16

E. Bompiani (Ed.)

Problemi di geometria differenziale in grande

Sestriere, Italy 1958

E. Bompiani (Ed.)

Problemi di geometria differenziale in grande

Lectures given at the Centro Internazionale Matematico Estivo (C.I.M.E.), held in Sestriere (Torino), Italy, July 31-August 8, 1958

C.I.M.E. Foundation c/o Dipartimento di Matematica "U. Dini" Viale Morgagni n. 67/a 50134 Firenze Italy cime@math.unifi.it

ISBN 978-3-642-10894-5 e-ISBN: 978-3-642-10895-2 DOI:10.1007/978-3-642-10895-2 Springer Heidelberg Dordrecht London New York

©Springer-Verlag Berlin Heidelberg 2011 Reprint of the 1sted. C.I.M.E., Florence, 1958. With kind permission of C.I.M.E.

Printed on acid-free paper

Springer.com

CENTRO INTERNATIONALE MATEMATICO ESTIVO (C.I.M.E)

Reprint of the 1st ed.- Sestriere, Italy, July 31-August 8, 1958

PROBLEMI DI GEOMETRIA DIFFERENZIALE IN GRANDE

C.B. Allendoerfer:	Global Differential Geometry of imbedded manifolds	1
P. Libermann:	Pseudo-groupes infinitesmaux	39

C.B. Allendoerfer: Global Differential Geometry of imbedded manifolds

CHAPTER I

DIFFERENTIABLE MANIFOLDS AND THEIR IMBEDDING

1. DIFFERENTIABLE MANIFOLDS. A differentiable manifold, X^n , is an astract object having the following properties :

(1) It is a topological manifold, covered with open sets U_i . It is usually assumed to be paracompact. In most of these lectures we assume it to be compact

(2) There is a map : ϕ_i : $U_i \rightarrow E^n$ for each U_i These establish corrdinates in U_i .

(3) In overlapping open sets, i.e. in $U_i \Lambda U_j$, the corresponding coordinates are related by differentiable functions.

 X^n is $C^{(r)}$ if these functions have r continous derivatives; C^{∞} if all derivatives exist; C^{ω} if the functions are real analytic

2. IMBEDDINGS By virtue of a theorem of Whitney (Annals of Mathematics - 1936) X^n can be considered to be a subspace of a Euclidean space of sufficiently high dimension. The theorem is :

THEOREM. Let Xⁿ be a C^(r) manifold (1 $\leq r \leq \infty$, not $r = \omega$). Then Xⁿ is C^(r) homeomorphic to an analytic submanifold of E²ⁿ⁺¹

If X^n carries a Riemann metric : $ds^2 = g_{ij} dx^i dx^j$, there are additional results for the case of C^{ω} manifolds. These are :

Bochner (Duke Journal 1937): If X^n is C^{ω} and compact and has an analytic Riemann metric, then X^n is C^{ω} homeomorphic with an analytic submanifold in E^{2n+1} .

Malgrange (Bull.Soc Math.France 1957): Bochner's result for non-compact case.

Morrey (unpublished, 1958): If X^n is C^{ω} and compact, X^n is C^{ω} homeomorphic with an analytic submanifold in E^{2n+1} . The proof is based on the lemma :

1

Lemma (Morrey). With each point P of Xⁿ are associated n functions ϕ_i (i = 1,...,n) wich are 0^{ω} over Xⁿ and have linearly indipendent gradients at P. This lemma is an important result in its own right.

Then $\phi_i(P)$ have independent gradients in N(P). Cover Xⁿ with N(P_i) i = 1...q. This gives ϕ_{ia} (i = 1...n, a = 1...q). Take these as coordinates in E^{nq}. This is an imbedding which is C^{ω} and locally one-to one. Hence it induces a C^{ω} Riemann metric. The result now follows from the above theorem of Bochner.

3. ISOMETRIC IMBEDDING. When X^n has a Riemann metric, we may further require that the given metric coincide with that induced by the imbedding, i.e. that the imbedding be isometric. The results are :

Janet (1926) If X^n is C^{ω} , it can be locally imbedded with preservation of the metric in $E^{n(n+1)/2}$.

Nash-Kuiper (1955 - Annals of Wathematics) : If X^n is C^1 and compact, and if it can be differentiably imbedded in E^N (N \ge n+1), then it has a C^1 isometric imbedding in E^N . This result is efficient regarding dimension, but is true only for C^1 ; the case of the torus in E^3 shows it to be false for C^2 .

Nash (1956 - Annals of Wathematics). If X^n is $C^{(h)}$ (3 $\leq h \leq \infty$) and is compact, it has an isometric $C^{(h)}$ imbedding in an Euclidean space of dimension (n/2) (3n+11). When X^n is non-compact, the dimension required is $3n^{3/2} + 7n^{2} + 11n/2$. The cases of C^2 and C^{ω} are open.

