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NON-LINEAR FAR-FIELD THEORIES IN RELAXING GAS FLO\VS 

by 

P.A. Blythe 

(Lehigh - University ) 

Summary 

In the introduction the small amplitude non-linear 

far-field theory for one-dimensional isentropic wave propagation 

is briefly reviewed. The extension to non-equilibrium 

situations is then discussed for both high frequency and 

low frequency disturbances and the limitations of these 

classical theories are examined. It is shown that a suitable 

small-energy approach can be used both to remove these 

limitations and to provide a simplified description over 

the whole frequency range. 
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1. Introduction: isentropic far-field theory 

The purpose of this lecture is to present a unified 

non-linear far-field theory* for relaxing or reacting gas 

flows. Attention will be restricted to small amplitude 

one-dimensional progressing waves and, for simplicity, 

only rate processes which involve a single internal mode 

or reaction will be considered. 

The corresponding far-field signalling problem in 

an inviscid gas which is in thermodynamic equilibrium has 

been well understood for some time. (Whitham 1950, Lighthill 

1955). It is bseful first to briefly review this problem 

before discussing the non-equilibrium situations which are 

of interest here. 

In general the mass-conservation, momentum and energy 

equations take the form (adiabatic flow) 

where p is the density, p is the pressure, u is the particle 

speed, e is the internal energy and a t  is the convective 

operator 

* 
i.e., the theory must be capable of providing a 

valid result for 'large' time. 
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Here t is the time and x is a spatial co-ordinate measured 

from some fixed reference point. 

In thermodynamic equilibrium e=e(p ,p) and (1.3) 

can be re-written 

where 

and the entropy s is defined, in equilibrium, by 

eds = de+pd (p' l)  . (1 7) 

where 0 is the translational temperature. 
It is sometimes convenient to replace the system 

(1.1) to (1.3) by (1.5) and the characteristic forms 

a+p+paa+u = 0 - - 
where the operators 

are associated with the characteristic directions 

It is assumed that the disturbance is set up by the 

motion of a piston whose path is described by 

(with the origin chosen such that f(O)=O) and for t<O - 
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(1.12) 

I f ,  i n  a d d i t i o n ,  

though f"(0)  i s  f i n i t e ,  t h e  d i s t u r b a n c e  i s  u s u a l l y  termed an 

a c c e l e r a t i o n  wave. Unless e x p l i c i t l y  s t a t e d  o the rwise  t h e s e  

cond i t ions  on f  w i l l  be assumed t o  hold  i n  t h e  subsequent 

a n a l y s i s .  

Appropr i a t e  non-dimensional  v a r i a b l e s  a r e  

t t  = u t  and X I  = x u k .  

The r e l a t i o n s  (1.1) t o  (1.10) a r e  i n v a r i a n t  under t h i s  

t r ans fo rma t ion  and it is convenient  t o  omit  t h e  primes and 

t o  regard  (1.1) through (1.10) a s  d imensionless .  Corresponding 

boundary c o n d i t i o n s  , again  omi t t i ng  pr imes ,  a r e  

and 

The d imensionless  ampl i tude  parameter 6 ,  which i s  a measure 

of t h e  r a t i o  of t h e  p i s t o n  speed t o  t h e  ambient  sound speed,  

i s  g iven by 
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6 = wx Jp /po 
P 0 

(1.17) 

and t h e  p a r t i c u l a r  aim of t h e  p r e s e n t  d i s c u s s i o n  i s  t o  

o b t a i n  s o l u t i o n s  which a r e  v a l i d  i n  t h e  limit 6+0. 

