e 

operator A . If the system is in a state desoribed by the Hilbert 

veotor'> , then the average of many measurements of A will be 

given by the "braoket" (1. e . scalar produot) 

If I> happens t. be an eigen v~0tor of A, belonging to the ei-

genvalue a', then the "expectation value" of the measurement will 

be a', and moreover the expectation value of A2 will be ,2 a , 

henoe the soatter of observations will be zero, the out c ome o f 

the measurement will invariably be a' . In all other cases the r e-

suIts of a measurement, r epeated many times, will scatter . 

The other rule introduces a dynami c al law . Let I~ and IV 
be two different states of which the physical system is capable . 

Then for an observable A we have the general rule 

(3.4) 

This dynamical law is the pre c ise analog to the law of motion i n 

Hamiltonian olassioal mechani c s. 

The formulation of these two rules is "representatio r - l n v a -

riant", that is to say, if we perform the following unitary (and 

possibly time-dependent) transformations 

, 
I) = ul> 

U u + = 1 J 
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nothing will chang~ . By m~ans of such unitary transformations we 

may distribute the time-dependenoe in any desired manner betweou the Hil-

bert veotors and the Hermitian operators, the observables . In parti~ 

cular we speak of a " Schredinger representation " if 

.! 
dt I) I> 

and of a "Heisenberg representation" if 

d I'> 
dt 

= 0 ~k :: 

dt 

dA 
qk 1 , -

dt 

~k = 0 , dt 

= OAt 4:- [H, Al . 
ot '" 

rt 113 remarkable how 1I'l011 can be aocomp l ished with this 'bare 

skeleton of rules . For instanoe it is a fairly easy task to show 

that if two operators p and x satisfy oommutation relations 

of the kind (3.2) and if we assume for the Hamiltonian H the 

form 

<3, S) 

( the one-dimensional harmonio osoillator), then the only eigen-

values of Hare 

n = 0,1,2, .. . 
n 

Another simple example, which bears a close relationship to the 

possible representations or the three-dimensional orthogenal gro u p, 

is the following. Let L , L , and L be three operators which sa-
x y z 

tisfy the oyolio oommutation relations 

(3.10 ) [L,L 1 =1L , eto . 
x y i Z 

and let the Hamiltonian be 

H = l. (L 2 , t L 2 t L 2) . 
2 x ' Y Z 

Then the eigenvalues of Hare 
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and the individual operators Lx" " have the follow i ng eigenva-

lues : 

(3 · 12 ) m = -j,-j+1, . . . ,+j 

In this system (the three-dimensional rotator) H and Lx form a 

oomplete set of commuting operators . 

I have said that the unitary transformations in Hilbert spa-

ce are the analog of the canonical transformations i n c lass io el 

physios . This analogy is not perfect, insofar as for a give n c l a s-

si c al system and its quantum analog it cannot be said that the 

group of canonical transformations and the group of unitary t r a n -

sformations are isomorphio; they are not. However, these trans f e r -

mat ions that determine the invarianoe properties and the symmet r y 

oharacter of the physical system, and their oommutator algeb r a, 

are generally the same . And these invariant transformations a r e 

generated by corresponding oonstants of the motion . Thus t h e Ha-

miltonian operator generates the evolution of the system i n the 

oourse of time, the components of the linear momentum generate 

displaoements of the coordinate origin) ' the components of the an -

gular momentum generate orthogonal transformations, et c. Be o a u se 

the transrormations of quantum thetry are linea r transformatio n s 

it is proper to speak of representations of certain groups . Fo r 

instanco, in the example of a quantum system given in Eqs . (3 . 1 0 ), 

(3.11), the operators L , .. . 
x 

rorm all the representations of th e 

(proper) orthogonal group . The irreduoibile r epresentations are 

characterized by th~ quantum nu~~~r j, .1 i~ ~ takes all integr a l 

and half-odd values . The rank or ea c h i r red uci bile r eprese ntatio ~ 

equals (2j+1l . 
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Ih the modern development or quantum theory, the process of 

quantization has been extended from mechanics to field theories . 

