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ASSOCIATIVE RINGS WITH IDENTITIES
by
S.A Amitsur

(Hebrew University)

The lectures given in the 1965 Summer meeting of the C.I.M.E.
have been an attempt to summarize and survey the development of
the theory of polynomial identities since they first appeared in a paper
by Dehn (19229 on Desarguian Geometriés till their recent application
to Geometry (1965) - giving an almost complete solution to the problem
which arose from the paper of Dehn on Desarguian Non-Pappian Geome-
tries.

But the survey is for from be being complete; applications to
group representations, Jacobsons' rings the Kurosh problem and other
aspects of the theory are missing in particular, it lacks completely-re-
fevences. Some of the results appear in the book "Structure of Ring"
by N, Jacobson and in the Lecture Notes on rings given by I.N.
Herstein at the University of Chicago . Other results appear in vario-
us papers by Amitsur , Herstein, Kaplansky, Levitzki , Posner, Shyrshov
and others Many recent extensions, in particular the results on polyno-
mial identities with coefficients in arbitrary domains with appear in
forthcoming papers by the author.

The proofs, as for as they were given in these notes are just
outlines of proofs and were made only indicate their basic ideas. They

are far from completeness and the rigor  required .
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1. Notations and elementary remarks :

Let R be an arbitrary (always associative) ring and Q a ring

of operators of R into a two-sided R-module T satisfying :

+r)s= +
w(r1 rz) wr, ¥ wr, wEeR, r, ER.
(wrl) ry =T, (wrz) = w(rlrz)

+ = W r+
(wl wz)r wr wzr

and @ E(} Q xl,xz.,. 1 be the free ring generated by an infini-
the set of non-commutative indeterminates {xg\ over 2, Ewery poly-
nomial p Lx‘]e_ﬂ [x'l can be uniquely expre#ssed in the ferm p [x:]:
W. X w0 X where the monomials %, .. x, are all diffe-
(i) i i 1 i
1 n 1 n
rent

Definition : A ring R is said to satisfy an identity p[xl. .. x'k =
I — n

=0 if for every substitution x =r eR ) [1 ., 0

(in T) . If T=R , this is equlvalent that for every homomorphism
k?: Q [x\ =R, \e(p)=0

Examples :

1) nx = 0 (n an integer) is satisfied by all rings of characteristic n.

2) The commutative rings satisfy the identity xlx2 T XX F 0.

3) Aring R which is a K-algebra, and a finitely generated K-modu-
le, i.e. R-= é Kri - is a ring which satisfies a polyno-
mial identity ,lzwhich is a straightforward extension of the commuta-
tive law, Namely the following .

Let S [x e x—k =zx. ... X, , where the sum ran-
n 1 n Iy i

ges over all permutation (il, e, in) of the n letters 1,2,..., n
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and the sign is + for even permutations and - for odd permutations.

In fact a ring R will be said to be of commutativity rank n

if R satisfies S [x, ..., x 1 =0 and does not satisfy
n 1 n
Sn-l[XI . .,Xn_ﬂ=0 (Put S1 [XA = xl) we shall refer to the polyno-

mials Sn L’x] as the standard - polynomials, They have the same

properties as determinants , i.e.
i) Each ishomogeneous and multilinear
ii) Srl [le, s Xjn‘x *Sn [xl, s xn if (Jl, , Jn) is a
permutation of (1,2, ..., n).
iii) Sn [rl, ...,rn]= 0 if two of the r, are equal.
Form these properties we can conclude that
iv) S a, ..., a =0 if each a, can be expressed

n 1’ ’ “ntl

as a linear combination ai = ki rj of n elements rl, rn

(k, K - K -the commutative ring)J.