S u b s t i t u t i o n  of t h e  r e g u l a r  expansion 

e t c .  i n t o  (1.1) t o  (1 .3)  shows t h a t  t h e  f i r s t  o r d e r  p e r t u r b a t i o n  

q u a n t i t i e s  s a t i s f y  t h e  l i n e a r  wave equat ion 

and,  i n  p a r t i c u l a r ,  t h a t  t h e  p i s t o n  cond i t ion  on ul i s  ( see  1.16) 

Hence t h e  a p p r o p r i a t e  s o l u t i o n ,  ( = t - x / a  > O ,  is  
0 

In  a d d i t i o n  2 
p1 = aoPl = a  u  

0 1' 
(1.22) 

However, e v a l u a t i o n  of t h e  second o rde r  approximation shows 

t h a t  t h e  s o l u t i o n  con ta ins  s e c u l a r  terms of t h e  form t g ( 6 ) .  

I t  i s  apparent  t h a t  t h e  expansion (1.18) i s  n o t  uniformly 

v a l i d  a s  t- and t h a t  d i f f i c u l t i e s  a r i s e ,  f o r  5 = 0 ( 1 ) ,  when 

6 t = 0 ( 1 ) .  
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These s e c u l a r  terms a r e ,  i n  f a c t ,  due t o  the  displacement 

of the  exact  c h a r a c t e r i s t i c s  from t h e i r  p o s i t i o n  as  predic ted 

by l i n e a r i z e d  theory (Whitham, 1950). This i s  e a s i l y  seen 

f o r  a c c e l e r a t i o n  waves s i n c e  t h e  exact  s o l u t i o n  of the  f u l l  

equat ions ,  over a  c e r t a i n  time i n t e r v a l ,  i s  a  simple wave. 

In t h e  present  case  i t  i s  more u s e f u l ,  wi th  a  view t o  l a t e r  

a p p l i c a t i o n ,  t o  cons t ruc t  t h e  s o l u t i o n  i n  t h e  small  amplitude 

l i m i t  by means of t h e  f a r  f i e l d  expansions ,  

where 

S u b s t i t u t i o n  i n  (1.8) and (1.5) shows t h a t ,  a s  i n  l i n e a r i z e d  

theory ,  

but  U1 now s a t i s f i e s  

where 

and t h e  s u f f i x  o  denotes eva lua t ion  a t  the  i n i t i a l  cond i t ions .  
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The appropriate solutionof (1.26), subject to the 

matching condition 

where the characteristic lines #=constant are given by 

(choosing $15 on q=O). Obviously (1.29) and (1.30) are the 

small amplitude limit of the exact simple wave solution. 

If this solution is unique in x-t space then it does 

represent a uniformly valid result for all TI. However, in 
general the solution will not be single valued where 

Since, for a gas, b>O equation (1.31) is satisfied for 

some s>0 if f">O. It is then necessary to insert a 

discontinuity or shock in order to make the solution unique. 

The jump conditions across the shock are defined by the 

Rankine-Hugoniot relations for the conservation of mass, 

momentum and energy. 

It is convenient to note here the form that these 

relations take for weak shocks. Correct to first order 
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in 6 it follows that 

and the shock path bisects the characteristics that meet 

on the shock. This latter condition, in the current 

notation, becomes 

where the superscripts -,+ correspond to conditions ahead 

of and behind the shock respectively. 

These relations can be used to evaluate the shock 

path and they become particularly simple when the shock 

propagates into an undisturbed region for which u;=o. 

In that case it follows from (1.33) that if 5=5,(4I,,n) 

on the shock,then Ss satisfies the differential equation 

from which, together with (1.30), the solution is easily 

found. This solution is defined parametrically by 

The relations (1.29) , (1.30) and (1.35) summarize the main 

results in the small amplitude non-linear far-field limit 

for equilibrium isentropic flows. 
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2. Relaxation processes 

In general the excitation of any of the internal 

degrees of freedom, e.g. vibration, molecular dissociation 

etc., will take a certain finite time (number of collisions) 

in which the mode adjusts to some new equilibrium state, 

although the excitation (relaxation) times for the various 

modes may differ considerably from each other. In fact, 

it is known that the time scales for the adjustment of the 

translational and rotational degrees of freedom are usually 

much less than those for the other internal modes (Herzfeld 

Litovitz, 1959) and it will be implicitly assumed 

in the subsequent analysis that the translational and 

rotational degrees of freedom remain in a local equilibrium 

state. 

