Diplomarbeit

Ingmar Zink

Untersuchungen zur Bildung und messtechnischen Charakterisierung mittels LAVA-Verfahren hergestellter keramischer Nanopartikel

Bibliografische Information der Deutschen Nationalbibliothek:

Bibliografische Information der Deutschen Nationalbibliothek: Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de/ abrufbar.

Dieses Werk sowie alle darin enthaltenen einzelnen Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsschutz zugelassen ist, bedarf der vorherigen Zustimmung des Verlages. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen, Auswertungen durch Datenbanken und für die Einspeicherung und Verarbeitung in elektronische Systeme. Alle Rechte, auch die des auszugsweisen Nachdrucks, der fotomechanischen Wiedergabe (einschließlich Mikrokopie) sowie der Auswertung durch Datenbanken oder ähnliche Einrichtungen, vorbehalten.

Copyright © 2010 Diplomica Verlag GmbH ISBN: 9783836642996

http://www.diplom.de/e-book/227622/untersuchungen-zur-bildung-und-messtechnischen-charakterisierung-mittels

Untersuchungen zur Bildung und messtechnischen Charakterisierung mittels LAVA-Verfahren hergestellter keramischer Nanopartikel

Diplomarbeit

Ingmar Zink

Untersuchungen zur Bildung und messtechnischen Charakterisierung mittels LAVA-Verfahren hergestellter keramischer Nanopartikel

Ingmar Zink

Untersuchungen zur Bildung und messtechnischen Charakterisierung mittels LAVA-Verfahren hergestellter keramischer Nanopartikel

ISBN: 978-3-8366-4299-6

Herstellung: Diplomica® Verlag GmbH, Hamburg, 2010

Zugl. Friedrich-Schiller-Universität Jena, Jena, Deutschland, Diplomarbeit, 2010

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtes.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Die Informationen in diesem Werk wurden mit Sorgfalt erarbeitet. Dennoch können Fehler nicht vollständig ausgeschlossen werden und der Verlag, die Autoren oder Übersetzer übernehmen keine juristische Verantwortung oder irgendeine Haftung für evtl. verbliebene fehlerhafte Angaben und deren Folgen.

© Diplomica Verlag GmbH http://www.diplomica.de, Hamburg 2010

Inhaltsverzeichnis

1	Einleitu	ıng	1		
2	Grundlagen und theoretische Betrachtungen3				
	01 41141				
	2.1	Prinzip der Laservaporisierung (LAVA).			
	2.1.1	CO ₂ -Laserstrahlquelle und Verdampfungsrate.			
	2.1.2	Partikelbildung aus der Dampfphase.			
	2.1.2.1	Nukleation			
	2.1.2.2	Koagulation			
	2.1.2.3	Agglomeration			
	2.1.2.4	Weitere physikalische Effekte.	20		
	2.2	Beeinflussung der Partikelgrößenverteilungen beim LAVA-Verfahren			
	2.2.1	Laserregime			
	2.2.2	Gasvolumenstrom durch die Wechselwirkungszone			
	2.2.3	Relativbewegung zwischen Laserfokus und Materialoberfläche	22		
	2.3	Partikelgrößenverteilungen	23		
	2.3.1	Verteilungs- und Dichtefunktion.			
	2.3.2	Lineare Normalverteilung.	24		
	2.3.3	Logarithmische Normalverteilung.			
	2.3.4	Darstellungsformen von Größenverteilungen.	25		
	2.4	Messverfahren	28		
	2.4.1	SMPS-Messung			
	2.4.2	TEM-Analyse	34		
	2.4.3	BET-Verfahren			
	2.4.4	XRD-Messung	36		
3	Experi	nenteller Aufbau der LAVA-Laboranlage	38		
	3.1	Aufbau und Betrieb der LAVA-Laboranlage	38		
	3.1.1	Untersuchte Materialien.			
	3.1.2	Bewegungsgleichung des Laserfokus auf der Materialoberfläche			
	3.2	Aufbau und Betrieb des SMPS-Systems.	40		
	3.2.1	Durchführung einer SMPS-Messung.			
	3.3	Probannahma für TEM Analysa	40		
	3.3.1	Probennahme für TEM-Analyse Auswertung von TEM-Aufnahmen			
	3.3.2	Software zur statistischen Auswertung von Messdaten			
4	Größen	verteilungen der Primärpartikel	45		
	4.1	Voruntersuchungen	45		
	4.1	Größenverteilungen der Primärpartikel in Abhängigkeit vom Gasvolumenstrom für	43		
	7.4	zwei verschiedene Laserregime	46		
	4.3	Vergleich mit theoretischen Betrachtungen.			
			/		

