And . roid

Sven Haiges

Android

Schnelleinstieg

schnell+kompakt

entwickler.press

Sven Haiges

Android

Schnelleinstieg
schnell+kompakt

ISBN: 978-3-86802-067-0

© 2011 entwickler.press
ein Imprint der Software & Support Media GmbH

http://www.entwickler-press.de
http://www.software-support.biz

Thr Kontakt zum Verlag und Lektorat: lektorat@entwickler-press.de

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet
iiber http://dnb.ddb.de abrufbar.

Lektorat: Sebastian Burkart

Korrektorat: Nataliya Korn

Satz: Pobporn Fischer

Umschlaggestaltung: Maria Rudi

Belichtung, Druck und Bindung: M.P. Media-Print Informationstechno-
logie GmbH, Paderborn.

Alle Rechte, auch fir Ubersetzungen, sind vorbehalten. Reproduktion
jeglicher Art (Fotokopie, Nachdruck, Mikrofilm, Erfassung auf elektroni-
schen Datentrdgern oder andere Verfahren) nur mit schriftlicher Geneh-
migung des Verlags. Jegliche Haftung fiir die Richtigkeit des gesamten
Werks, kann, trotz sorgfaltiger Priifung durch Autor und Verlag, nicht
ibernommen werden. Die im Buch genannten Produkte, Warenzeichen
und Firmennamen sind in der Regel durch deren Inhaber geschiitzt.

http://www.entwickler-press.de
http://www.software-support.biz
http://dnb.ddb.de

Inhaltsverzeichnis |

Inhaltsverzeichnis

Kapitel 1: Vorwort 9
Kapitel 2: Komponenten einer Android-Applikation 11
1.1 Anatomie einer Android-Applikation 13
1.2 Das Android Manifest —
AndroidManifest.xml 16
1.3 Android-Ressourcen 18
1.4 Wieso der ganze Aufwand? 21
1.5 Activities und der Activity Lifecycle 23
1.6 Zusammenfassung 29
Kapitel 3: Android Uls: Grundlagen,
Resource Management und Tipps 31
2.1 Activities, Views und ViewGroups 32
2.2 Listener — auf Aktionen reagieren 43
2.3 Hierarchy Viewer 44
2.4 Adapter: Briicke zwischen Daten und Views 46
2.5 Zusammenfassung 55
Kapitel 4: Intents und Broadcast Receiver 57
3.1 Starten von Aktivitaten per Intent 58
3.2 Aufruf einer Website per Intent Action und Data 60
3.3 IntentFilter 66
3.4 Intent Resolution 68
3.5 Broadcast Receiver 73
3.6 Zusammenfassung 77
schnell + kompakt 5 |

| Inhaltsverzeichnis

Kapitel 5: Services & Notifications 79
4.1 Services 79
4.2 Notifications 86
4.3 IntentService 89
4.4 Service Binding 91
4.5 Remote Services 96
4.6 Zusammenfassung 98
Kapitel 6: Datenbanken und Content Provider 101
5.1 SQLite auf Android 104
5.2 Queries 113
5.3 Content Provider 115
5.4 ContentResolver — auf die Daten des Content Provider zu-
greifen 124
5.5 Zusammenfassung 127
Kapitel 7: Maps & Geocoding 129
6.1 Maps mit der MapView anzeigen 131
6.2 Forward und Reverse Geocoding 136
6.3 Positionsbestimmung per Location Provider 138
6.4 Aktuelle Position anzeigen 142
6.5 Proximity Alerts 144
6.6 Geotagged Tweets als Overlay 145
6.7 Zusammenfassung 150
Kapitel 8: Android App Widgets 151
7.1 Das Projekt 152
7.2 Grundlagen & Konfiguration 153
7.3 Erstellen des App-Widget-Layouts 155
7.4 Implementierung des AppWidgetProviders 161
7.5 Hinzufiigen eines Config-Screens 169
7.6 Zusammenfassung 174