The axiomatics of quantum field theory has been developed much 

less well than that of quantum mechanics . Roughly speaking one 

may conceive of a field theory as of a mechanical system with an 

infinite number of degrees of freedom . For instance, if we assign 

to each degree of freedom of~physical system a Hilbert space and 

if we form the Hilbert space of the whole system as the Kronecker 

product of the partial Hilbert spaces, then we obtain a space with 

a non-denumerable number of dimensions, i . e. no Hilbert space at 

all , This difficulty has been met, i~ part, by the specification 

that only those states of a system are to be admitted which differ 

from the state of lowest energy, the ground state, only with re­

spect to a finite number of degrees of freedom (which ones is not 

specified) . This restriction is, however, not invariant with re­

spect to some very important canonical transformations ; there are 

many other proble~s of this type that have been met only partial­

ly. Although apparently "formal", many of these difficulties have 

their physical implications . Physicists have worked out a number 

of working rules that enable them to perform the quantization of 

some very simple field theories successfully . The only realistic 

theory with which we are well satisfied is quantum electrodynamics, 

that is the theory of the electromagnetic field coupled to the field 

of electrons and pOSitrons according to Dirac's theory. The exten­

sion to nuclear forces and meson fields has been only partially 

successful; we do not know whether we do not understand the dyna­

mical laws imperfectly, whether our proced~re of quantization is 

defective, or whether the prinCipal blame attaches to our methods 

of approximation . 
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4. QUANTIZATION PROCEDURES IN GENERAL RELATIVITY . It might 

appear that with the Hamiltenian fermulatien of general relati­

vity the greundwerk has been laid for a successful quantization. 

One weuld hepe to replace the class ic al dynamical variables (the 

canenical field variables) by quantum ope r ators obeying the cano­

nical commutation relatiens, and to admit as physical enly states 

whic h permit the censtraints to be satisfied . One obvi.us diffi­

culty is that there are dynamical variables that are canenically 

o enjugate te the constraints . New i t i s very easy te show that if 

two eperaters A, B satisfy a commutation r elatien ef the ferm 

(4 , 1) [A,Bl = i c I 

where c is an ordinary number and I stands for the identity o­

perator, then neither A nor B possesses prope r eigen vector s , 

For if, e . g.la~ were an eigenve c tor of A, se that 

(4.2) = a'la" ~'IA = a' ~'I, 
then 

(4·3) <i' I [A,Bllat) = 0 , ~'Iiella) = ic , 

an obvieus centradictien . The only ether possibility is that the 

operatien Bla;> dees net lead t. a Hilbert vecter . 

Oonsider new a constraint of the theory, C. Th en the only 

admissible Hilbert vecters are t h ose for which cl> = 0 , i . e . 

eigenvectors of C . It follows that for this whole set of quan­

tum states an operater D whic h is canoni ca lly conjugate to C lead s 

outside Hilbert space and thus can have no expectatien value o r 

other sensible physical preperty . In fact, b eca us e the e i genvalue 

c' = 0, the same helds true for any Gpe r ator which does not c om­

mute wit h all the cons traints . Henc e, be ca use general relativity 
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in the Hamiltonian formulation has twenty oanonioal field varia-

bles, g , ~~v, there are only four algebraioally independent ob­
~v 

servables per spaoe pOint . There are eight oonstraints, i . e . oom-

binations of variables required to have the value 0, and eight 

additional variables oonjugate to the oonstraints . This result 

would not be unsatisfaotory in itself; the eleotromagnetio field 

has the same number of independent variables . But unfortunately 

the struoture of the oonstraints in general relativity in so com-

plioated that so far no one has suooeded in ascertaining those 

oombinations of oanonioal variables that oommute with all the con-

straints . Formally, we can define the observables as the solu-

tions of a set of partial differential equations, but that is not 

muoh help . Dirao has made some progress in separating the con-

straints from the remainder of the variables through a oanonical 

transformation . But he has so far suoceded only with the primary 

c onstraints . The insulation of the seoondary oonstraints is a much 

more formidable, and as yet quite unsolved problem . 

