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NON-LINEAR FAR-FIELD THEORIES IN RELAXING GAS FLOWS
by
P.A. Blythe

(Lehigh - University )

Summary

In the introduction the small amplitude non-linear
far-field theory for one-dimensional isentropic wave propagation
is briefly reviewed. The extension to non-equilibrium
situations is then discussed for both high frequency and
low frequency disturbances and the limitations of these
classical theories are examined. It is shown that a suitable
small-energy approach can be used both to remove these
limitations and to provide a simplified description over

the whole frequency range.
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1. Introduction: isentropic far-field theory

The purpose of this lecture is to present a unified
non-linear far-field theory* for relaxing or reacting gas
flows. Attention will be restricted to small amplitude
one-dimensional progressing waves and, for simplicity,
only rate processes which involve a single internal mode
or reaction will be considered.

The corresponding far-field signalling problem in
an inviscid gas which is in thermodynamic equilibrium has
been well understood for some time. (Whitham 1950, Lighthill
1955). It is useful first to briefly review this problem
before discussing the non-equilibrium situations which are
of interest here.

In general the mass-conservation, momentum and energy

equations take the form (adiabatic flow)

atp+pux =0 (1.1)
a.usp™lp = 0 (1.2)
t X
3,e+pd, (p™1) = 0 (1.3)
t t

where p is the density, p is the pressure, u is the particle
speed, e is the internal energy and 9, is the convective

operator
(1.4)

)l
|

9
5t Y

®
i.e., the theory must be capable of providing a

valid result for 'large' time.
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Here t is the time and x is a spatial co-ordinate measured
from some fixed reference point.
In thermodynamic equilibrium e=e(p,p) and (1.3)

can be re-written

2 -
3tp-a atp =0 (1.5)
where
2, m) c (pp~2e )t
a (aps (pe ep)ep (1.6)

and the entropy s is defined, in equilibrium, by

H. (1.7)

where 6 is the translational temperature.
It is sometimes convenient to replace the system

6ds = de+pd(p”

(1.1) to (1.3) by (1.5) and the characteristic forms

3+pipaaty =0 (1.8)
where the operators
), = 72+ (ura)ge (1.9)
are associated with the characteristic directions
- (1.10)

It is assumed that the disturbance is set up by the

motion of a piston whose path is described by
X = xpf(wt), t>0 (1.11)

(with the origin chosen such that £(0)=0) and for t<0
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u=0, p=p, p=0p,. (1.12)
If, in addition,
£1(0) =0, (1.13)

though £"(0) is finite, the disturbance is usually termed an
acceleration wave. Unless explicitly stated otherwise these
conditions on f will be assumed to hold in the subsequent
analysis.

Appropriate non-dimensional variables are

ep
P' =p/p,, p' =0/p,, €' =

ofeeoff

t' = wt and x' =

_o

5; .
The relations (1.1) to (1.10) are invariant under this
transformation and it is convenient to omit the primes and

to regard (1.1) through (1.10) as dimensionless. Corresponding

boundary conditions , again omitting primes, are
u=0, p=op=1, t<0, (1.15)
and

u = 6f'(t) on x = xpf(t), t>0. (1.16)

The dimensionless amplitude parameter ¢, which is a measure
of the ratio of the piston speed to the ambient sound speed,

is given by
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§ = wxp/po/p0 (1.17)

and the particular aim of the present discussion is to
obtain solutions which are valid in the limit §6-+0.

Substitution of the regular expansion

u(x,t;s8) = Gul(x,t)+..
(1.18)
p(x,t;8) = 1+dp, (x,t)+..

etc, into (1.1) to (1.3) shows that the first order perturbation

quantities satisfy the linear wave equation
2 =
— "3 —5* 0. (1.19)

and, in particular, that the piston cendition on u, is (see 1.16)

1

u (0,8) = £1(8) . (1.20)

Hence the appropriate solution, £=t-x/a°>0, is

u = £, (1.21)

In addition 5

p, = asp; = au. (1.22)
However, evaluation of the second order approximation shows
that the solution contains secular terms of the form tg(£).
It is apparent that the expansion (1.18) is not uniformly
valid as t+» and that difficulties arise, for §£=0(1), when

6t=0(1).
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These secular terms are, in fact, due to the displacement

of the exact characteristics from their position as predicted
by linearized theory (Whitham, 1950). This is easily seen
for acceleration waves since the exact solution of the full
equations, over a certain time interval, is a simple wave.

