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C.B. Allendoerfer: Global Differential Geometry of imbedded manifolds

CHAPTER I
DIFFERENTIABLE MANIFOLDS AND THEIR IMBEDDING

1. PIFFERENTIABLE MANIFOLDS. A differentiable manifold, X", is ar
astract cbject having the following properties
(1) It is a topological manifold, covered with cpen sets U;,. It is
usually assumed to be paracompact In most of these lectures we
sgsume it to be compact
(2) There is a map : ¢i g Ui* E® for each Ui These establish zocr-
dinates in Ui'
(3) In overlapping open sets, i.e. in Uiﬂ Uj’ the corresponding
coordinates are related by differentiable functions

It is C(r} if these functions have r continous derivatives:

c® if all derivatives exist; Cw if the functions are real analytio

2. IMBEDDINGS By virtue of a theorem of Whitney (Annzle of Mathe-
matice = 1936) X" can be considered to be a subspace of a Eucli-
dean space of sufficently high dimensicn. The theorem is

THEOREM. Let X2 be a C(%) manifold (1 § r & ®, not r = ).
Then X" is C(r) homeomorphic to an analytic submanifold of E20*1

If X carries a Riemann metric : ds? = gijdxidxj, there are
additional results for the case of C” manifolds. These are :

Bochner (Duke Journal 1937): If X® is C% and compact and has
an analytic Riemann metric, then X% ig ¢% homeomorphic with an a-
nalytic submanifold in E20%1

Malgrange (Bull.Soc Math.France 1957): Boshner's result for
non=-compact case.

Morrey (unpublished, 1958): If XM is C¥ and compact, XP is 0¥
homeomerphic with an analytic submanifold in g2utl The proof is

based or the lemma :



Lemma (Morrey). With each point P of XM are associated n fun-
octione éi (£ =1,...,n) wich are 0% over X" and have linearly in-
dipendent gradients at P . This lemma is an important result in
its own right.

Then ¢, (P) have independent gradients in N(P). Cover X" with
N(Pi) i =1...q . This gives ¢ia(1 =1.,..n, @ ® 1...q). Take the-
se as ooordinates in ERY. This is an imbedding which is C¥ and lo-
cally one-to one. Hence it induces a C% Riemann metric. The result

now follows from the above theorem of Boohner.

'3, ISOMETRIC IMBEDDING. When X" has a Riemann metric, we may fur-
ther require that the gdiven metric coinoide with that induced by
the imbedding, 1.e. that the imbedding be isometric. The results
are :

Janet (1926) If X™ is 0%, it oan be locally imbedded with
preservation of the metrio in E8(n*1)/2

Nagh-Kuiper (195F - Annals of Mathematics) : If X is Cl and
dompaot, and if it ocan be differentiably imbedded in BN (N ? ntl),
then it has a Cl isometrio imbedding in EN. This result ies effi=
cient pegarding dimension, but is true only for 01; the case of the
torus in E> shews it 6o be false fer C2.

Nash (1956 - Annale of Mathematics). It X" is ¢(®) (3 ¢ n ¢ o)
and is oompaot , it has an isometrio G(h) imbedding in an Eueli-
dean spsce of dimension (n/2) (3n+11). When X" is non-compact, the
dimension required is 3n3/2 + 7n® + 11n/2. The cases of C2 and

C? are open.

4. RIGID IMBEDDING. If an isometric imbedding ie unique to within

motion in the euclidean space, it is said to be "rigid"., Sufficient



conditions for rigid imbedding will be given later in this series

of lectures.

. NOTATIONS FOR IMBEDDED MANIFCLDS. Let X" be imbedded in potN
Local ccordinates in ERYN : y@ (a0, B, 7 = 1...n+N)

Lozal coordinates in X2 . xi (i, j, k = 1...n)

hlsc @ py o, T = ntl...ntN.

The imbedding is given locally by the functions

ye = fa(xi)
Then
(1) ay% = Q2¢/dxt)axt
These ars & base for the tangent vectors to X", and so any tangent

vector .is a linear combination of the axi.

It will be convenient tc choose an orthonormal base for the

tangent vectors, e% , such that

a
& i) ij
In this notation a represents the Euclidean cempenent of the veoter,

and i enumerates the vector. Then
(2) dy® = ¢t o2 )

where

¢l = Z, 4yt e% = Ea (Df“&axi) dxd o?-

Thus ¢! is a linear differential form
In particular

(3) as? = 2 ay® ay® = 3 ¢t ¢!

We also introduce an orthonormal frame of normal vectors eg

suzh that



= a
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It follows at once that :

j o
dei wi aj-l-cu B

(4)

= il + of
dea ma e;i ma ep )

where we have suppressed the upper index a ; and “’3-]:! wg_, and wg
are linear differential forms.

From the orthogonality of the chosen frames, we have seen that
d oz ol ¢ W o= eyl T = =
oy mj A W, 3 mp wg .
6. EQUATIONS OF STRUCTURE. These are the basic equations of éwn

geometry:. From (2) we derive
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By differentiating (4) and substituting back for de; and de,

from (4), we further derive :

k k k =
dwi'bwj/\wii-ma/‘w‘{ 0
o 4 O J (ed =
(6) dof of Awi + a.zp.A cm;’ 0
=0 .
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