


Lecture Notes of 12
the Unione Matematica Italiana

For further volumes:
http://www.springer.com/series/7172



Editorial Board

Franco Brezzi (Editor in Chief)
IMATI-CNR
Via Ferrata 5a
27100 Pavia, Italy
e-mail: brezzi@imati.cnr.it

John M. Ball
Mathematical Institute
24-29 St Giles’
Oxford OX1 3LB
United Kingdom
e-mail: ball@maths.ox.ac.uk

Alberto Bressan
Department of Mathematics
Penn State University
University Park
State College
PA. 16802, USA
e-mail: bressan@math.psu.edu

Fabrizio Catanese
Mathematisches Institut
Universitatstraße 30
95447 Bayreuth, Germany
e-mail: fabrizio.catanese@uni-bayreuth.de

Carlo Cercignani
Dipartimento di Matematica
Politecnico di Milano
Piazza Leonardo da Vinci 32
20133 Milano, Italy
e-mail: carcer@mate.polimi.it

Corrado De Concini
Dipartimento di Matematica
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Preface

The aim of the current work is to present an autonomous theory of harmonic
functions on infinite networks akin to potential theory on locally compact spaces
as developed primarily by Brelot (without sanctioning any explicit role for the
derivatives of functions defined on the space). Though random walks and electrical
networks are two important sources for the advancement of the present theory,
neither probabilistic methods nor energy integral techniques are used here to prove
the results in an infinite network. The relevance of this study is partly because
in many infinite networks (like homogeneous trees, for example), any real-valued
function defined on the network is a difference of two superharmonic functions.

We consider principally the classification theory of infinite networks based on the
existence of Green functions, bounded harmonic functions etc., and then balayage,
equilibrium principle, domination principle, Schrödinger operators, polyharmonic
functions and the Riesz-Martin compactification of the network. An important
feature is the study of parabolic networks. These are the networks on which no
positive potentials exist or equivalently, these are the networks on which the Green
function cannot be defined. On parabolic networks we investigate the properties
of pseudo-potentials (analogous to logarithmic potentials on the complex plane)
introduced via a development of a notion of flux.

My sincere thanks go to the referees who read the manuscript and made valuable
comments.

Ramanujan Institute for Advanced Study in Mathematics Victor Anandam
University of Madras
March 2011

vii



•



Contents

1 Laplace Operators on Networks and Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Examples of Superharmonic Functions
on Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Green’s Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Minimum Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Infinite Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Potential Theory on Finite Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Incidence Matrix, Kirchhoff’s Problem .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Dirichlet-Poisson Equations in Finite Networks. . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Dirichlet Semi-Norm.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Schrödinger Operators on Finite Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Harmonic Function Theory on Infinite Networks . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Infinite Networks and the Laplace Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 Classification of Infinite Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.1 Harmonic Measure at Infinity of a Section . . . . . . . . . . . . . . . . . . . . 54
3.2.2 Positive Harmonic Functions on a Network .. . . . . . . . . . . . . . . . . . 58
3.2.3 Integral Representation of Positive Harmonic Functions . . . . . 60

3.3 Hyperbolic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 Parabolic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 Flux at Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.6 Pseudo-Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4 Schrödinger Operators and Subordinate Structures
on Infinite Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1 Local Properties of q-Superharmonic Functions . . . . . . . . . . . . . . . . . . . . . . 92
4.2 Classification of q-Harmonic Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3 Subordinate Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

ix



x Contents

5 Polyharmonic Functions on Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.1 Polyharmonic Functions on Infinite Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.2 Polyharmonic Functions with Point Singularity . . . . . . . . . . . . . . . . . . . . . . . 121
5.3 Riesz-Martin Representation for Positive

m-Superharmonic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



Chapter 1
Laplace Operators on Networks and Trees

Abstract This work is an autonomous study of functions on infinite networks
reflecting potential theory on locally compact spaces, influenced by the function
theory associated with random walks and electrical networks. Starting with an
overview of the contents of the five chapters presented here, this chapter introduces
harmonic and superharmonic functions and their basic properties in networks.
A discrete version of the Green’s formula is given and the Minimum Principle
for superharmonic functions is proved. Infinite trees as a special case are seen
to provide examples and motivations for the development of an abstract discrete
function theory on infinite networks.