It is further assumed that in any situation of 

interest only one rate dependent process will be of significance. 

Hence 

where a is some relaxation variable. For convenience a can 

be identified as a measure of the internal energy in the 

lagging mode. For Sibrational excitation in a pure diatomic 

gas e(p,p,o) depends linearly on a ,  but in more complex 

situations this is not necessarily true. 

It is supposed that the rate of adjustment of a is 

described by an equation of the form 
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where the rate function F depends only on the local values of 

p,p and a and perhaps some initial parameters. The dimensionless 

rate parameter A is the ratio of the time scale defined by 

the piston to some characteristic relaxation time T ,  i.e. 

[Equation (2.2) is to be regarded as dimensionless with u and 

F both normalized by 

In an equilibrium state, which is identified by the 

singular limit A+=, F-0. The corresponding equilibrium path 

is denoted by 

In this limit the problem reduces to the isentropic case 

discussed earlier. 

A second isentropic limit is defined by A = O .  For this 

case the internal energy a remains frozen at its initial 

value. Obviously this limit is also included in the analysis 

of 5 1 .  

There is,however, an important distinction that must 

be drawn between the two limits. In the former equilibrium 

case the appropriate sound speed is defined by 

where ;=e(p,p,a), whereas in the latter frozen case 



with e = e(p,p,o). It can be shown that in general 

For the general non-equilibrium situation the relation 

(2.1) implies that (1.5) becomes 

where a is the frozen sound speed, 

and (2.2) has been used to replace a,a. Moreover, the 

characteristic relations (1.8) become 

and the chaiacteristic operators are defined by (1.9) 

with a interpreted as the frozen sound speed. The influence 

of the rate process on the energy equation and the characteristic 

relations introduces a source term, -cAF, which depends on 

the local values of p,p and a. 

The linearized signalling problem associated with 

this system of equations has been considered several times 

in the literature (Chu, 1957). The regular expansion 



y i e l d s  

where 

i s  a  modified r a t e  parameter .  (1.20) aga in  d e f i n e s  t h e  

boundary c o n d i t i o n  on x=O [Note t h a t  i t  i s  assumed i n  (2.11) 

t h a t  t h e  i n i t i a l  cond i t ions  correspond t o  an equ i l ib r ium 

s t a t e .  ] 

(2.13 obvious ly  reduces  t o  t h e  s t a n d a r d  l i n e a r i z e d  

r e s u l t  i n  both t h e  f rozen  ' (h igh  frequency) limit X + O  and 

t h e  equ i l ib r ium (low f requency)  limit A+m. For a r b i t r a r y  

va lues  of A (2.12) sugges t s  t h a t  f o r  t A < < l  t h e  e f f e c t i v e  

propagat ion  speed i s  a  but  f o r  tA>>l it i s  ao. This  
0 '  

l a t t e r  s t a t emen t  can be made more p r e c i s e .  The formal 

s o l u t i o n  of (2 .12 ) '  s u b j e c t  t o  (1.20) and (1 .15 ) ,  can be 

ob ta ined  by Laplace t ransforms.  An asymptot ic  e v a l u a t i o n ,  

t,x+m but  s u f f i c i e n t l y  f a r  behind t h e  f r o n t ,  shows t h a t  (C la rke ,  

J 0 

where 
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- 
5 = t - ~ / a ,  (2.17) 

i s  t h e  1 inear ized .charac ter i s t ic  a s s o c i a t e d  wi th  the  low 

f requency ( equ i l ib r ium)  s i g n a l .  The main d i s tu rbance  i s  

now appa ren t ly  cen te red  on t h e s e  l a t t e r  wavele ts .  

I t  i s  e a s i l y  v e r i f i e d  t h a t  according t o  (2.12) any 

p l ane  wave i s  d i s t o r t e d  both by d i s p e r s i o n , s o  t h a t  t he  

wave speed depends on t h e  f r equency ,  and by 

a b s o r p t i o n  i n  which t h e  ampl i tudes  of t he  h igh frequency 

components a r e  much more r a p i d l y  a t t e n u a t e d  than those  of 

t h e  low f requency ones.  