5	Mobilitätsdurchmesser der Agglomerate	54
	5.1 Voruntersuchungen	54
	5.2 Verteilungen der Mobilitätsdurchmesser von Agglomeraten in Abhängigkeit vom Gasvolumenstrom für zwei verschiedene Laserregime	
	5.3 Vergleich mit theoretischen Betrachtungen.	
	5.4 Einfluss der Relativbewegung von Laserstrahlfokus und Materialoberfläche auf die Verteilung der Mobilitätsdurchmesser	
6	Korrelationen zwischen Größenverteilungen von Primärpartikeln und Agglomeraten	.65
7	Beobachtung der Agglomeratbildung mit Hilfe des SMPS-Systems	67
8	Vergleich von BET- und XRD-Messungen mit Ergebnissen aus TEM-Analysen	.70
9	Zusammenfassung und Ausblick	.71
Li	iteraturverzeichnis	73
A	nhang	.76
D	anksagung	

Abbildungsverzeichnis

Abbildung 2.1:	Spezifische Verdampfungsrate $C_{Material} \cdot dm/dt$ für einen typischen Wert von $P_0 = 50 W$	4
Abbildung 2.2:	Materiedichte als Funktion des Abstandes vom Schwerpunkt	5
Abbildung 2.3:	ΔG als Funktion vom Clusterradius r_B	7
Abbildung 2.4:	Prinzip der heterogenen Nukleation, Kondensation eines Clusters mit	
	Radius r_B ' auf einen stabilen Cluster mit Radius $r_B > r_{krit}$	9
Abbildung 2.5:	Das Volumen eines Tropfens der Größenklasse k	
Abbildung 2.6:	Harte und weiche Agglomeration am Beispel von Al ₂ O ₃	
Abbildung 2.7:	Grad der Homogenität	
Abbildung 2.8:	Trajektorie eines Gas-Moleküls und eines Aerosolpartikels	21
Abbildung 2.9:	Verlauf des Laserfokus bei periodischer Schwingung des Fokussierspiegels.	22
Abbildung 2.10:	Dichtefunktion der Normalverteilung.	24
Abbildung 2.11:	Dichtefunktion der logarithmischen Normalverteilung	25
Abbildung 2.12:	q_0 - und Q_0 -Darstellung einer typischen Größenverteilungvon Primärpartikeln	
Abbildung 2.13:	Zur Definition von Primärpartikeldurchmesser und Agglomeratgröße	28
Abbildung 2.14:	Schematischer Aufbau des DMA (Quelle: GRIMM AEROSOL Technik)	31
Abbildung 2.15:	Schematischer Aufbau des CPC (Quelle: GRIMM AEROSOL Technik)	32
Abbildung 2.16:	Effizienzfaktor A von DMA und CPC in Abhängigkeit von der	
	Partikelgröße (Quelle: GRIMM AEROSOL Technik)	33
Abbildung 3.1:	Aufbau der LAVA-Laboranlage	
Abbildung 3.2:	SMPS-Messzugang	
Abbildung 3.3:	TEM-Träger mit Maschenstruktur (Quelle: <i>PLANO</i>)	43
Abbildung 4.1:	Veränderung des geometrischen Mittelwertes μ von Größenverteilungen der Primärpartikel in Abhängigkeit der ausgewerteten Anzahl N	
	an Primärpartikeln	
Abbildung 4.2:	Größenverteilung der Primärpartikel bei $V_z = 0 m^3 / h$	
Abbildung 4.3:	Größenverteilung der Primärpartikel bei $\dot{V}_Z = 6 m^3 / h$	47
Abbildung 4.4:	Geometrische Mittelwerte der Größenverteilungen von Primärpartikeln in Abhängigkeit vom Zusatz-Gasvolumenstrom \dot{V}_Z (LR100)	48
Abbildung 4.5:	Geometrische Mittelwerte der Größenverteilungen von Primärpartikeln	
9	in Abhängigkeit vom Zusatz-Gasvolumenstrom \dot{V}_Z (LR200)	49
Abbildung 4.6:	Zeitlicher Verlauf der Laserpulse zweier Regime mit annähernd gleicher	
Thomas	mittlerer Leistung.	50
Abbildung 4.7:	Zeitlicher Verlauf der Anzahlkonzentration in der Wechselwirkungszone	
	für zwei unterschiedliche Laserregime	50
Abbildung 4.8:	Startverteilungen der Tropfen-Anzahlkonzentration bei verschiedenen	
S	Temperaturen bezüglich einer festen Primärpartikel-Endverteilung	52
Abbildung 5.1:	Änderung des Zusatz-Gasvolumenstroms von $\dot{V}_z = 0 m^3 / h$	
8	auf $\dot{V}_z = 6 m^3 / h$ bei laufender SMPS-Messung.	55
Abbildung 5.2:	Abhängigkeit der Mobilitätsdurchmesser-Größenverteilungen vom Ort der Probenentnahme.	
Abbildung 5 2.	Verteilung der Mobilitätsdurchmesser von Agglomeraten bei $\dot{V}_z = 0 m^3 / h$	
Abbildung 5.3:		
Abbildung 5.4:	Verteilung der Mobilitätsdurchmesser von Agglomeraten bei $\dot{V}_z = 6 m^3 / h$	5/