In the present case it is more useful, with a view to later
application, to construct the solution in the small amplitude

limit by means of the far field expansions,
u(x,t;8) = 68U, (g,n)+.., l
P(X,t;6) = 1+6P (§,n)+.., J‘ (1.23)

p(x,ti8) = 1+6R_(E,m)+..,

where
n = §t . (1.24)

Substitution in (1.8) and (1.5) shows that, as in linearized

theory,
P, = a%R, = a U (1.25)

but Ul now satisfies

au ol

1 b 1 _
W a U g =0, (1.26)
where
_ 1.9
b = [E{s-a pa} S]O (1.27)

and the suffix o denotes evaluation at the initial conditions.
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The appropriate solutionof (1.26), subject to the

matching condition
U (E,0) = £'(8), (1.28)
is
U, = £(¢) (1.29)
where the characteristic lines ¢=constant are given by
- b .
=0 -0 £'(o)n (1.30)
0
(choosing ¢=£ on n=0). Obviously (1.29) and (1.30) are the
small amplitude limit of the exact simple wave solution.
If this solution is unique in x-t space then it does

represent a uniformly valid result for all n. However, in

general the solution will not be single valued where

or
n = ao/bf"(¢). (1.31)

Since, for a gas, b>0 equation (1.31) is satisfied for
some n>0 if f'">0. It is then necessary to insert a
discontinuity or shock in order to make the solution unique.
The jump conditions across the shock are defined by the
Rankine-Hugoniot relations for the conservation of mass,
momentum and energy.

It is convenient to note here the form that these

relations take for weak shocks. Correct to first order
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in 8 it follows that

[p) = a2(pf = a[u] (1.32)

and the shock path bisects the characteristics that meet
on the shock. This latter condition, in the current

notation, becomes

_ b + -
Us = ao+§6[Ul+Ul] (1.33)

where the superscripts -,+ correspond to conditions ahead
of and behind the shock respectively.

These relations can be used to evaluate the shock
path and they become particularly simple when the shock
propagates into an undisturbed region for which U1=0.

In that case it follows from (1.33) that if £=€S(¢s,n)
on the shock,then ES satisfies the differential equation
dg
S 1b
& " za L) (1.34)
0
from which, together with (1.30), the solution is easily

found. This solution is defined parametrically by

3 2
n = g2 £(0)/£12(0)
(1.35)
£ = ¢-2£(¢)/f"'(¢)

The relations (1.29), (1.30) and (1.35) summarize the main
results in the small amplitude non-linear far-field limit

for equilibrium isentropic flows.
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2. Relaxation processes

In general the excitation of any of the internal
degrees of freedom, e.g. vibration, molecular dissociation
etc., will take a certain finite time (number of collisions)
in which the mode adjusts to some new equilibrium state,
although the excitation (relaxation) times for the various
modes may differ considerably from each other. In fact,
it is known that the time scales for the adjustment of the
translational and rotational degrees of freedom are usually
much less than those for the other internal modes (Herzfeld
Litovitz, 1959) and it will be implicitly assumed
in the subsequent analysis that the translational and
rotational degrees of freedom remain in a local equilibrium
state.

It is further assumed that in any situation of
interest only one rate dependent process will be of significance.

Hence
e =e(p,p,0) (2.1)

where o is some relaxation variable. For convenience ¢ can
be identified as a measure of the internal energy in the
lagging mode. For vibrational excitation in a pure diatomic
gas e(p,p,0) depends linearly on ¢, but in more complex
situations this is not necessarily true.