However, a s  i n  t h e  i s e n t r o p i c  case ,  i t  can be shown 

t h a t  t h e  r e g u l a r  expansion (2.11) i s  no t  n e c e s s a r i l y  

uni formly v a l i d  i n  t h e  f a r  f i e l d , a n d  s e c u l a r  terms may 

aga in  appear i n  h ighe r  o rde r  s o l u t i o n s .  

The remainder of t h e  l e c t u r e  w i l l  be devoted t o  

a d i s c u s s i o n  of t h e  mod i f i ca t ions  t h a t  a r e  r e q u i r e d  i n  

o r d e r  t o  o b t a i n  a  v a l i d  f a r - f i e l d  r e s u l t .  

3 .  The high f requency limit 

A simple ex tens ion  of t h e  c l a s s i c a l  i s e n t r o p i c  f a r -  

f i e l d  approach can be used i n  t h e  h igh-f requency (near-  

f r o z e n )  limit h+0 ( see  Varley and Rogers, 1967).  For 

e a s e  of d i s c u s s i o n  i t  w i l l  be assumed t h a t  A and 6 a r e  of 

a  s i m i l a r  magnitude.  The corresponding expansion i s  
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e t c .  Note t h a t  a-To is a  second o rde r  q u a n t i t y  (more 

s t r i c t l y  i t s  magnitude is O(A6)). This  expansion procedure 

would appear t o  be appropr ia t e  f o r  l a r g e  t imes a t  d i s t a n c e s  

behind t h e  f r o n t  which a r e  comparable wi th  t h e  l eng th  

s c a l e  def ined by t h e  p i s t o n  s i g n a l  b u t  which a r e  much 

l e s s  than t h e  r e l a x a t i o n  l eng th .  S u b s t i t u t i o n  i n  (2 .10) ,  

(2.8) and (2.2) shows t h a t  

where 

and b  corresponds t o  (1.27) w i t h  t h e  d e r i v a t i v e  evaluated 

both a t  c o n s t a n t  S and a .  

The f i r s t  o r d e r  p e r t u r b a t i o n  q u a n t i t i e s  a r e  aga in  

r e l a t e d ,  a s  i n  f rozen  l i n e a r i z e d  theory,  by 

Equations ( 3 . 4 )  and (3.2) ahould be compared wi th  (1.25) 

and (1.26) r e s p e c t i v e l y .  The a t t e n u a t i o n  f a c t o r  kU1 

p lays  a  dominant r o l e  i n  t h e  asymptotic behavior of 

(3.2) a s  n+=. 

The i n n e r  n e a r - f i e l d  s o l u t i o n  f o r  A=0(6), wi th  

x , t  = 0 ( 1 ) ,  i s  given by t h e  u s u a l  f rozen  l i n e a r i z e d  r e s u l t  

which d e f i n e s  t h e  inner  matching cond i t ion  f o r  U1. 
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Subject to (3.5) and the condition at the front, the solution 

of (3.2) is defined by 

with 

f~(~[l-e-~"]. (3 7) 

Again this solution is not single valued in physical 

space at points ,where 

However, in contrast to the isentropic solution shocks 

will not form even for compressive piston motions if 

(Varley and Rogers 1967, Rarity 1967) . 
If a shock does form its path can be determined, in 

principle, by the approach outlined in 51. Conditions 

(1.32) and (1.33) again hold for a weak shock, with a 

interpreted as the frozen sound speed, together with the 

additional statement 

[u] = 0 (3.10) 

In writing down (3.10) it is implicitly assumed that the 

shock thickness, across which the translational mode 
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a d j u s t s  t o  a  new equi l ibr ium s t a t e ,  i s  n e g l i b i b l y  t h i n  i n  

comparison w i t h  t h e  r e l a x a t i o n  l e n g t h  aoT. 