The discussion sketohed out in the preceding paragraphs leads 

us to a new definition of 'obs6rvab~es" both in classical and in 

quantum theory Instead of considering every dynamioal variable 

as observable, we define as observables those variables that com-

mute (or have vanishing Poisson brackets) with all the oonstraints . 

Classioally, one oan show that the oonstraints are the generators 

of ooordinate transformations, so that the observables as defined 

here are coordinate-invariant quantities (not soalars) . They are 

also the only quantities that can be subjeot to prediotion from 

initial data, that is to say, any formulation of a Cauohy problem 

in general relativity must be in terms of the observables . The 

disoovery of the observables of ge n eral relativity would also ha-
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ve physi~al interest quite aside frem the program of quantization: 

this discovery (or censtruction) weuld also permit us te cast all 

statements of the theory inte manifestly ceerdinate-invariant form. 

In the fellewing sectien I shall report on the constructien ef 

ebservables without reference te the Hamiltonian theory . But first, 

I shall report briefly on twe ether approaches to the problem ef 

quantizatien, through the Lagrangian formalism and with the help 

ef coordinate cenditions . 

The Hamiltenian formulation ef a field theory is well s~ited 

to the formulatien ef centinuation but tends to disguise its es-

sentia lly four-d1me~sional, cevariant nature . For the invariant-

theoretical examination the original Lagrangian formulatien is pre-

ferable. I shall now discuss how one can construct, within the 

Lagrangian formalism, a group of transfermations that permits us 

to construct commutators between observables . We begin again with 

an action integral ef the form 

(4.4) 

which transforms in accordance with Eq. (2 . 1); the covariance of 

the theory is thereby assured. We shall now consider transfQrmatjo~o 

of the variables ef the form 

oy 
A,p 

= f 
A,P 

In other words, the new variables are to depend on the values .f 

the old variables at the same werld point Qnd on the values of 

their first partial derivatives . The resulting change in the La-

grangian density as a function o f its arguments will be the fol-
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(4.6) 

8'L = nP 
,P 

- 18 -

Fer the time being, the field nP, and hence the field CP, is 

arbitrary. Unless we restrict semehew the functions fA' the infi­

nitesimal transfermatien (4.5) will lead te the appareance ef se-

a ond-erder derivatives in the (originally first-order) Lagrangian 

density . We shall oall the transformation (4.5) canonicaL if one 

oan find a field cP whioh prevents the appearanoe of suoh seoond­

fi.eld 
order derivatives of the variables, and we shall oall the transfor-

mation invariant (canonicaL) if a CP-field oan be feund s. that 

8'L vanishes altegether . In what follows we shall be cencerned 

with invariant transformations. We shall oall cP the generating 

density, and an integral of the form fCPdLp the generator of the 

canenioal (or invariant) transformation. Generators of invariant 

transformations are defined by the identity 

(4.7) 

only up to a curl, 

(4.8) cP' = cP + K [PI/) 
, 1/ 

However, with suitable boundary conditions the addition of such 

a curl does not change the value ef the generating integral ever 

a three-dimensienal hypersurfaoe , er ohanges it, at any rate, 

enly by a two-dimensional surface integral, 

(4.9) p. =f CP ' dL = r + 
P 
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Furthermore, the Bianchi identities (2 . 4) show that there are 

ch.ioes of fA' 

(4.10 ) = d ~P, 
Ap 

with arbitrary ~P, whose generati ng de n sity, 

(4.11) 

vanishes. In general relativity the t ran sformations (4 . 10) are 

the infinitesimal coordinate transformations, which are c ertainly 

invariant, and whose gene rating density, we see, vanishes. 

Without proof we shal ] state the following : 

(a) The invariant transformations form a group (this is ob-

vious). 

(b) The transformations (4 . 10) form an invariant subgroup. 

