

Sven Haiges

Android
Schnelleinstieg

schnell+kompakt

Sven Haiges
Android
Schnelleinstieg
schnell+kompakt
ISBN: 978-3-86802-067-0

© 2011 entwickler.press
ein Imprint der Software & Support Media GmbH

http://www.entwickler-press.de
http://www.software-support.biz

Ihr Kontakt zum Verlag und Lektorat: lektorat@entwickler-press.de

Bibliografische Information Der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen
Nationalbibliografie; detaillierte bibliografische Daten sind im Internet
über http://dnb.ddb.de abrufbar.

Lektorat: Sebastian Burkart
Korrektorat: Nataliya Korn
Satz: Pobporn Fischer
Umschlaggestaltung: Maria Rudi
Belichtung, Druck und Bindung: M.P. Media-Print Informationstechno-
logie GmbH, Paderborn.

Alle Rechte, auch für Übersetzungen, sind vorbehalten. Reproduktion
jeglicher Art (Fotokopie, Nachdruck, Mikrofilm, Erfassung auf elektroni-
schen Datenträgern oder andere Verfahren) nur mit schriftlicher Geneh-
migung des Verlags. Jegliche Haftung für die Richtigkeit des gesamten
Werks, kann, trotz sorgfältiger Prüfung durch Autor und Verlag, nicht
übernommen werden. Die im Buch genannten Produkte, Warenzeichen
und Firmennamen sind in der Regel durch deren Inhaber geschützt.

http://www.entwickler-press.de
http://www.software-support.biz
http://dnb.ddb.de

5schnell + kompakt

Inhaltsverzeichnis

Inhaltsverzeichnis

Kapitel 1: Vorwort	 9

Kapitel 2: Komponenten einer Android-Applikation	 11
1.1 Anatomie einer Android-Applikation	 13
1.2 Das Android Manifest –

AndroidManifest.xml	 16
1.3 Android-Ressourcen	 18
1.4 Wieso der ganze Aufwand?	 21
1.5 Activities und der Activity Lifecycle	 23
1.6 Zusammenfassung	 29

Kapitel 3: Android UIs: Grundlagen,
Resource Management und Tipps 	 31

2.1 Activities, Views und ViewGroups	 32
2.2 Listener – auf Aktionen reagieren	 43
2.3 Hierarchy Viewer	 44
2.4 Adapter: Brücke zwischen Daten und Views	 46
2.5 Zusammenfassung	 55

Kapitel 4: Intents und Broadcast Receiver	 57
3.1 Starten von Aktivitäten per Intent	 58
3.2 Aufruf einer Website per Intent Action und Data	 60
3.3 IntentFilter	 66
3.4 Intent Resolution	 68
3.5 Broadcast Receiver	 73
3.6 Zusammenfassung	 77

6

﻿Inhaltsverzeichnis

Kapitel 5: Services & Notifications	 79
4.1 Services	 79
4.2 Notifications 	 86
4.3 IntentService	 89
4.4 Service Binding	 91
4.5 Remote Services	 96
4.6 Zusammenfassung	 98

Kapitel 6: Datenbanken und Content Provider	 101
5.1 SQLite auf Android	 104
5.2 Queries	 113
5.3 Content Provider	 115
5.4 ContentResolver – auf die Daten des Content Provider zu-

greifen	 124
5.5 Zusammenfassung 	 127

Kapitel 7: Maps & Geocoding	 129
6.1 Maps mit der MapView anzeigen	 131
6.2 Forward und Reverse Geocoding	 136
6.3 Positionsbestimmung per Location Provider	 138
6.4 Aktuelle Position anzeigen	 142
6.5 Proximity Alerts	 144
6.6 Geotagged Tweets als Overlay	 145
6.7 Zusammenfassung 	 150

Kapitel 8: Android App Widgets	 151
7.1 Das Projekt	 152
7.2 Grundlagen & Konfiguration 	 153
7.3 Erstellen des App-Widget-Layouts	 155
7.4 Implementierung des AppWidgetProviders	 161
7.5 Hinzufügen eines Config-Screens	 169
7.6 Zusammenfassung	 174