For a  shock propagating i n t o  an undis turbed region 

i t  can be shown t h a t  i t s  p a t h  is desc r ibed  by 

Although (3.11) reduces t o  (1.35) a s  k+O, it fol lows from 

(3.6) and (3.11) t h a t  f o r  any f i n i t e  k  t h e  amplitude of 

t h e  shock is exponen t i a l ly  weak a s  n+=, even f o r  p i s t o n s  

whose speed i s  asympto t i ca l ly  cons tan t .  

Moreover, it is  apparen t ,bo th  from p h y s i c a l  reasoning 

and by d i r e c t l y  computing h igher  o rde r  terms i n  ( 3 . l ) , t h a t  

t h i s  high frequency expansion w i l l  break down a s  S-, 

or,more p r e c i s e l y , a t  d i s t a n c e s  behind t h e  f r o n t  which a r e  

comparable w i t h  t h e  r e l a x a t i o n  l eng th .  I t  i s  e a s i l y  shown 

t h a t  f o r  5 = 0 ( 6 - ~ ) ,  n=0(1) t h e  dominant behavior  is desc r ibed  

by t h e  l i n e a r  equat ion (2.12) (Blythe ,  1969) though t h i s  

r e s u l t  does n o t  n e c e s s a r i l y  i n  i t s e l f  g i v e  a  uniformly 

v a l i d  d e s c r i p t i o n  of t h e  l i m i t i n g  asymptotic behavior.  Before 

d i scuss ing  f u r t h e r  t h i s  p a r t i c u l a r  d i f f i c u l t y  f o r  high 

frequency d i s t u r b a n c e s ,  it  i s  r e l e v a n t  t o  r e t u r n  t o  the  

asymptotic d e s c r i p t i o n  f o r  A=0(1). 
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4. The low frequency f a r - f i e l d  limit, A=0(1). 

The dominant asymptotic s i g n a l  according t o  l i n e a r  

( n e a r - f i e l d )  theory  i s  de f ined  by (2.14).  I f  u=O(A(6)) 

i n  t h i s  region it appears  t h a t  t h e  only n o n - t r i v i a l  

s t r e t c h i n g  of t h e  independent v a r i a b l e s  is 

t o g e t h e r  wi th  

This l a s t  r e l a t i o n ,  which fol lows d i r e c t l y  from t h e  r a t e  

equa t ion  , impl ies  t h a t  t h e  d e p a r t u r e  from an equi l ibr ium 

s t a t e  i s  smal l .  In  t h i s  sense  t h e  expansion (4.1) and ( 4 . 2 )  

d e f i n e s  a  low frequency f a r - f i e l d  l i m i t .  The magnitude of 

A(6) is  def ined i m p l i c i t l y  by (2.14) (see  below). 

Before s u b s t i t u t i n g  t h e s e  expansions i n t o  (2.5) , 
(2.10) and (2.2) it i s  b e t t e r  t o  r ep lace  a by E a s  a  b a s i c  

dependent v a r i a b l e .  

I t  can be shown t h a t  V1 s a t i s f i e s  

where 
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(4.3) is  Burger 's  equa t ion .  I t  has been suggested many 

t imes t h a t  t h i s  provides  a s a t i s f a c t o r y  asymptotic d e s c r i p t i o n  

of t h e  flow f i e l d  ( L i g h t h i l l  1956, Jones 1964, Lick 1967). 

This  equat ion can be transformed i n t o  t h e  d i f f u s i o n  equat ion 

and it is  e a s i l y  v e r i f i e d  t h a t  i t s  s o l u t i o n  w i l l  match wi th  

t h e  ou te r  behavior  of (2.12) g iven i n  (2.14).  

In  d e r i v i n g  (4.3) it has  been assumed t h a t  V1 = 0 (1) : 

t h e  magnitude of A(6), a s  noted above, i s  de f ined ,  by (2.14). 