It is supposed that the rate of adjustment of ¢ is

described by an equation of the form
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9.0 = AF(p,p,0) (2.2)

where the rate function F depends only on the local values of
p,p and o and perhaps some initial parameters. The dimensionless
rate parameter A is the ratio of the time scale defined by

the piston to some characteristic relaxation time T, i.e.
- -1
A= (w1) (2.3)

[Equation (2.2) is to be regarded as dimensionless with o and
F both normalized by pop;l.]

In an equilibrium state, which is identified by the
singular limit A+, F=0. The corresponding equilibrium path

is denoted by
o =0(p,p) . (2.4)

In this limit the problem reduces to the isentropic case
discussed earlier.

A second isentropic limit is defined by A=0. For this
case the internal energy o remains frozen at its initial
value, Obviously this limit is also included in the analysis
of §1 .

There is,however, an important distinction that must
be drawn between the two limits. In the former equilibrium
case the appropriate sound speed is defined by

-1

- (%%Js,c=g= (po'e-ep)ep (2.5)

where e=e(p,p,5), whereas in the latter frozen case
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2 _ (gg\ o2 -1

a~ = = (pp “-e_ e (2.6)
30/ ¢ g P’ p

with e = e(p,p,0). It can be shown that in general

a%>a°, 2.7

For the general non-equilibrium situation the relation

3 p-a 3 p "CAI (2.8)
t t

where a is the frozen sound speed,

€=- GEQ e,p (2.9

and (2.2) has been used to replace Btc. Moreover, the

characteristic relations (1.8) become
9,ptpad u = -cAF (2.10)

and the characteristic operators are defined by (1.9)
with a interpreted as the frozen sound speed. The influence
of the rate process on the energy equation and the characteristic
relations introduces a source term, -cAF, which depends on
the local values of p,p and o.
The linearized signalling problem associated with
this system of equations has been considered several times

in the literature (Chu, 1957). The regular expansion

u(x,t;8) = dul(x,t)+..

p(x,t;8) 1+6pl(x,t)+.. (2.11)

o(x,t;8) Eo+601(x,t)+..
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yields
3 azul 5 82ul agul - 32ul
-8, —5 ) (— -3, —) =0 (2.12)
ot 09X ot X

where

A = A(-F_c&h) (2.13)

o 0

is a modified rate parameter. (1.20) again defines the
boundary condition on x=0 [Note that it is assumed in (2.11)
that the initial conditions correspond to an equilibrium
state.]

@.12) obviously reduces to the standard linearized
result in both the frozen '(high frequency) limit A~+0 and
the equilibrium (low frequency) limit A+~, For arbitrary
values of A (2.12) suggests that for tA<<l the effective
propagation speed is a, but for tA>>1 it is Eo' This
latter statement can be made more precise. The formal
solution of (2.12), subject to (1.20) and (1.15), can be
obtained by Laplace transforms. An asymptotic evaluation,

t,x+» but sufficiently far behind the front, shows that (Clarke,

o«

1965 L
) U f%z J £1(Vexp{-Dt™H(E-y)?)dy (2.14)

0
where

D = A(e®-1)73, (2.15)
o =a/a (2.16)

and
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£ = t-x/Eo (2.17)

is the linearized-characteristic associated with the low
frequency (equilibrium) signal. The main disturbance is
now apparently centered on these latter wavelets.

It is easily verified that according to (2.12) any
plane wave is distorted both by dispersion,so that the
wave speed depends on the frequency, and by
absorption in which the amplitudes of the high frequency
components are much more rapidly attenuated than those of
the low frequency ones.

However, as in the isentropic case, it can be shown
that the regular expansion (2.11) is not necessarily
uniformly valid in the far field, and secular terms may
again appear in higher order solutionms.

The remainder of the lecture will be devoted to
a discussion of the modifications that are required in

order to obtain a valid far-field result.

3. The high frequency limit

A simple extension of the classical isentropic far-
field approach can be used in the high-frequency (near-
frozen) limit A+0(see Varley and Rogers, 1967). For
ease of discussion it will be assumed that A and ¢ are of

a similar magnitude. The corresponding expansion is

u(x,t;6) = GUl(E,n)+..