Abbildung 5.5:	Geometrische Mittelwerte der Mobilitätsdurchmesser in Abhängigkeit	
C	vom Zusatz-Gasvolumenstrom \dot{V}_Z (LR100)	58
Abbildung 5.6:	Geometrische Mittelwerte der Mobilitätsdurchmesser in Abhängigkeit	
C	vom Zusatz-Gasvolumenstrom \dot{V}_Z (LR200)	58
Abbildung 5.7:	Änderung der fraktalen Dimension D_F in Abhängigkeit	
g		60
Abbildung 5.8:	Geometrischer Mittelwert der Mobilitätsdurchmesser und der	
	Gesamtanzahlkonzentration in Abhängigkeit von der Schwingfrequenz f_s	
	des Fokussierspiegels (LR100).	62
Abbildung 5.9:	Geometrischer Mittelwert der Mobilitätsdurchmesser und der	
g	Gesamtanzahlkonzentration in Abhängigkeit von der Schwingfrequenz f_s	
	des Fokussierspiegels (LR200).	62
Abbildung 5.10:	Bewegung des fokussierten Laserstrahls auf der Materialoberfläche bei	
J	Schwingfrequenzen des Fokussierspiegels von $f_s = 40 Hz$ und $f_s = 70 Hz$. 63
Abbildung 5.11:	Bewegung der Lasereinstrahlung bei einer Pulsfrequenz von $f = 100 Hz$	
J	und einer Schwingfrequenz des Fokussierspiegels von $f_s = 50 Hz$	63
Abbildung 6.1:	Korrelationsfunktionen Q für LR100	65
Abbildung 6.2:	Korrelationsfunktionen Q für LR200	66
Abbildung 7.1:	Agglomeratbildung bei schrittweiser Erhöhung der Pulsspitzenleistung \hat{P}	
	über die Stromvorgabe I/I_{max} der Gasentladung des CO_2 -Lasers	68
Abbildung A.1:	Agglomerat aus Al ₂ O ₃ -Nanopartikeln	77
Abbildung A.2:	Al ₂ O ₃ -Nanopartikel	
Abbildung A.3:	TiO ₂ -Nanopartikel	
Abbildung A.4:	ZrO ₂ -Nanopartikel	
Abbildung A.5:	CO ₂ -Laser SM 2000 E	79
Abbildung A.6:	Verdampfungskammer der LAVA-Laboranlage	79
Abbildung A.7:	Blick durch einen Zugang an der Verdampfungskammer auf die	
	Wechselwirkungszone zwischen Laser und Material	
Abbildung A.8:	SMPS+C-System von GRIMM AEROSOL Technik	80
Tabellenverzei	chnis	
Tabelle 3.1:	Technische Daten des SM 2000 E und der Fokussieroptik	38
Tabelle 3.2:	Materialeigenschaften	
Tabelle 4.1:	Laserregime LR1 und LR2	46
Tabelle 7.1:	Mittlere Laserleistung \bar{P} bei bei entsprechender Stromvorgabe I/I_{max}	
	der Gasentladung.	67
Tabelle 8.1:	Prozessparameter der Herstellung der TiO ₂ -Proben	70
Tabelle 8.2:	Vergleich von TEM-, BET- und XRD-Analysen für Verdampfungen von	
	TiO ₂ bei kontinuierlicher (<i>Probe A</i>) und gepulster (<i>Probe B</i>) Laserstrahlung.	.70
Tabelle A.1:	Geometrische Mittelwerte für Primärpartikel-und Mobilitätsdurchmesser	76
	Γ	_