[6 entwickler.press

Inhaltsverzeichnis |

Kapitel 9: Near Field Communication 175
8.1 NFC 101 176
8.2 Wie sehen NFC-Tags aus? 178
8.3 NFC im Vergleich zu ZigBee und Bluetooth 180
8.4 Die Anwendungen von NFC 181
8.5 NFC ab Android 2.3.3 183
8.6 P2P mit Android: NdefPush 203

schnell + kompakt 7 |

Vorwort |

Vorwort

Das mobile Betriebssystem Android konnte 2010 einen schier un-
glaublichen Erfolg verzeichnen. Laut Gartner [1] stieg die Zahl
der mit Android verkauften Smartphones um 888,8 %. Damit hat
Android Ende 2010 bereits Platz 2 der mobilen Betriebssysteme
eingenommen. Apples iOS wurde bereits iiberholt. Auf Platz 1
befand sich 2010 noch Symbian, jedoch wird erwartet, dass 2011
Android auf Platz 1 der mobilen Betriebssysteme vorriicken wird.

Dies ist vor allem den zahlreichen High-End Produkten von HTC,
Samsung und Motorola zu verdanken. Mittlerweile gibt es welt-
weit kaum einen Mobilfunkanbieter, der es sich leisten kann, kein
Android-basiertes Smartphone in seinem Programm zu haben.

Fiir Entwickler eroffnet sich mit Android eine faszinierende Welt.
Dieses Buch mdochte Thnen den Einstieg in die Android-Entwick-
lung so einfach wie moglich machen.

Eines jedoch gleich vorweg: Android ist ein grofes, recht umfas-
sendes Thema und alle paar Monate stellt Google weitere APIs
zukiinftiger Versionen vor. Fiir dieses Buch haben wir uns deshalb
Bereiche der Android-Entwicklung herausgesucht, die unserer
Meinung nach elementar sind. Abgerundet wird dieser Einstieg
durch Kapitel zu Maps, Widgets und NFC (Near-Field-Communi-
cation). Wir hoffen, dass wir damit den richtigen Mix aus Grund-
langen und faszinierenden Zukunftsthemen gefunden haben.

Dieses Buch setzt allerdings auch einige Grundlagen voraus. Bei-
spielsweise beschreiben wir nicht, wie Sie Eclipse und das Android-
Development-Tools-(ADT-)Plug-in installieren (siehe [2]). Wir sind
der Meinung, dass die meisten diese Grundlagen bereits besitzen.

schnell + kompakt 9 |

| Vorwort

Feedback und Anregungen sind jederzeit willkommen — per
E-Mail (sven.haiges@gmail.com) oder Twitter (@hansamann).

Viel Spaf3 bei der Lektiire!

Links & Literatur

[1] Gartner Mobile Devices Sales 2010:
lttp://www.gartner.com/it/page.jsp?id=1543014

[2] Android Eclipse Plugin:
lttp://developer.android.com/sdk/eclipse-adt.htm]

Vorbemerkungen

= Zu jedem Kapitel kénnen Sie unter:
www.entwickler-press.defjandroid ein ZIP-File mit dem
kompletten Quellcode herunterladen.

m Viele Abbildungen und Screenshots im Buch wurden um 90
Grad gedreht, um die Lesbarkeit zu verbessern.