P(X,136) = 1+6P (E,n)+.. (3.1)

o(x,t;d) 50+5222(€,n)+--
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etc. Note that 0-30 is a second order quantity (more
strictly its magnitude is 0(Ad)). This expansion procedure
would appear to be appropriate for large times at distances
behind the front which are comparable with the length

scale defined by the piston signal but which are much

less than the relaxation length. Substitution in (2.10),
(2.8) and (2.2) shows that

oU oU

1. b 1
‘an_‘a—o-ulgf—*kul=0 (3.2)
where
k= (- Py =0, (3.3)
o

and b corresponds to (1.27) with the derivative evaluated
both at constant S and o.
The first order perturbation quantities are again

related, as in frozen linearized theory, by
P. =aR =al (3.4)

Equations (3.4) and (3.2) ahould be compared with (1.25)
and (1.26) respectively. The attenuation factor kUl
plays a dominant role in the asymptotic behavior of
(3.2) as n+w,

The inner near-field solution for A=0(68), with

x,t = 0(1), is given by the usual frozen linearized result
uy = £1(8) (3.5)

which defines the inner matching condition for UR
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Subject to (3.5) and the condition at the front, the solution

of (3.2) is defined by
Uy = £'(9)e™" (3.6)
with
£=¢ - -%E £1(9) [1-¢7K1]. (3.7)

Again this solution is not single valued in physical

space at points where

or

N - g log (- g (3.8)

However, in contrast to the isentropic solution shocks

will not form even for compressive piston motions if

m%—> 1 (3.9)

(Varley and Rogers 1967, Rarity 1967) .

If a shock does form its path can be determined, in
principle, by the approach outlined in §1. Conditions
(1.32) and (1.33) again hold for a weak shock, with a
interpreted as the frozen sound speed, together with the

additional statement
[0] =0 (3.10)

In writing down (3.10) it is implicitly assumed that the

shock thickness, across which the translational mode
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adjusts to a new equilibrium state, is neglibibly thin in
comparison with the relaxation length a,T.
For a shock propagating into an undisturbed region

it can be shown that its path is described by

1 Zaok s
n=-oglog - —- £(¢)/£'7(4))
(3.11)
€ = ¢-2£(9)/f' (9)

Although (3.11) reduces to (1.35) as k>0, it follows from
(3.6) and (3.11) that for any finite k the amplitude of
the shock is exponentially weak as n+», even for pistons
whose speed is asymptotically constant.

Moreover, it is apparent,both from physical reasoning
and by directly computing higher order terms in (3.1), that
this high frequency expansion will break down as £+,
or,more precisely, at distances behind the front which are
comparable with the relaxation length. It is easily shown
that for £=0(6'l), n=0(1) the dominant behavior is described
by the linear equation (2.12) (Blythe, 1969) though this
result does not necessarily in itself give a uniformly
valid description of the limiting asymptotic behavior. Before
discussing further this particular difficulty for high
frequency disturbances, it is relevant to return to the

asymptotic description for A=0(1).
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4. The low frequency far-field limit, A=0(1).

The dominant asymptotic signal according to linear
(near-field) theory is defined by (2.14). If u=0(4(6))
in this region it appears that the only non-trivial

stretching of the independent variables is
T = a%(8)t, X =A% (4.1)

together with

=]
Il

= BV, (D).

1+A(6)nl(Y,T)+.. (4.2)

e =]
[}

€= 0-0 Az(s)EQ(i,T)+..

This last relation, which follows directly from the rate
equation , implies that the departure from an equilibrium
state is small. In this sense the expansion (4.1) and (4.2)
defines a low frequency far-field limit. The magnitude of
A(8) is defined implicitly by (2.14) (see below).

Before substituting these expansions into (2.5),
(2.10) and (2.2) it is better to replace o by € as a basic
dependent variable.