1.1 Introduction

A graph consists of a finite number of points (called vertices) and a finite number of
lines (called edges) joining some of them. The graph theory studies the inter-relation
between the vertices and the edges (for example, [66]). Now for some problems, the
edges have to be oriented in which case the graph is called a digraph. It would be
easier to represent a digraph by its incidence matrix of order n × m, where m is
the number of edges and n is the number of vertices, with entries −1, 0 or 1. The
interest in graph theory comes from the fact that many real-life situations can be
represented as graphs.

Take for example, the postman problem: The postman collects the post from the
post office and walks through all the streets in his beat, distributing the letters and
finally returns to the post office. His problem is how well to choose a route so that,
if possible, he does not go through any street more than once, yet covers all the
streets. To solve this, we can think of each street corner as a vertex and each street
as an edge, thus getting the model of a graph; the problem now reduces to finding
a path that contains all the edges once and once only. Like this, there are other
problems connected with chemical bonding, bus routes, work assignments etc. In
some situations like bus routes, the distance between two vertices (that is, between
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2 1 Laplace Operators on Networks and Trees

two bus stops) may be important. That is, each edge has a real number associated
with it and then we have weighted graphs. It is interesting to study these geometrical
structures of a graph for their own merit. But it would be more fruitful to represent
a physical problem as a graph theory problem and try to solve it.

Though graph theory generally deals with a finite number of objects and their
inter-connectedness where the geometrical aspects of graphs play a decisive role,
yet there are also problems that involve functions on finite graphs. For example,
consider a finite electrical network. This can be represented as a graph [32] provided
with a voltage-current regime subject to Ohm’s law and Kirchhoff’s voltage and
current laws. Here we are interested not only in the geometrical properties of
a finite graph but also on functions defined on nodes and branches satisfying
certain conditions. In this context, the incidence matrix of the graph takes care
of the geometrical properties of the graph and for the function-theoretic aspects
one introduces the Laplace operator Δ dependent on the incidence matrix and its
transpose which can be considered as operators on functions defined on its edges
and vertices.

There is another development which requires the study of infinite graphs.
Consider finite difference approximations of equations in physics; some of them
lead to partial difference equations [14]. The approximations to find a solution
involve horizontal and vertical displacements and so can be treated as functions
on an infinite grid in the context of electrical networks. Take for example, wave
equations; the domain of existence of the solution may be unbounded, suggesting a
problem in a graph with infinite vertices [73]. Another example of an infinite graph
arises in the study of Markov chains [68]. A Markov chain consists of a countable
number of states provided with a transition probability and the Markov property
which says that given the present, the past and the future are independent.

The study of functions on infinite networks has thus far been carried out on
the background of Markov chains and random walks or on the requirements of
extending results from finite electrical networks to infinite networks. There are
many common features in these two developments. Actually, a close connection
has been established between the concepts like transition probabilities, transience,
recurrence, hitting time etc. used in the probabilistic study of functions on infinite
networks and the concepts like effective resistance, equilibrium principle, capacity
etc. used in a current-voltage regime in electrical networks. The effective resistance
has a close relation to the escape probability for a reversible Markov chain [59, 64]
which is characterized by the transition probability from one state to another.
The similarity between the conductance and the transition probability is obvious.
Consequently, it is not uncommon to see a problem arising in the context of random
walks being solved by electrical methods and conversely. The electrical methods
make use of functional analysis techniques, starting with the Dirichlet norm (the
discrete analogue of the energy integral in the classical case) and its associated
inner-product. Thus, the abstract potential theory on infinite networks, as developed
by Yamasaki [70], Soardi [63] and others, is a study of Dirichlet finite functions
(modeled after Dirichlet functions in the classical potential theory) dealing with
discrete analogues of the solution of Poisson equation, Green’s function, extremal
length, Royden decomposition and Royden compactification.
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The current work presents an autonomous study of functions on infinite networks
influenced by potential theory on locally compact spaces which does not assign
any direct role for the notion of derivatives of functions. Initially, finite networks
provided with the Laplacian operator are taken up for the study, the development
depending on algebraic methods starting with the incidence matrix. We can call this
algebraic potential theory because of the association of the Laplacian (represented
as a matrix) with electric potentials [24]. Later, infinite networks, with the Laplace
operator defined as in the finite case, are taken up for consideration. In this situation,
the development resembles the study of harmonic and subharmonic functions in
the complex plane or more generally in �n, n ≥ 2 [10, 27, 53], and in the Brelot
axiomatic potential theory [17, 28, 40]. Here the Dirichlet norm does not play a
dominant role; nor are the probabilistic interpretations considered. However, in both
the finite and the infinite cases, the important basic properties and significant results
like the equilibrium principle, the condenser principle, the capacity etc. that are
related to an electrical network come as solutions to the following Dirichlet-Poisson
problem on the (finite or infinite) graph X , namely: Let F be a subset of the vertex
set X . Suppose f and g are real-valued functions on X . Then, find u defined on the
vertex set X satisfying the conditions Δu = f at each vertex in F and u = g on
X \ F .