[0 entwickler.press

http://www.gartner.com/it/page.jsp?id=1543014
http://developer.android.com/sdk/eclipse-adt.html
www.entwickler-press.de/

KAPITEL 1 |

Komponenten einer
Android-Applikation

1.1 Anatomie einer Android-Applikation 13
1.2 Das Android Manifest — AndroidManifest.xml 16
1.8 Android-Ressourcen 18
1.4 Wieso der ganze Aufwand? 21
1.5 Activities und der Activity Lifecycle 23
1.6 Zusammenfassung und Ausblick 29

Bevor wir uns dem Hauptthema dieses Kapitels — den Android
Activities — widmen, sollten wir wenigstens kurz die unterschied-
lichen Komponenten einer Android-Applikation vorstellen und
ein paar weitere wichtige Basics erklaren. Im Vergleich zu JME-
oder iOS-Applikationen bestehen Android-Applikationen namlich
aus meist vielen, lose gekoppelten Teilen. Dies konnen allen voran
die so genannten Aktivitaten (Activities) sein, die dem Benutzer
das Ul darstellen, oder es konnen Android Services, Content-Pro-
vider, Intents, Broadcast Receiver usw. sein. Da gibt es eine Men-
ge neuer Konzepte zu verstehen, und auch wenn wir gerade am
Anfang nicht die Zeit haben, jedes einzelne Konzept umfassend zu
behandeln, wollen wir Thnen einige doch kurz vorstellen:

= Activities beherbergen die Prasentationsschicht einer jeden An-
droid-Applikation. Eine Applikation kann dabei beliebig viele
Aktivitaten haben und zwischen diesen hin- und herwechseln.

schnell + kompakt 111

| Komponenten einer Android-Applikation

Das UI selbst wird durch Android-UI-Komponenten realisiert,
die von der Klasse android.view.View erben. Die so genannten
ViewGroups sind dafiir verantwortlich, die Views (auch Widgets
oder Controls genannt) entsprechend zu positionieren.

Services sind die unsichtbaren Helfer Threr Applikation, die
je nach Applikationslogik regelméaflig erwachen und beispiels-
weise nach neuen E-Mails schauen. Services selbst haben kein
UL kénnen jedoch durch das Android-Notification-Framework
den Nutzer informieren.

Intents (deutsch: Absichten) sind ein enorm wichtiges Konzept.
Sie sind nichts anderes als eine Art ,Nachricht®, die entweder
direkt an einen Service oder eine Aktivitat adressiert (Explicit
Intents) oder systemweit wie eine Art Rundfunk (Broadcast)
verteilt werden kann (Implicit Intents). Das Android-Betriebs-
system ist in letzterem Fall dafiir verantwortlich, potenzielle
Empfanger dieser Nachrichten zu finden und dem Anwender
eine Auswahl der Applikationen zu prasentieren, die die Nach-
richt verarbeiten kénnen.

Broadcast Receiver konsumieren die impliziten Nachrichten
(Implicit Intents). Hat Thre Applikation entsprechende Broad-
cast Receiver registriert, kann ein entsprechender Intent Thre
Applikation starten, um dann die Nachricht zu verarbeiten.

Content-Provider: Mittels eines oder mehrerer Content-
Provider kann Thre Applikation Daten anderen Applikationen
zugéanglich machen. Auch intern benutzt Android Content-Pro-
vider, um beispielsweise die Kontakte des Telefonbuchs ande-
ren Applikationen zur Verfiigung zu stellen. Content-Provider
benutzen intern meist SQLite-Datenbanken, kénnen jedoch
auch andere Mechanismen der Datenhaltung (Dateisystem,
Netzwerk) benutzen.

12 entwickler.press

Anatomie einer Android-Applikation |

Neben diesen Bestandteilen einer Android-Applikation gibt es
noch Weitere: Widgets (nicht zu verwechseln mit den Android-
UI-Komponenten, die auch oft Widgets genannt werden) sind
beispielsweise kleine Applikationen, die direkt auf dem Home
Screen der Geréte ausgefiithrt werden. Live Folders geben ebenso
vom Home Screen aus Zugriff auf die Elemente eines Content-
Providers und koénnen dadurch beispielsweise Thre gespeicherten
Kontakte zugénglich machen.