(c) There is a one-to-one rela+' i on between the members of the 

fa ct or group (with respect to the invariant subgroup) and the nor--

trivial generators. By defining as the (modified) Poisson b r a c kets 

of the generators those generators c o rr esponding to the commuta-

tors of the factor group, we obtai n a c ommutator algebra of the 

possible generators r. It remains to establish the nature of 

the possible generators . 

It follows from the defi ning equation (4.7) that the gene ra-

ting densities of the invariant transfo r mations satis~y equatio ns 

of continuity if the field equations are satisfied. With suitable 

boundary conditions the integrals, the generators, are the r efo r e 

constants of tke motion. We have constru c ted a c ommutator algebra 

between the constants of the motion . Becausa we include all con -

stants of the motion, including those t hat depend expli c itly on 

the c oordinates (cf , Eq .(4.5 », we hav e obtained a set that is e'-
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quivalent to the quantities that we have previously oalled ob-

servables. To any observable quantity it is possible to con-

struct that constant of the motion which equals the observable 

at a chosen coordinate time. Conversely, no constants of the mo-

tion can be correlated to ~uantities that are not observables, 

because only of the observables can one predict the values at one 

time from initial data given at a different time. 

A careful analysis has shown two further statements to be 

true 

(d) The generator r is related to the transformation law of 

another observable ~ under the transformation law (4.5) by the 

relationship 

(4.12) sA = ( A , r) 

where the symbol ( , ) denotes the commutator bracket defined 

by (c). 

(e) Whenever a Hamiltonian formalism is available, then the 

commutator brackets defined by (c) ara analogous to the commuta_ 

tor brackets introduced by Dirac . In the case of general relati-

vity the Dirac brackets are Poisson brackets, restricted to ob-

servables. 

Finally, I shall consider a theory which is relativistical-

ly invariant but which has been cast into a restricted coordina-

te frame. W·e assume that the coordinate frame has been restricted 

by four conditions of the form 

(4.13 ) a AU + 
p YA,u 

f3 
p 

= 0 

where the coefficients a and f3 are functions of the undiffe-

rentiated field variables YA. For the coordinate conditions to 

be effective, it is also necessary that the coefficients 
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be linearly independent of eaoh other and of the rows (or oolumns) 

of the matrix AAB, 
11 so that the determinant of the 4x4 matrix 

(4.14) 

does not vanish. In that oase it is possible to produoe either 

Lagrangian or Hamiltonian e~uationB by adding a ~uadratio form 

o~ the ooordinate oonditions (4.13) with non-singular ooeffioients 

to the original Lagrangian. The resulting diffe r ential e~u atio n s 

of the modified theory will be equivale n t to those of the origi-

nal theory if we req u ire that o n an i n i tial hype r surfa o e the oon-

ditio ns (4.13) themselves are sa~isfied and their first time de-

ri.atives vanish. This Boheme is the natural extension of one first 

proposed by E.Fermi in eleotrodynami o so However, if we pro o eed 

to develop the Hamiltonian formalism of the modified theo r y, then 

we find that aga i n we have a theory with (eight) oonstraints . Th o-

se variables whose Poisson bra okets with the oonstraints (i.e . 

with the ooordinate oonditions and tbei r fi r st time derivatives) 

vanish are the observables of the unmodified theory. 

It is also possible to o onstruot an equivalent oommutator 

within the Lagrangian formalism . We oonside r the set of all tho-

se transformations whioh do net ohange the Lagrangian and wh i oh 

ohange the ooordinate oonditions at most by a linear c ombinatio n 

of thems$ives. Again there will be an invariant subgroup oonsi-

sting of the transformations generated by ooordinate conditions 

themselves, and the faotor group will be represented by the non-

trivial observables and their oommutator algebra. 

The introduotion of the o oordi n ate c o a d1 tions has apparently 

modified the situation insofa r as all the original field va r ia-

bles oan be made the subyeot of a Cauo hy problem, with the i n i-
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tial data being restricted by the coordinate oonditions, and the 

field equations augmented by the time derivatives of the ooordi­

nate conditions. However, even with coordinate conditions added, 

the problem of finding the observables of the original theory is 

not facilited, and the remaining variables, though their time-de­

pendanoe is now fixed by the coordinate conditions, cannot be in­

oluded naturally in the commutator algebra that we can hope will 

lead to quantum theory. 