It can be shown that Vl satisfies

2
3Vl 5 BVl . ) Vl
R (4.3)
3 X ax

where 1. 2 Ll
u o= ff(a -1)= A_b (4.4)
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(4.3) is Burger's equation., It has been suggested many
times that this provides a satisfactory asymptotic description
of the flow field (Lighthill 1956, Jones 1964, Lick 1967).
This equation can be transformed into the diffusion equation
and it is easily verified that its solution will match with
the outer behavior of (2.12) given in (2.14).

In deriving (4.3) it has been assumed that Vl = 0(1):
the magnitude of A(6), as noted above, is defined by (2.14).
However, it appears that this stretching is not permissible
for all piston motions. In fact, if tf'(t)+0as t+o, V1=0(5)
and the non-linear term in (4.3) is negligible in this
particular far field region. For piston paths whose decay

is slower, e.g.

frot™l, 0<n<l,
1
A= 0(6%Ry,

In the high frequency limit discussed in §3 it is
apparent that the solution in the intermediate linearized
regime, where xt=0(6'l), will break down in the same way.

Appropriate far field (low-frequency) variables are then
T. = 68°t, X, = 6AF (4.5)
1 ’ 1 ’

However, this asymptotic solution is always shock
free. (Even if any shock forms at the front its strength
will become exponentially weak for all bounded piston speeds.)
In particular, when the piston speed attains a constant

limiting value the associated steady state profile is fully-
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dispersed: all convective steepening can be balanced
solely by the dissipative nature of the rate process. Yet,
it is well known that stable steady partly dispersed wave
forms, in which the relaxation region is preceeded by a
Rankine-Hugoniot shock, do exist and it is informative to
discuss this limitation in these asymptotic solutions.
Throughout the analysis so far it has been assumed
that the energy o is of a similar magnitude to the total

internal energy e, or equivalently that
a/Es-l = 0(1). (4.6)

This latter restriction, for steady state waves, always
implies that UV-EQ = o(1), where U_ is the wave speed,

but for partly dispersed waves to exist
U8, - (4.7)

This latter condition cannot hold for small amplitude

waves (8+0) if (4.6) is satisfied.

S. The small energy limit

Situations in which both «-1 and u are "small"
are obviously of some interest. In this limit it is
possible to obtain a simplified description of the far
field in which both fully-dispersed and partly-dispersed
wave-profiles can be discussed in a unified manner.

For ease of discussion, the magnitude parameter §

will also be used as a characteristic measure of ¢.
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This statement should not be taken to imply any relation
between the internal energy and the piston speed. If

necessary a second parameter §., with o=0(dl), can be

10
introduced and the subsequent analysis will hold provided
terms 0(8,8.) etc. are retained.

The appropriate far-field expansion is again of
the type outlined in §2,with a slight modification in the

energy term, & and n are used as independent variables and

\

u = 8U, (&,n)+..
p = 1+6P, (E,n)+.. (5.1)
o = 6(e +8e, (E,n)%.. )
Note that
e =06t =0(1) , (5.2)

Substitution in (2.2), (2.8) and (2.10) gives

= 2%R =
Pl = aoRl aOUl (5.3)
which are the usual linearized relations but,Ul and e, now
satisfy
Egl Y igl .o e (5.4)
an a, 13t a 9t .
ael a,
= = 2 — kU.-)\e (5.5)
Here 9 ¢, 11
=1 - 42
k=0 - =35
o

is to be regarded as 0(1).
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In this first order approximation the rate equation
(5.5) is linear, though it now contains both 'forward' and
'backward' terms. The only non-linear convective term
occurs in (5.4).

In the near-frozen limit A+0 (A,k+0) equation (5.4)
reduces to the expected result (1.26), and iteration
using (5.5) gives the Varley-Rogers limit (3.2). In the
low frequency or near-equilibrium limit, A+e(A,k+®),
equations (5.4) and (5.5) give

90, Uy

b k
"G r)sz—

Since
k_(!-l _B-
=5t 008), b= 5
this last result reduces to
U - oU
= - LU 2.0 (5.6)
a‘o of

neglecting terms 0(8). (5.6) is the classical equilibrium
result also defined by (1.26). By including terms O(A'l)

it can be shown that U, satisfies Burger's equation (4.3)
when only the dominant terms with respect to & are retained.