1.1 Anatomie einer Android-Applikation

Wie ist eine typische Android-Applikation strukturiert? Sollten
Sie noch nie eine ,frische” Android-App mithilfe des Eclipse-
ADT-Plug-ins erstellt haben, so sehen Sie anhand Abbildung 1.1,
wie sie strukturiert ist. Im src-Verzeichnis befindet sich freilich
der Quellcode Threr Applikation. Wenn Sie zur Erzeugung der
Applikation das ADT-Plug-in verwendet haben, so mussten Sie
(Abb. 1.2) ein Java Package sowie den Klassennamen der ersten
Aktivitat angeben. Das Plug-in erstellt in diesem Fall automatisch
ein Package-Verzeichnis im src-Verzeichnis und erzeugt eine leere
Activity-Klasse, auf die wir spater noch eingehen.

k 4 '[Dgandroid 1

P Esrc

| IEI|.§g|en [Generated Java Files]

P =i Android 2.2
B assets

> 'E'@ res
|21 AndroidManifest.xmil
default.properties

Abbildung 1.1: Verzeichnislayout einer Android-Applikation

schnell + kompakt 13 1

| Komponenten einer Android-Applikation

New Android Project

Creates a new Android Project resource.

Project name: ' android1

Contents

0 Create new project in workspace
() Create project from existing source

E Use default location

() Create project from existing sample

Location: [Users/hansa,dev/android 1

Samples: | ApiDemos

Build Target
' Target Name Vendor |Platform | AF
() Android 2.1-updatel Android Open Source Project 2.1-updatel 7 |~
[] Google APIs Coogle Inc. 2.1-updatel 7 |
™ Android 2.2 Android Open Source Project 2 B4
Coogle APls Coogle Inc. 2.2 8.7
Gl
Standard Android platform 2.2
Properties
Application name: Demol |
Package name: ‘de.svenhaiges.and raidl |
¥ Create Activity: | DemoDneActivity]
Min SDK Version: ‘ |
@ (<sack) ((_nNext>) ((cCancel) (Eorimishon)

A

Abbildung 1.2: Erstellen einer Applikation mit dem Eclipse-ADT-Plug-in

entwickler.press

Anatomie einer Android-Applikation |

Wie der Name des gen-Verzeichnisses es schon andeutet, befin-
den sich in diesem Verzeichnis generierte Dateien. Wenn Sie das
Verzeichnis aufklappen, werden Sie eine einzige Klassendatei,
R.java, vorfinden. Sie enthélt Referenzen zu den Ressourcen ei-
ner Android-Applikation, die selbst im res-Verzeichnis abgelegt
werden. Sobald Sie eine neue Ressource, also beispielsweise eine
neue Grafikdatei im Verzeichnis res/drawable ablegen, sorgt das
ADT-Plug-in automatisch dafiir, dass in der Klasse R eine neue
Referenz fur diese Ressource angelegt wird. Im Java-Code kénnen
Sie das Bild dann per R.drawable.icon referenzieren. Ablage und
Zugriff von Ressourcen werden auch spéter in dieser Vorstellung
noch detailliert besprochen.

Neben dem res-Verzeichnis konnen im assets-Verzeichnis beliebi-
ge Dateien abgelegt werden, die somit Bestandteil der Applikation
werden. Aus Aktivititen kann auf dieses Verzeichnis mittels des
AssetManagers und dem Aufruf getAssets() zugegriffen werden.
Im Vergleich zum res-Verzeichnis kénnen im assets-Verzeichnis
beliebige Daten abgelegt werden, die keiner von den Android
vorgegebenen Strukturen entsprechen miissen.