4. RIGID IMBEDDING. If an isometric imbedding is unique to within motion in the euclidean space, it is said to be "rigid". Sufficient

- 2 -

2

conditions for rigid imbedding will be given later in this series of lectures.

- 3 -

5. NOTATIONS FOR IMBEDDED MANIFCLDS. Let X^n be imbedded in E^{n+N} Local coordinates in E^{n+N} : y^{α} (α , β , $\gamma = 1...n+N$) Local coordinates in X^n . x^i (i, j, k = 1...n) Alsc : $\rho_{ii} \sigma$, $\tau = n+1...n+N$.

The imbedding is given locally by the functions :

$$y^a = f^a(x^i)$$
.

Then

(1) $dy^a = (\partial f^a / \partial x^i) dx^i$

These are a base for the tangent vectors to X^n , and so any tangent vector .is a linear combination of the dx^i .

It will be convenient to choose an orthonormal base for the tangent vectors, e^{α}_{i} , such that

$$\sum_{a} e_{i}^{a} e_{j}^{a} = \delta_{ij}$$

In this notation a represent's the Euclidean compenent of the vector, and i enumerates the vector. Then

$$dy^{a} = \phi^{i} \cdot e^{a}_{i}$$

where

$$\phi^{i} = \Sigma_{a} dy^{a} \bullet^{a}_{i} = \Sigma_{a} (\partial t^{a} / \partial x^{i}) dx^{j} \bullet^{a}_{i}.$$

Thus ϕ^i is a linear differential form

In particular

(3)
$$ds^2 = \Sigma_a dy^a dy^a = \Sigma \phi^i \phi^i$$

We also introduce an orthonormal frame of normal vectors $\mathbf{e}_{\sigma}^{\mathcal{A}}$ such that

$$\Sigma_a e^a_1 e^a_\sigma = 0$$
 , $\Sigma_a e^a_\sigma e^a_\rho = \delta_{\sigma\rho}$

- 4 -

It follows at once that :

(4)
$$\begin{cases} d \bullet_{i} = \omega_{i}^{j} \bullet_{j} + \omega_{i}^{\sigma} \bullet_{\sigma} \\ d \bullet_{\sigma} = \omega_{\sigma}^{j} \bullet_{j} + \omega_{\sigma}^{\rho} \bullet_{\rho} , \end{cases}$$

where we have suppressed the upper index a ; and ω_{i}^{j} , ω_{σ}^{j} , and ω_{σ}^{ρ} are linear differential forms.

From the orthogonality of the chosen frames, we have seen that $\omega_i^j = -\omega_j^i$; $\omega_i^\sigma = -\omega_\sigma^i$; $\omega_\rho^\sigma = -\omega_\sigma^\rho$.

 EQUATIONS OF STRUCTURE. These are the basic equations of ówn geometrys. From (2) we derive

$$0 = ddy^{\alpha} = d\phi^{i} \circ_{i} + d \circ_{i} \wedge \phi^{i}$$
$$= d\phi^{j} \circ_{j} = \omega_{i}^{j} \wedge \phi^{i} \circ_{j} = \omega_{i}^{\sigma} \wedge \phi^{i} \circ_{\sigma}$$
$$= (d\phi^{j} = \omega_{i}^{j} \wedge \phi^{i}) \circ_{j} = (\omega_{i}^{\sigma} \wedge \phi^{i}) \circ_{\sigma}$$
$$d\phi^{j} \neq \omega^{j} \wedge \phi^{i'} = 0$$

Nence

(5): $\begin{aligned} a\phi^{j} \neq \omega_{i}^{j} \wedge \phi^{\mu} = 0 \\ \omega_{i}^{\sigma} \wedge \phi^{i} = 0 \end{aligned}$

By differentiating (4) and substituting back for de_i and de_σ from (4), we further derive :

(6)
$$\begin{cases} d\omega_{1}^{k} + \omega_{j}^{k} \wedge \omega_{1}^{j} + \omega_{\sigma}^{k} \wedge \omega_{1}^{\sigma} = 0 \\ d\omega_{1}^{\sigma} + \omega_{j}^{\sigma} \wedge \omega_{1}^{j} + \omega_{\rho}^{\sigma} \wedge \omega_{1}^{\rho} = 0 \\ d\omega_{\rho}^{\sigma} + \omega_{j}^{\sigma} \wedge \omega_{\rho}^{j} + \omega_{\tau}^{\sigma} \wedge \omega_{\rho}^{\tau} = 0 \end{cases}$$