Inhaltsverzeichnis

7schnell + kompakt

Kapitel 9: Near Field Communication	 175
8.1 NFC 101	 176
8.2 Wie sehen NFC-Tags aus?	 178
8.3 NFC im Vergleich zu ZigBee und Bluetooth	 180
8.4 Die Anwendungen von NFC	 181
8.5 NFC ab Android 2.3.3	 183
8.6 P2P mit Android: NdefPush	 203

9schnell + kompakt

Vorwort

Vorwort

Das mobile Betriebssystem Android konnte 2010 einen schier un-
glaublichen Erfolg verzeichnen. Laut Gartner [1] stieg die Zahl
der mit Android verkauften Smartphones um 888,8 %. Damit hat
Android Ende 2010 bereits Platz 2 der mobilen Betriebssysteme
eingenommen. Apples iOS wurde bereits überholt. Auf Platz 1
befand sich 2010 noch Symbian, jedoch wird erwartet, dass 2011
Android auf Platz 1 der mobilen Betriebssysteme vorrücken wird.
Dies ist vor allem den zahlreichen High-End Produkten von HTC,
Samsung und Motorola zu verdanken. Mittlerweile gibt es welt-
weit kaum einen Mobilfunkanbieter, der es sich leisten kann, kein
Android-basiertes Smartphone in seinem Programm zu haben.
Für Entwickler eröffnet sich mit Android eine faszinierende Welt.
Dieses Buch möchte Ihnen den Einstieg in die Android-Entwick-
lung so einfach wie möglich machen.
Eines jedoch gleich vorweg: Android ist ein großes, recht umfas-
sendes Thema und alle paar Monate stellt Google weitere APIs
zukünftiger Versionen vor. Für dieses Buch haben wir uns deshalb
Bereiche der Android-Entwicklung herausgesucht, die unserer
Meinung nach elementar sind. Abgerundet wird dieser Einstieg
durch Kapitel zu Maps, Widgets und NFC (Near-Field-Communi-
cation). Wir hoffen, dass wir damit den richtigen Mix aus Grund-
langen und faszinierenden Zukunftsthemen gefunden haben.
Dieses Buch setzt allerdings auch einige Grundlagen voraus. Bei-
spielsweise beschreiben wir nicht, wie Sie Eclipse und das Android-
Development-Tools-(ADT-)Plug-in installieren (siehe [2]). Wir sind
der Meinung, dass die meisten diese Grundlagen bereits besitzen.

10

﻿Vorwort

Feedback und Anregungen sind jederzeit willkommen – per
E-Mail (sven.haiges@gmail.com) oder Twitter (@hansamann).

Viel Spaß bei der Lektüre!

Links & Literatur

[1]	 Gartner Mobile Devices Sales 2010:
http://www.gartner.com/it/page.jsp?id=1543014

[2]	 Android Eclipse Plugin:
http://developer.android.com/sdk/eclipse-adt.html

Vorbemerkungen

■■ Zu jedem Kapitel können Sie unter:
www.entwickler-press.de/android ein ZIP-File mit dem
kompletten Quellcode herunterladen.

■■ Viele Abbildungen und Screenshots im Buch wurden um 90
Grad gedreht, um die Lesbarkeit zu verbessern.

http://www.gartner.com/it/page.jsp?id=1543014
http://developer.android.com/sdk/eclipse-adt.html
www.entwickler-press.de/

11schnell + kompakt

KAPITEL 1

Bevor wir uns dem Hauptthema dieses Kapitels – den Android
Activities – widmen, sollten wir wenigstens kurz die unterschied-
lichen Komponenten einer Android-Applikation vorstellen und
ein paar weitere wichtige Basics erklären. Im Vergleich zu JME-
oder iOS-Applikationen bestehen Android-Applikationen nämlich
aus meist vielen, lose gekoppelten Teilen. Dies können allen voran
die so genannten Aktivitäten (Activities) sein, die dem Benutzer
das UI darstellen, oder es können Android Services, Content-Pro-
vider, Intents, Broadcast Receiver usw. sein. Da gibt es eine Men-
ge neuer Konzepte zu verstehen, und auch wenn wir gerade am
Anfang nicht die Zeit haben, jedes einzelne Konzept umfassend zu
behandeln, wollen wir Ihnen einige doch kurz vorstellen:

■■ Activities beherbergen die Präsentationsschicht einer jeden An-
droid-Applikation. Eine Applikation kann dabei beliebig viele
Aktivitäten haben und zwischen diesen hin- und herwechseln.