In Eclipse wird in der Projektansicht nun noch der Eintrag fiir die
Android-Bibliothek android.jar angezeigt und AndroidManifest.
xml. Bei default.properties handelt es sich ebenso um eine gene-
rierte Datei, die besser nicht angefasst werden sollte. Die Andro-
id-Bibliothek android. jar befindet sich in Threm SDK-Verzeichnis
unter <android_sdk>/platforms/android-8/. Android-8 steht dabei
fir das API des Android-Froyo-Releases, hier Android 2.2. Es
bleibt noch AndroidManifest.xml, die wichtigste Konfigurations-
datei eines jeden Android-Projekts.

schnell + kompakt 15 |

| Komponenten einer Android-Applikation

1.2 Das Android Manifest -
AndroidManifest.xml

Die weiter oben beschriebenen Bestandteile einer Android-Appli-
kation, also Aktivitiaten, Services, Content-Provider usw. werden
allesamt in der AndroidManifest.xmlregistriert. Glicklicherweise
erzeugt das ADT-Plug-in in Eclipse bei der Erstellung einer neu-
en Android-Applikation diese Datei. Sobald Sie weitere Kompo-
nenten hinzufiigen, miissen Sie die Konfiguration jedoch selbst
erweitern, da Thre Applikation sonst diese neuen Komponenten
nicht finden kann (Listing 1.1).

<?xml version="1.0" encoding="utf-8"7>
<manifest xmlns:android=
"http://schemas.android.com/apk/res/android"
package="de.svenhaiges.androidl"
android:versionCode="1"
android:versionName="1.0">
<application android:icon="@drawable/icon"
android:Tabel="@string/app_name">
<activity android:name=
"DemoOneActivity"android:
Tlabel="@string/app_name">
<intent-filter>
<action android:name=
"android.intent.action.MAIN" />
<category android:name=
"android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Listing 1.1: ,AndroidManifest.xml* hélt die Android-Applikation zusammen

[16 entwickler.press

Das Android Manifest — AndroidManifest.xml |

Wenn Sie sich gerade erst von XML verabschiedet haben und Thre
Konfiguration ansonsten nun deklarativ durch Annotations oder
wie im Fall diverser Webframeworks (u. a. Grails) im Groovy-
Code ablegen, dann missen Sie bei der Android-Entwicklung
wieder etwas umdenken. Android benutzt zumindest wahrend
der Entwicklungsphase viel XML, um die Konfiguration und Res-
sourcen einer Applikation zu beschreiben.

Der Root-Tag manifest gibt mit dem Attribut package den Pa-
ckage-Namen der Quelldateien an. Somit muss dieser nicht wie-
derholt werden, was etwas Tipparbeit spart. Betrachten Sie kurz
den Tag activity, durch den unsere derzeit einzige Aktivitat dekla-
riert wird. Das im Namespace android befindliche Attribut name
(also komplett android:name) gibt den Klassennamen unserer
Aktivitat an (und ja, der Punkt vor dem Klassennamen darf nicht
weggelassen werden), so wie dies im Eclipse-ADT-Plug-in einge-
tippt wurde: DemoOneActivity.

Der Tag <intent-filter> stellt sicher, dass unsere Aktivitit zum
einen als Haupteinstiegspunkt der Applikation (android.intent.
action.Main) deklariert wird. Zum anderen wird durch die Ka-
tegorie android.intent.category.Launcher angegeben, dass diese
Aktivitat nach der Installation im App-Verzeichnis des Gerits
aufgefiithrt werden soll.

Sind Thnen die mit @ beginnenden Werte der Attribute
android:icon und android:label auch aufgefallen? Es sind Zeiger
auf Android-Ressourcen, also beispielsweise Bilder oder Texte
welche im res-Verzeichnis abgelegt worden sind. Die Verwen-
dung dieser Android-Ressourcen bringt den Vorteil, dass Android
je nach Konfiguration die passende Ressource selbst auswahlen
kann. Beispielsweise kann so fiir das Icon, das mit @drawable/
icon referenziert wird, je nach Auflosung und Grofle des Dis-

schnell + kompakt 17 1

| Komponenten einer Android-Applikation

plays ein passendes Bild ausgewahlt werden. Die Konfiguration
kann sich auch wéhrend der Ausfithrung einer Applikation &n-
dern, etwa wenn das mobile Gerét ins Querformat gedreht wird.
Hierbei mochte man als Entwickler eventuell ein anderes Layout,
andere Texte oder Bilder verwenden. Genau dies wird moglich,
wenn man konsequent die Android-Ressourcen verwendet.