However, it appears  t h a t  t h i s  s t r e t c h i n g  i s  no t  pe rmiss ib le  

f o r  a l l  p i s t o n  motions. I n  f ac t ,  i f  t f  ( t )+Oas t+-, V1=O(6) 

and t h e  non- l inea r  term i n  (4.3) i s  n e g l i g i b l e  i n  t h i s  

p a r t i c u l a r  f a r  f i e l d  region.  For p i s t o n  pa ths  whose decay 

is  slower,  e.g. 

I n  t h e  high frequency l i m i t  d i scussed  i n  53 i t  is  

apparent  t h a t  t h e  s o l u t i o n  i n  t h e  in te rmedia te  l i n e a r i z e d  

regime, where x t = 0 ( 6 - l ) ,  w i l l  break down i n  t h e  same way. 

Appropriate f a r  f i e l d  (low-frequency) v a r i a b l e s  a r e  then 

However, t h i s  ~ s y m p t o t i c  s o l u t i o n  i s  always shock 

f r e e .  (Even i f  any shock forms a t  the  f r o n t  i t s  s t r e n g t h  

w i l l  become exponen t i a l ly  weak f o r  a l l  bounded p i s t o n  speeds . )  

In  p a r t i c u l a r ,  when t h e  p i s t o n  speed a t t a i n s  a cons tan t  

l i m i t i n g  va lue  t h e  a s s o c i a t e d  s t eady  s t a t e  p r o f i l e  i s  f u l l y -  
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dispersed: all convective steepening can be balanced 

solely by the dissipative nature of the rate process. Yet, 

it is well known that stable steady partly dispersed wave 

forms, in which the relaxation region is preceeded by a 

Rankine-Hugoniot shock, do exist and it is informative to 

discuss this limitation in these asymptotic solutions. 

Throughout the analysis so far it has been assumed 

that the energy u is of a similar magnitude to the total 

internal energy e, or equivalently that 

This latter restriction, for steady state waves, always 

implies that IJW-Zo = o(l), where Uw is the wave speed, 

but for partly dispersed waves to exist 

This latter condition cannot hold for small amplitude 

waves (6+0) if (4.6) is satisfied. 

5. The small energy limit 

Situations in which both a-1 and u are "small" 

are obviously of some interest. In this limit it is 

possible to obtain a simplified description of the far 

field in which both fully-dispersed and partly-dispersed 

wave-profiles can be discussed in a unified manner. 

For ease of discussion, the magnitude parameter 6 

will also be used as a characteristic measure of a .  
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This statement should not be taken to imply any relation 

between the internal energy and the piston speed. If 

necessary a second parameter 61, with 0=0(6~), can be 

introduced and the subsequent analysis will hold provided 

terms 0(6,61) etc. are retained. 

The appropriate far-field expansion is again of 

the type outlined in 52,with a slight modification in the 

energy term. 5 and n are used as independent variables and 

Note that 

Substitution in (2.2), (2.8) and (2.10) gives 

which are the usual linearized relations but,U and e now 
1 1 

satisfy 

- ael = 2 2 kUl-Xel 
Here a 6 (5.5) 

Co 

is to be regarded as O(1). 
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In t h i s  f i r s t  o rde r  approximation t h e  r a t e  equat ion  

(5 .5)  i s  l i n e a r ,  though i t  now c o n t a i n s  both  ' forward '  and 

'backward' terms.  The only  n o n - l i n e a r  convec t ive  term 

occur s  i n  (5 .4 ) .  

In t h e  nea r - f rozen  l i m i t  A+O (h,k+O) equa t ion  (5.4) 

reduces  t o  t h e  expected  r e s u l t  (1.26), and i t e r a t i o n  

us ing  (5.5: g i v e s  t h e  Varley-Rogers limit (3 .2 ) .  In  the 

low frequency o r  nea r -equ i l ib r ium l i m i t ,  A+=(X,k+=), 

equa t ions  (5.4) and (5.5) g i v e  

S ince  

t h i s  l a s t  r e s u l t  reduces  t o  

n e g l e c t i n g  terms O(6). (5.6) i s  t h e  c l a s s i c a l  equ i l ib r ium 

r e s u l t  a l s o  de f ined  by (1.26).  By inc lud ing  terms 0 (A-,) 

it can be shown t h a t  U1 s a t i s f i e s  Burger 's  equa t ion  (4.3) 

when only  t h e  dominant terms w i t h  r e s p e c t  t o  6 a r e  r e t a i n e d .  