Komponenten einer
Android-Applikation
1.1  Anatomie einer Android-Applikation	 13

1.2  Das Android Manifest – AndroidManifest.xml	 16

1.3  Android-Ressourcen	 18

1.4  Wieso der ganze Aufwand?	 21

1.5  Activities und der Activity Lifecycle	 23

1.6  Zusammenfassung und Ausblick	 29

12

  Komponenten einer Android-Applikation

Das UI selbst wird durch Android-UI-Komponenten realisiert,
die von der Klasse android.view.View erben. Die so genannten
ViewGroups sind dafür verantwortlich, die Views (auch Widgets
oder Controls genannt) entsprechend zu positionieren.

■■ Services sind die unsichtbaren Helfer Ihrer Applikation, die
je nach Applikationslogik regelmäßig erwachen und beispiels-
weise nach neuen E-Mails schauen. Services selbst haben kein
UI, können jedoch durch das Android-Notification-Framework
den Nutzer informieren.

■■ Intents (deutsch: Absichten) sind ein enorm wichtiges Konzept.
Sie sind nichts anderes als eine Art „Nachricht“, die entweder
direkt an einen Service oder eine Aktivität adressiert (Explicit
Intents) oder systemweit wie eine Art Rundfunk (Broadcast)
verteilt werden kann (Implicit Intents). Das Android-Betriebs-
system ist in letzterem Fall dafür verantwortlich, potenzielle
Empfänger dieser Nachrichten zu finden und dem Anwender
eine Auswahl der Applikationen zu präsentieren, die die Nach-
richt verarbeiten können.

■■ Broadcast Receiver konsumieren die impliziten Nachrichten
(Implicit Intents). Hat Ihre Applikation entsprechende Broad-
cast Receiver registriert, kann ein entsprechender Intent Ihre
Applikation starten, um dann die Nachricht zu verarbeiten.

■■ Content-Provider: Mittels eines oder mehrerer Content-
Provider kann Ihre Applikation Daten anderen Applikationen
zugänglich machen. Auch intern benutzt Android Content-Pro-
vider, um beispielsweise die Kontakte des Telefonbuchs ande-
ren Applikationen zur Verfügung zu stellen. Content-Provider
benutzen intern meist SQLite-Datenbanken, können jedoch
auch andere Mechanismen der Datenhaltung (Dateisystem,
Netzwerk) benutzen.

13schnell + kompakt

Anatomie einer Android-Applikation 

Neben diesen Bestandteilen einer Android-Applikation gibt es
noch Weitere: Widgets (nicht zu verwechseln mit den Android-
UI-Komponenten, die auch oft Widgets genannt werden) sind
beispielsweise kleine Applikationen, die direkt auf dem Home
Screen der Geräte ausgeführt werden. Live Folders geben ebenso
vom Home Screen aus Zugriff auf die Elemente eines Content-
Providers und können dadurch beispielsweise Ihre gespeicherten
Kontakte zugänglich machen.

1.1  Anatomie einer Android-Applikation
Wie ist eine typische Android-Applikation strukturiert? Sollten
Sie noch nie eine „frische“ Android-App mithilfe des Eclipse-
ADT-Plug-ins erstellt haben, so sehen Sie anhand Abbildung 1.1,
wie sie strukturiert ist. Im src-Verzeichnis befindet sich freilich
der Quellcode Ihrer Applikation. Wenn Sie zur Erzeugung der
Applikation das ADT-Plug-in verwendet haben, so mussten Sie
(Abb. 1.2) ein Java Package sowie den Klassennamen der ersten
Aktivität angeben. Das Plug-in erstellt in diesem Fall automatisch
ein Package-Verzeichnis im src-Verzeichnis und erzeugt eine leere
Activity-Klasse, auf die wir später noch eingehen.