5. OBSERVABLES IN GENERAL RELATIVITY. As I have mentioned 

before, the construction of true observables in general relativi­

ty by means of the defining equations in any of the formalism de­

Hcribed in Seotion 4 is extremely difficult, if at all possible. 

Newman has proposed a soheme that permits the construction of ob­

servables by means of a power series expansion, which starts with 

the so-called linearized theory of gravitation and then improves 

systematioally. The lowest non~trivial order begins with plane 

gravitational waves and works with these normal modes, their am­

plitudes and phases. The resulting observables are highly non-lo­

oal, and it is not known whether the method converges. 

Arnowitt, Deser, and Misner have proposed a scheme for the 

construotion of a special coordinate system on the assumption that 

the metric of a Riemannian manifold satisfies reasonable boundary 

conditions at spatial infinity. By means of a set of non-linear 

partial differential equations they want to oonstruct a special 

coordinate system that is uniquely determined except for Lorentz 

transformations (or a set of transformations isomorphic to the Lo­

rentz group). In that speoial coordinate system the components of 

the metric tensor would all becom~ observables. They propose to 
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complete the program of quantization by using methods due to J. 

Schwinger. Their papers will be submitted to the Physical Review 

in the course of this summer and fall. 

Komar also construots a spe ci al coordinate system, but by 

means of local conditions and without reference to boundary con-

ditions. Gllhllniau and Debevers, and independently Komar, disco-

vered about 1955 that if Einste i n's field equations are satisfied 

then there exist four algebraically independent scalars of the 

Riemann-Christoffel c urvature tensor, whibh may, for instance, be 

obtained as the solutions of a c hara c teristic-value problem. This 

problem may be posed most simply i n the form 

The skew-symmetric characteristic tensor V is of no fu rt her i n-

terest in this connection. There are, however, two independent 

pairs of conjugate complex eigen-values A in general, c o r respo n -

ding to four real numbers at ea c h world point . We shall denote 

these four numbers by the symbols AJi-(p. = 1, ... ,4). Ex c ept for 

cases possessing special symmet r y, the four functions Af(xP) 

are algebraically independent of ea c h other, that is to say, the 

determinant 

J • det I AJi- I ~ 0 
,P 

does not vanish identically. 

We shall now define a set of ten new fun c tions Ji-V 'Y , 

These ten functions may be interpreted as th~ scalar produ c ts of 

the gradient fields of the four s oalars AJi-, but also as the c om-

ponents of the contravariant metr ic tenso r i n the special coordi-
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nate system of the "intrin.ic coordinates A~". 

We new claim that the ten functiens y~v(AP) are ebservables 

in the sense that for any chesen values of the four arguments AP 

and fer any choice of the superscripts ~,v the value of that 

quantity is completely determined by the intrinsic properties of 

the Riemann-Einsteinian manifold and independent of the choice of 

the original coordinate system in which the calculation was car­

ried out. 

Because these observables may be considered as the components 

of the metric in a particular coordinate system, the set of the 

observables y~V(AP) is coatLete : Knowledge of all these quanti­

ties gives us total information about the properties of the mani­

fold. However, these observables are r.dund/l.nt : They are conne c ted 

by a system of differential equations that reduces the actual num­

ber of degrees of freedom. Let us consider the new observables in 

terms of the intrinsic coordinate system AP, which in their ca­

paoity of coordinates we shall denote by ~P, reserving the de­

signation AP for the set of quantities that are determined as 

the eigenvalues of the Riemann tensor, Eq. (1).1). Then we have two 

sets of equations that must be satisfied, Einstein's field equa­

tions, 

(1).4) o 

and the coordinate conditions 

Komar has shown ~hat the totality of these conditions reduces the 

number of initial data that may be chosen on a hypersurface L(AP)=O 

to four data per point. T.hen the Riemann-Einstein manifold (1. e. 

a Riemannian manifold that satisfies the field equations) is com-