The present work is rather like a discrete version of function theory on Riemann
surfaces [3, 39, 58, 65] and Riemannian manifolds [60], devoid of any attempt to
connect it to any of the many important works on electrical networks and random
walks. We develop a function theory on networks similar to the classical and the
axiomatic potential theory on Euclidean spaces and on locally compact spaces. The
basic definitions of potentials, Green’s kernel, balayage etc. are introduced here as
in the case of the Brelot axiomatic theory rather than as in the theory of probability
([31] for example). Yamasaki [69, 70] also has proved many potential theoretic
results in an infinite network without involving the methods used in the study
of random walks. However his study is based on Dirichlet norms and functional
analysis methods, resembling potential theory on Dirichlet spaces studied by Deny
[41,42], Beurling and Deny [22,23], Fukushima [46], Bouleau and Hirsch [26] and
others. These methods are not convenient if we have to study potential theory on
infinite networks in which the only non-negative potential is 0. Thus a deeper study
of infinite networks without positive potentials as in the case of parabolic Riemann
surfaces becomes cumbersome. Under these circumstances, the approach we have
adopted here is easy to deal with situations in infinite networks that resemble those
of Riemann surfaces that are hyperbolic or parabolic.

Chapter 1 is devoted to some preliminary remarks concerning networks and
trees, the interior and the boundary of subsets in a network, inner and outer normal
derivatives, Green’s formulas, the definition and some properties of superharmonic
functions and the minimum principle.

Chapter 2 brings into focus certain aspects of potential theory on finite networks.
The Laplacian is represented by a matrix and the properties of this matrix lead to
the minimum principle, domination principle, equilibrium principle and solutions to
some mixed boundary-value problems like Poisson-Dirichlet problem and Neumann



4 1 Laplace Operators on Networks and Trees

problem in a finite network. It is easy then to consider in a similar vein the
Schrödinger operators in finite networks. These results in a finite network are
already proved in Bendito et al. [20] by assuming the symmetry of conductance
and then constructing equilibrium measures appropriate to each principle. Ours is a
unified method based on the inverses of certain sub-matrices of the Laplace matrix.

Chapter 3 deals with the classification theory of infinite networks. It starts
with the first broad division of networks into hyperbolic and parabolic networks,
depending on whether it is possible or not to define the Green kernel on the network.
A hyperbolic network is further classified based on the existence of non-constant
positive and bounded harmonic functions on the network. This leads to the Riesz-
Martin representation of positive superharmonic functions on a hyperbolic network.
Later a study of parabolic networks is taken up, starting with the construction of a
kernel like log |x− y| in the plane. The notion of flux at infinity of a superharmonic
function is discussed in detail. Balayage and Dirichlet problem on arbitrary subsets
of a parabolic network receive attention. Then, an introductory study of pseudo-
potentials (similar to logarithmic potentials in the plane) follows.

Chapter 4 is devoted to the potential theory on an infinite networkX associated to
the Schrödinger operator Δu(x) − q(x)u(x), for an arbitrary real-valued function

q(x) and then more specifically when q(x) ≥ Δξ(x)
ξ(x)

for some function ξ > 0

on X. This condition implies that q can take negative values, but ensures that there
exists a positive q-superharmonic function on X. With respect to this operator, the
topics like generalised Dirchlet problem, balayage, condenser principle, equilibrium
principle, etc. are investigated. This example of two related harmonic structures, one
from the Laplace operator and the other from the Schrödinger operator, in the same
infinite network is later generalised to study the relation between a basic harmonic
structure and a subordinate harmonic structure on X .