Abbildung 1.1:  Verzeichnislayout einer Android-Applikation

14

  Komponenten einer Android-Applikation

Abbildung 1.2:  Erstellen einer Applikation mit dem Eclipse-ADT-Plug-in

15schnell + kompakt

Anatomie einer Android-Applikation 

Wie der Name des gen-Verzeichnisses es schon andeutet, befin-
den sich in diesem Verzeichnis generierte Dateien. Wenn Sie das
Verzeichnis aufklappen, werden Sie eine einzige Klassendatei,
R.java, vorfinden. Sie enthält Referenzen zu den Ressourcen ei-
ner Android-Applikation, die selbst im res-Verzeichnis abgelegt
werden. Sobald Sie eine neue Ressource, also beispielsweise eine
neue Grafikdatei im Verzeichnis res/drawable ablegen, sorgt das
ADT-Plug-in automatisch dafür, dass in der Klasse R eine neue
Referenz für diese Ressource angelegt wird. Im Java-Code können
Sie das Bild dann per R.drawable.icon referenzieren. Ablage und
Zugriff von Ressourcen werden auch später in dieser Vorstellung
noch detailliert besprochen.
Neben dem res-Verzeichnis können im assets-Verzeichnis beliebi-
ge Dateien abgelegt werden, die somit Bestandteil der Applikation
werden. Aus Aktivitäten kann auf dieses Verzeichnis mittels des
AssetManagers und dem Aufruf getAssets() zugegriffen werden.
Im Vergleich zum res-Verzeichnis können im assets-Verzeichnis
beliebige Daten abgelegt werden, die keiner von den Android
vorgegebenen Strukturen entsprechen müssen.
In Eclipse wird in der Projektansicht nun noch der Eintrag für die
Android-Bibliothek android.jar angezeigt und AndroidManifest.
xml. Bei default.properties handelt es sich ebenso um eine gene-
rierte Datei, die besser nicht angefasst werden sollte. Die Andro-
id-Bibliothek android.jar befindet sich in Ihrem SDK-Verzeichnis
unter <android_sdk>/platforms/android-8/. Android-8 steht dabei
für das API des Android-Froyo-Releases, hier Android 2.2. Es
bleibt noch AndroidManifest.xml, die wichtigste Konfigurations-
datei eines jeden Android-Projekts.

16

  Komponenten einer Android-Applikation

1.2  Das Android Manifest –
AndroidManifest.xml

Die weiter oben beschriebenen Bestandteile einer Android-Appli-
kation, also Aktivitäten, Services, Content-Provider usw. werden
allesamt in der AndroidManifest.xml registriert. Glücklicherweise
erzeugt das ADT-Plug-in in Eclipse bei der Erstellung einer neu-
en Android-Applikation diese Datei. Sobald Sie weitere Kompo-
nenten hinzufügen, müssen Sie die Konfiguration jedoch selbst
erweitern, da Ihre Applikation sonst diese neuen Komponenten
nicht finden kann (Listing 1.1).

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
 "http://schemas.android.com/apk/res/android"
 package="de.svenhaiges.android1"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=
 "DemoOneActivity"android:
 label="@string/app_name">
 <intent-filter>
 <action android:name=
 "android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Listing 1.1:  „AndroidManifest.xml“ hält die Android-Applikation zusammen

17schnell + kompakt

Das Android Manifest – AndroidManifest.xml  

Wenn Sie sich gerade erst von XML verabschiedet haben und Ihre
Konfiguration ansonsten nun deklarativ durch Annotations oder
wie im Fall diverser Webframeworks (u. a. Grails) im Groovy-
Code ablegen, dann müssen Sie bei der Android-Entwicklung
wieder etwas umdenken. Android benutzt zumindest während
der Entwicklungsphase viel XML, um die Konfiguration und Res-
sourcen einer Applikation zu beschreiben.
Der Root-Tag manifest gibt mit dem Attribut package den Pa-
ckage-Namen der Quelldateien an. Somit muss dieser nicht wie-
derholt werden, was etwas Tipparbeit spart. Betrachten Sie kurz
den Tag activity, durch den unsere derzeit einzige Aktivität dekla-
riert wird. Das im Namespace android befindliche Attribut name
(also komplett android:name) gibt den Klassennamen unserer
Aktivität an (und ja, der Punkt vor dem Klassennamen darf nicht
weggelassen werden), so wie dies im Eclipse-ADT-Plug-in einge-
tippt wurde: DemoOneActivity.
Der Tag <intent-filter> stellt sicher, dass unsere Aktivität zum
einen als Haupteinstiegspunkt der Applikation (android.intent.
action.Main) deklariert wird. Zum anderen wird durch die Ka-
tegorie android.intent.category.Launcher angegeben, dass diese
Aktivität nach der Installation im App-Verzeichnis des Geräts
aufgeführt werden soll.
Sind Ihnen die mit @ beginnenden Werte der Attribute
android:icon und android:label auch aufgefallen? Es sind Zeiger
auf Android-Ressourcen, also beispielsweise Bilder oder Texte
welche im res-Verzeichnis abgelegt worden sind. Die Verwen-
dung dieser Android-Ressourcen bringt den Vorteil, dass Android
je nach Konfiguration die passende Ressource selbst auswählen
kann. Beispielsweise kann so für das Icon, das mit @drawable/
icon referenziert wird, je nach Auflösung und Größe des Dis-