1.3 Android-Ressourcen

Was genau sind diese Android-Ressourcen? Zunéchst sollten
wir unsere Aufmerksamkeit ganz dem res-Verzeichnis widmen.
In diesem werden alle Ressourcen abgelegt. Fir jeden Typ wird
dafiir ein neues Verzeichnis verwendet. Einen Typ, namlich Gra-
fiken, konnten Sie schon anhand der AndroidManifest.xml-Datei
sehen. Tabelle 1.1 gibt Thnen einen kleinen Uberblick, was An
droid-Ressourcen alles sein kénnen.

Typ Unterver- | Beschreibung Zugriff
zeichnis via R.
Einfache res/values | Strings, einzelne Farb- R.string,
Werte werte, boolesche Werte, R.color,
Dimensionen, String/ R.bool,
Integer Arrays R.dimen,
R.array
Grafische res/ Bitmaps, NinePatches R.drawable

Elemente drawable (stretchable PNGs), For-
men sowie Elemente, die
aus anderen Elementen
zusammengesetzt wurden

Styles und | res/values R.style
Themes

[18 entwickler.press

Android-Ressourcen |

Typ Unterver- | Beschreibung Zugriff
zeichnis via R.

Ul- res/layout | Layouts fiir das Ul der R.layout

Layouts Applikation

Anima- res/anim Tween- und Frame- R.anim und

tionen und res/ animationen R.drawable
drawable

Menus res/menu Inhalte der Applikations- R.menu

menis

Tabelle 1.1: Einige der verschiedenen Android-Ressourcen

Tabelle 1.1 sollte Thnen einen guten Uberblick iiber die wichtigs-
ten Ressourcen geben, die im res-Verzeichnis definiert werden
konnen. Fur diese und noch weitere Ressourcen kénnen XML-
Dateien angelegt werden, welche die Ressource beschreiben. Im
einfachsten Fall, fiir einfache Werte, sieht dies dann folgender-
maflen aus:

<?xml version="1.0" encoding="utf-8"7>
<!-- res/values/simple.xml -->
<resources>
<string name="hello">Hello World,
DemoOneActivity!</string>
<string name="app_name">Demol</string>
<string-array name="first_names">
<item>Susanne</item>
<item>Johannes</item>
</string-array>
<bool name="reconnect_often">
true
</bool1>
<dimen name="font_size">16sp</dimen>
</resources>

schnell + kompakt 19 |

| Komponenten einer Android-Applikation

Da es sich in diesem Fall allesamt um einfache Werte handelt,
kénnen diverse Typen miteinander kombiniert werden. Auch der
Dateiname der XML-Datei ist nicht relevant, Hauptsache die Da-
tei befindet sich im res/values-Verzeichnis.

Im Codebeispiel definieren wir zunéachst zwei einfache Strings, die
spater im Java-Code mittels R.string.hello und R.string.app_name
referenziert werden kénnen. Der folgende String Array wird per
R.array.first_names, der boolsche Wert per R.bool.reconnect_often
und zu guter Letzt die Dimension per R.dimen.font_size referen-
ziert. Beachten Sie, dass die automatisch generierte Klasse R nicht
direkt Objekte vom Typ String oder Integer enthilt, vielmehr
enthélt diese generierte Klasse lediglich statische Variablen, die
allesamt vom Typ Integer sind und intern zur Referenzierung der
Werte benutzt werden. Um tatsachlich einen String wie R.string.
hello auszulesen, kann folgender Code benutzt werden: String
hello = getString(R.string.hello);.