Chapter 5 takes up the study of polyharmonic functions on an infinite tree T .
A real-valued function s onX is said to be polysuperharmonic of orderm or simply
m-superharmonic (for an integer m ≥ 1) if (−Δ)ms ≥ 0. Actually, to characterize
m-superharmonic and m-harmonic functions, we build up on the solutions u to
the Poisson equation Δu = f for an arbitrary real-valued function f on X. Since
the solutions to this equation are not easily available in an arbitrary network, we
have to confine our study of polyharmonic functions defined on a tree T only.
For polysuperharmonic functions on T , Laurent decomposition,m-harmonic Green
functions, domination principle, balayage etc. are obtained. Finally, the Riesz-
Martin representation for positive m-superharmonic functions is exhibited.

1.2 Preliminaries

Let X be a countable (finite or infinite) set of points, called vertices, some of them
pair-wise joined by edges; we say that the edge [x, y] joins the vertices x and y. Let
Y denote the set of edges which are assumed to be countable. Denote x ∼ y to mean
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that there is an edge [x, y] joining x and y, in which case the vertices x and y are said
to be neighbours. A vertex e is named terimal if it has only one neighbour. A walk
from x to y is a collection of vertices {x = x0, x1, ..., xn = y} where xi ∼ xi+1 if
0 ≤ i ≤ n− 1; for this walk, the length is n. If the vertices in the walk are distinct,
the walk is referred to as a path. The shortest length d(x, y) between x and y is called
the distance between x and y. We also assume that given any two vertices x and y,
there exists an associated non-negative number, called conductance, t(x, y) ≥ 0
such that t(x, y) > 0 if and only if x ∼ y. Then N = {X,Y, t} is called a network
if the following conditions are also satisfied:

1. There is no self-loop in N , that is no edge of the form [x, x] in Y.
2. Given any vertices x and y in X, there is a path connecting x and y. (That is, X

is connected.)
3. Every x ∈ X has only a finite number of neighbours. (That is, X is locally

finite.)

Instead of writing N = {X,Y, t}, we simply write X to refer to a network. If
t(x, y) = t(y, x) for every pair of vertices x and y, then we say that X is a network
with symmetric conductance. A network X is called a tree if there is no cycle in X,
that is there is no closed path {x1, x2, ..., xn, x1} with n ≥ 3. An infinite tree T is
said to be homogeneous of degree q+ 1, if each vertex in T has (q+ 1) neighbours.
A tree T is said to be a standard homogenous tree of degree q + 1 if every vertex
in T has exactly (q + 1) neighbours and t(x, y) = (q + 1)−1 if x ∼ y. If a tree
T is considered in the context of probability, we denote the conductance as p(x, y)
instead of t(x, y), so that

∑

y∼x
p(x, y) = 1 for any x ∈ T. We refer to p(x, y) as the

transition probability from x to y. It is important to note that in a tree T , if x and y
are any two vertices, then there exists a unique path joining x and y.

For any subset E of a networkX, we write
0

E = {x : x and all its neighbours are

inE} and ∂E = E \ 0

E .
0

E is referred to as the interior ofE and ∂E is referred to as
the boundary of E. This definition of boundary differs from the one used by Chung
and Yau [35] and Bendito et al. [18]. According to them, y /∈ E is a boundary point
of E if and only if there exists a vertex x in E such that x ∼ y and the collection
of these boundary points is the boundary δE of E. However, the definition of the
boundary ∂E given here is preferable in the case of infinite networks, since for many
boundary-value problems like the Dirichlet problem the boundary function will be
defined on E only. So it is convenient to define the boundary ∂E as a subset of E
rather than as a subset lying outsideE.Note that for a non-empty subsetE,we have

E =
0

E if and only if E = X. An arbitrary set E in X is said to be circled if every

vertex in ∂E has at least one neighbour in
0

E. That is, E is circled if and only if

E =
0

E ∪δ
◦
E, if we use the notation of Bendito et al. [20].

Example: Let e be a fixed vertex. For any vertex x, let |x| denote the distance
between e and x. Then Bm = {x : |x| ≤ m} is circled. For an example of a non-
circled set, we can consider in a homogeneous tree of degree q + 1, q ≥ 2, the set