18

  Komponenten einer Android-Applikation

plays ein passendes Bild ausgewählt werden. Die Konfiguration
kann sich auch während der Ausführung einer Applikation än-
dern, etwa wenn das mobile Gerät ins Querformat gedreht wird.
Hierbei möchte man als Entwickler eventuell ein anderes Layout,
andere Texte oder Bilder verwenden. Genau dies wird möglich,
wenn man konsequent die Android-Ressourcen verwendet.

1.3  Android-Ressourcen
Was genau sind diese Android-Ressourcen? Zunächst sollten
wir unsere Aufmerksamkeit ganz dem res-Verzeichnis widmen.
In diesem werden alle Ressourcen abgelegt. Für jeden Typ wird
dafür ein neues Verzeichnis verwendet. Einen Typ, nämlich Gra-
fiken, konnten Sie schon anhand der AndroidManifest.xml-Datei
sehen. Tabelle 1.1 gibt Ihnen einen kleinen Überblick, was An
droid-Ressourcen alles sein können.

Typ Unterver-
zeichnis

Beschreibung Zugriff
via R.

Einfache
Werte

res/values Strings, einzelne Farb-
werte, boolesche Werte,
Dimensionen, String/
Integer Arrays

R.string,
R.color,
R.bool,
R.dimen,
R.array

Grafische
Elemente

res/ 
drawable

Bitmaps, NinePatches
(stretchable PNGs), For-
men sowie Elemente, die
aus anderen Elementen
zusammengesetzt wurden

R.drawable

Styles und
Themes

res/values R.style

19schnell + kompakt

Android-Ressourcen 

Typ Unterver-
zeichnis

Beschreibung Zugriff
via R.

UI-
Layouts

res/layout Layouts für das UI der
Applikation

R.layout

Anima
tionen

res/anim
und res/
drawable

Tween- und Frame
animationen

R.anim und
R.drawable

Menüs res/menu Inhalte der Applikations-
menüs

R.menu

Tabelle 1.1:  Einige der verschiedenen Android-Ressourcen

Tabelle 1.1 sollte Ihnen einen guten Überblick über die wichtigs-
ten Ressourcen geben, die im res-Verzeichnis definiert werden
können. Für diese und noch weitere Ressourcen können XML-
Dateien angelegt werden, welche die Ressource beschreiben. Im
einfachsten Fall, für einfache Werte, sieht dies dann folgender-
maßen aus:

<?xml version="1.0" encoding="utf-8"?>
<!-- res/values/simple.xml -->
<resources>
 <string name="hello">Hello World,
 DemoOneActivity!</string>
 <string name="app_name">Demo1</string>
 <string-array name="first_names">
 <item>Susanne</item>
 <item>Johannes</item>
 </string-array>
 <bool name="reconnect_often">
 true
 </bool>
 <dimen name="font_size">16sp</dimen>
</resources>

20

  Komponenten einer Android-Applikation

Da es sich in diesem Fall allesamt um einfache Werte handelt,
können diverse Typen miteinander kombiniert werden. Auch der
Dateiname der XML-Datei ist nicht relevant, Hauptsache die Da-
tei befindet sich im res/values-Verzeichnis.
Im Codebeispiel definieren wir zunächst zwei einfache Strings, die
später im Java-Code mittels R.string.hello und R.string.app_name
referenziert werden können. Der folgende String Array wird per
R.array.first_names, der boolsche Wert per R.bool.reconnect_often
und zu guter Letzt die Dimension per R.dimen.font_size referen-
ziert. Beachten Sie, dass die automatisch generierte Klasse R nicht
direkt Objekte vom Typ String oder Integer enthält, vielmehr
enthält diese generierte Klasse lediglich statische Variablen, die
allesamt vom Typ Integer sind und intern zur Referenzierung der
Werte benutzt werden. Um tatsächlich einen String wie R.string.
hello auszulesen, kann folgender Code benutzt werden: String
hello = getString(R.string.hello);.
Sobald Sie eine Ressource in einer anderen XML-Datei (sprich
Ressource) referenzieren wollen, beispielsweise um die Schrift-
größe einer TextView-UI-Komponente zu setzen, muss der ent-
sprechende XML-Syntax benutzt werden, in diesem Fall folgen-
dermaßen:

<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/hello"
 />

Mehr zu den unterschiedlichen Ressourcen gibt es unter [3].
Selbstverständlich gehen wir in den nächsten Kapiteln auch auf
die passenden Ressourcen ein und stellen diese vor.

21schnell + kompakt

Wieso der ganze Aufwand? 

1.4  Wieso der ganze Aufwand?
Der wahre Grund, diesen ganzen Aufwand zu betreiben, besteht
darin, dass Android so die jeweilige Ressource dynamisch aus-
wählen kann. Ein kleines Beispiel veranschaulicht dies sicherlich
am besten. Neben dem Verzeichnis res/values- können weitere
Verzeichnisse mit values- beginnend angelegt werden, und An-
droid sucht automatisch das richtige, passende Verzeichnis aus.
Beispielsweise kann dadurch eine Applikation sehr einfach loka-
lisiert werden:

res/
 values/
 strings.xml
 values-de/
 strings.xml
 values-fr
 strings.xml

Durch das Anhängen bestimmter Qualifier kann Android je
nach Spracheinstellung des Nutzers die passende XML-Datei
mit den String-Ressourcen laden. Falls keine spezifische Version
passt, so werden per Fallback die Standardressourcen geladen.
Diese Auswahl der Ressourcen ist natürlich nicht nur auf Strings
oder einfache Werte beschränkt, sämtliche Android-Ressourcen
können über diesen Mechanismus weiter qualifiziert werden.
Und auch die Qualifier sind nicht nur auf Sprache und Region
beschränkt, sondern recht umfassend. Die vollständige Liste aller
Qualifier können Sie unter [4] nachlesen, eine Auswahl der wohl
wichtigsten Qualifier können Sie in Tabelle 1.2 sehen.

22

  Komponenten einer Android-Applikation

Qualifier Werte Beschreibung

MCC und
MNC

mcc262,
mcc262-
mnc01

Der Mobile Country Code (MCC), op-
tional gefolgt vom Mobile Network Code
(MNC). Dadurch kann beispielsweise
eine Applikation je nach eingebuchtem
Netz ein anderes Branding/UI bekom-
men. Eine Übersicht der MCC und MNC
finden Sie unter http://en.wikipedia.org/
wiki/Mobile_Network_Code#G.

Sprache  
und  
Region

de, fr,
de-rDE

Die Sprache wird durch die ISO639-
1-Codes festgelegt, optional kann die
Region (Kürzel siehe ISO 3166-1 alpha
2) durch ein nach dem Bindestrich voran-
gestelltes kleines „r“ angegeben werden.

Display-
größe

small,
normal,
large

Die physikalische Größe des Displays,
die zur Vereinfachung durch die 3
Kategorien small, normal und large
ausgedrückt wird.

Display
ausrichtung

port, land Portait oder Landscape entsprechen
der vertikalen oder horizontalen Aus-
richtung des Geräts.

Bildschirm
Pixeldichte  
(Pixel
Density)

ldpi,
mdpi,
hdpi,
nodpi

Basierend auf der Dichte des Displays
(wie viele Punkte pro Inch – dpi)
werden drei Gruppen eingeteilt: ldpi mit
ca. 120dpi, mdpi mit ca. 160dpi und
hdpi mit ca. 240dpi. Nodpi kann benutzt
werden, wenn Bitmaps nicht skaliert
werden sollen.

System
version

v3, v4,
v7, v8
usw.

Die Ressourcen können auch je nach
API-Level unterschieden werden. V8
steht dabei für das Android 2.2 Re-
lease, also Froyo.

Tabelle 1.2:  Qualifier des Android-Resource-Management-Systems