Sobald Sie eine Ressource in einer anderen XML-Datei (sprich
Ressource) referenzieren wollen, beispielsweise um die Schrift-
grofBe einer TextView-UI-Komponente zu setzen, muss der ent-
sprechende XML-Syntax benutzt werden, in diesem Fall folgen-
dermaflen:

<TextView
android:layout_width="fi11_parent"
android:layout_height="wrap_content"
android:text="@string/hello"
/>

Mehr zu den unterschiedlichen Ressourcen gibt es unter [3].
Selbstverstandlich gehen wir in den néchsten Kapiteln auch auf
die passenden Ressourcen ein und stellen diese vor.

[20 entwickler.press

Wieso der ganze Aufwand? |

1.4 Wieso der ganze Aufwand?

Der wahre Grund, diesen ganzen Aufwand zu betreiben, besteht
darin, dass Android so die jeweilige Ressource dynamisch aus-
wihlen kann. Ein kleines Beispiel veranschaulicht dies sicherlich
am besten. Neben dem Verzeichnis res/values- konnen weitere
Verzeichnisse mit values- beginnend angelegt werden, und An-
droid sucht automatisch das richtige, passende Verzeichnis aus.
Beispielsweise kann dadurch eine Applikation sehr einfach loka-
lisiert werden:

res/
values/
strings.xml
values-de/
strings.xml
values-fr
strings.xml

Durch das Anhéngen bestimmter Qualifier kann Android je
nach Spracheinstellung des Nutzers die passende XML-Datei

mit den String-Ressourcen laden. Falls keine spezifische Version
passt, so werden per Fallback die Standardressourcen geladen.
Diese Auswahl der Ressourcen ist natiirlich nicht nur auf Strings
oder einfache Werte beschrankt, saimtliche Android-Ressourcen
koénnen tber diesen Mechanismus weiter qualifiziert werden.
Und auch die Qualifier sind nicht nur auf Sprache und Region
beschrankt, sondern recht umfassend. Die vollstandige Liste aller
Qualifier konnen Sie unter [4] nachlesen, eine Auswahl der wohl
wichtigsten Qualifier kdnnen Sie in Tabelle 1.2 sehen.

schnell + kompakt o1 |

| Komponenten einer Android-Applikation

Qualifier Werte Beschreibung
MCC und mcc262, | Der Mobile Country Code (MCC), op-
MNC mcc262- | tional gefolgt vom Mobile Network Code
mncO1 (MNC). Dadurch kann beispielsweise
eine Applikation je nach eingebuchtem
Netz ein anderes Branding/Ul bekom-
men. Eine Ubersicht der MCC und MNC
finden Sie unter http://en.wikipedia.org/
wiki/Mobile_Network_Code#G.
Sprache de, fr, Die Sprache wird durch die ISO639-
und de-rDE 1-Codes festgelegt, optional kann die
Region Region (Kirzel siehe ISO 3166-1 alpha
2) durch ein nach dem Bindestrich voran-
gestelltes kleines ,r* angegeben werden.
Display- small, Die physikalische GréBe des Displays,
groBe normal, die zur Vereinfachung durch die 3
large Kategorien small, normal und large
ausgedrtickt wird.
Display- port, land | Portait oder Landscape entsprechen
ausrichtung der vertikalen oder horizontalen Aus-
richtung des Gerits.
Bildschirm Idpi, Basierend auf der Dichte des Displays
Pixeldichte mdpi, (wie viele Punkte pro Inch — dpi)
(Pixel hdpi, werden drei Gruppen eingeteilt: Idpi mit
Density) nodpi ca. 120dpi, mdpi mit ca. 160dpi und
hdpi mit ca. 240dpi. Nodpi kann benutzt
werden, wenn Bitmaps nicht skaliert
werden sollen.
System- v3, v4, Die Ressourcen konnen auch je nach
version v7,v8 API-Level unterschieden werden. V8
USW. steht dabei fiir das Android 2.2 Re-
lease, also Froyo.

Tabelle 1.2: Qualifier des Android-Resource-Management-Systems

[20

entwickler.press