Under the transformation

2
_k a5 k 2 2a 3
L=xg " 172y E
(5.7)
E=¥/A, n=Y/k

(5.4) and (5.5) reduce to
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ow oW _ oE
'g'Y— - W W = - W (5.8)
3E _
e w-E (5.9)

and are free of parameters. The piston condition on Y=0 becomes
=0 g (¥
W f (}\) . (5.10)

Although for geometrically similar paths the solutions will
in general be similar only for fixed values of the parameters
A and ka /b, a considerable simplification occurs in one
particular case. For a centered expansion wave the condition

at the origin is

a
0 X
urop Uogd

which re-expressed in far field variables gives

wo-p/Y. (5.11)

The differential equations (5.8) and (5.9), the front
condition and the initial condition (5.11) are now independent
of all parameters. This similarity form has been discussed

in Blythe (1969) where a numerical solution, using a

characteristics method, was presented

It is sometimes convenient to eliminate E from (5.8)

and (5.9) . The resulting second order equation is

TG LI RO (5.12)

The structure of this equation should be compared with that

of the classical linearized result (2.12). Here the linear
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operators of (2.12),6associated with the high and low

frequency sound speeds respectively, are replaced by
corresponding non-linear convective operators. The linearized

form of (5.12),

W, W 0, (5.13)

Yy My Ty =

is the telegraph equation. Moore and Gibson (1960)

deduced (5.13) from the usual linearized form (2.12) in

the limit a-1<<1, In Moore and Gibson's derivation t=0((a-l)'l)
but it is apparent that in order for this equation to be

applicable in this domain
§71 (a-1)>>1.

The simplest solutions of (5.8) and (5.9) are those

of steady state form

w(¥+CY),

=
"

(5.14)

[27]
n

E(v+CY),

where the wave speed associated with C, in (x,t) space, is

Ck (5.15)

U = a°[1+6—x]zao[1+(a-1)C]

Solutions of this form correspond to the asymptotic state
due to a compressive piston moving at constant speed.

The differential equations satisfied by w and E are

(C-w)w' = -E' = E-w . (5.16)
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whose non-trivial solution is defined by
By pHe-(CH1)usK
w' =  — (5.17)
C-w C-w
Since w'=w=0 at upstream infinity apparently
K=0 (5.18)

However, solutions of (5.17) are unique only if

C<0 (5.19)

with the piston speed given by
v, = 2(C+1)>0. (5.20)

((5.17) cannot be used to study expansion waves with wn<0.
It is easily shown that the overall entropy change would
be negative for this case).

Note from (5.15), that the restrictions (5.19) and
(5.20) impl

i ao>Uw>§o (5.21)

which is the usual condition for a fully-dispersed wave
(Lighthill, 1956).

If C>0, (5.17), with K=0, does not represent a single
valued solution. For compression waves a Rankine-Hugoniot
shock must be inserted at the front. From the weak shock

relations it follows that

(5.22)
w = 2C

immediately behind the shock. Hence from (5.17), with E=0,
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it again follows that K=0.
Apart from an arbitrary constant, (5.17) integrates
to give
-(1+8)

ey = S logdEen - T C

(5.23)

For centered expansion waves it is expected that

the asymptotic disturbance will be the equilibrium solution
W= -p/Y = 1-p/Y+0(8). (5.24)

It is easily verified, neglecting terms 0(6), that (5.24)
is an exact solution of the full equation (5.12).

Although other exact analytical solutions of (5.4)
and (5.5) are not readily found, it is apparent that these
equations do provide a uniform small amplitude far-field
limit with respect to the rate parameter A. In addition,
they will describe the structure of both partly-dispersed
and fully-dispersed wave forms., Some further discussion
of the properties of these equations can be found in Blythe

(1969) (see also Spence & Ockendon 1969).