Under t h e  t r ans fo rma t ion  

(5 .4)  and (5.5) reduce  t o  
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and are free of parameters. The piston condition on Y=O becomes 

Although for geometrically similar paths the solutions will 

in general be similar only for fixed values of the parameters 

1 and kao/b, a considerable simplification occurs in one 

particular case. For a centered expansion wave the condition 

at the origin is 

which re-expressed in far field variables gives 

The differential equations (5.8) and (5.9), the front 

condition and the initial condition (5.11) are now independent 

of all parameters. This similarity form has been discussed 

in Blythe (1969) where a numerical solution, using a 

characteristics method, was presented 

It is sometimes convenient to eliminate E from (5.8) 

and (5.9) . The resulting second order equation is 

The structure of this equation should be compared with that 

of the classical linearized result (2.12). Here the linear 
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operators of (2.12), associated with the high and low 

frequency sound speeds respectively,are replaced by 

corresponding non-linear convective operators. The linearized 

form of (5.12) , 

is the telegraph equation. Moore and Gibson (1960) 

deduced (5.13) from the usual linearized form (2.12) in 

the limit a-l<<l. In Moore and Gibson's derivation t=o((a-1)'l) 

but. it is apparent that in order for this equation to be 

applicable in this domain 

The simplest solutions of (5.8) and (5.9) are those 

of steady state form 

where the wave speed associated with C, in (x,t) space, is 

Solutions of this form correspond to the asymptotic state 

due to a compressive piston moving at constant speed. 

The differential equations satisfied by w and E are 



whose non-trivial solution is defined by 

Since wt=w=O at upstream infinity apparently 

However, solutions of (5.17) are unique only if 

C<O 

with the piston speed given by 

((5.17) cannot be used to study expansion waves with w3<0. 

It is easily shown that the overall entropy change would 

be negative for this case). 

Note from (5.15), that the restrictions (5.19) and 

(5.20) imply 
ao>uV>a o 

which is the usual condition for a fully-dispersed wave 

(Lighthill, 1956). 

If 0 0 ,  (5.17), with K=O, does not represent a single 

valued solution. For compression waves a Rankine-Hugoniot 

shock must be inserted at the front. From the weak shock 

relations it follows that 

immediately behind the shock. Hence from (5.17), with E=O, 
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i t  aga in  fol lows t h a t  K = O .  

Apart  from an a r b i t r a r y  cons tan t ,  (5.17) i n t e g r a t e s  

t o  g i v e  

For centered expansion waves it i s  expected t h a t  

t h e  asymptotic d i s tu rbance  w i l l  be t h e  equ i l ib r ium s o l u t i o n  

I t  i s  e a s i l y  v e r i f i e d ,  neg lec t ing  terms 0 ( 6 ) ,  t h a t  (5.24) 

i s  an exac t  s o l u t i o n  of t h e  f u l l  equat ion (5.12). 

Although o t h e r  exac t  a n a l y t i c a l  s o l u t i o n s  of (5.4) 

and (5.5) a r e  no t  r e a d i l y  found, it i s  apparent  t h a t  these  

equa t ions  do provide  a  uniform smal l  amplitude f a r - f i e l d  

l i m i t  wi th  r e s p e c t  t o  t h e  r a t e  parameter A .  In  a d d i t i o n ,  

they  w i l l  desc r ibe  t h e  s t r u c t u r e  of both p a r t l y - d i s p e r s e d  

and f u l l y - d i s p e r s e d  wave forms. Some f u r t h e r  d i scuss ion  

of t h e  p r o p e r t i e s  of these  equa t ions  can be found i n  Blythe 

(1969) (see  a l s o  Spence E Ockendon 1969).  