i
J
Indeed, Sn+1Y_—a1’ v an+l‘l = 2 p(l) Sn+lE‘11""’ri 3)
n

p(i)e K, since Sn+1 Exl is multilinear and homogeneous ,
but each Sn+1 Eril,..., rin+A = 0 for some ofthe rimust be equal.
Hence - if R is of the example (3) and it is generated by
n elements that it will satisfy Sn+1 [x] = 0.80 , it has a
rank of commutativity’ n+l,
An interesting example of these rings are the matrix rings Fn

over a field F. From the previous remarks we conclude that Fn

satisfies Sn2+1 Cx] =0 . Let _f (n) be the minimal integer so that
P isfi S . = th 1t that <
F satisties p(n) [x] 0, then our result shows tha .)O (n) £

n2 +1 . On the other hand, it is to verify thatf(n)Z?(n-l) +2
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and since f(l) =2, we have f (n) 2 2n. Infact, we shall see
that f(n) = 2n,
The problems which arise in relation with identities are of two types:
1) Given aring R -to determine the set I(R) of all identities of
R, and 2) Given an identity- what are thegtructure properties of the
rings R which satisfy this identity.
Some elementary observations are :

A) The set of identities I(R)is a T=ideal in the ring @ [x].
That is : if p, ¢ & IR) and g €& @ [x] then p-q €IR)
and so are also pg and gp . Furthermore,
if p E{l, . —\C Q[x }and X x>t (x] is an endomorphism
of Q Cx] then -p[t x] .. t [x}} is also an identity
for R.
By If pfx, ..., xn_) =0 is an identity for R , then by replacing

by xty , we get pE&y,---,x;]-p X, ] p[y, n:=
= q[x Yo X e } which also an identity for R . Generally, for ’
arbitrary rings £, the new identity q, which is of lower height,
may produce less information with respect to structure of R. But the
following, which in obtained by repeating this procedure is interesting
Lemma 1.1 If R satisfies p[x:l =0 and WX X is a mo-

i
nomial which appears in p Ex], then R satisfies also an iden-

tity of the form  p_ Ex1+ P [x'_\+ +3’ [XJ where piE(]
are homogeneous of degree i and have the same coefficients as the i-th
homogeneous part of p Lx], and pr[x:,;w X Xo oo X is also
multilinear,

In particular, if r =d in the degree of p Exl - it follows

that R satisfies a multilinear homogeneous identity
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C) If R satisfies an identity pE(] = P, Cx]+ oot P, [x] , and
each p. homogeneous of degree j in an indeterminate x., then
R also satisfies an identity [;n— (w - w [xl =0 for any
n+l elements wl, ey +le I Q is an mflmte field then
Tr(wi - wj) # 0 and, therefore each p)‘ [x] will also be an identity
for R, 1i.e, the ideal I(R) is homogeneous.
D) If R satisfies an identity in R (i.e. T=R) then every subring and
every homomorphic image of R satisfy the same identity,

For every commutative ring K, RQK will satisfy the multi-
linear identities of R, and in fact, if R satisfies p Ex]: 0 then
R@K will satisfy an identity of the form w p [x]= 0 where w

is some element of § , and in general can be taken of the form

[;[;r (wi - wﬂr .

Problem : If R, S satisfies identities -does R@S sati-
sfy an identity? It seems that this in true if one of the rings does

not have nilpotent ideals

2. Nil semi-group of rings with polynomial identities.

Let MEDR be a multiplicative semi-group of elements of
the ring R, and Mo be a fixed two-sided ideal in M, We defi-

ne the lower Radical of M modulo M,

Let N0 (M) = Mo , and define the sequence N}\(y‘) of ideals
by induction on >\ :
For limit ordinals ) : )\ -\U n

vty
For A = ]o+1 : N_, . () is the union of all ideals P of
ptl

M containing MO which are nilpotent modulo N (M) .

£
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Then there existan ordinal A, such that N«( M) = 1\']\:*'1(”)
and this ideal is the Lower Radical L(M) of M modulo M,
It is also characterised as the minimal ideal P containing Mo
and such that M| does not contain nilpotent ideals mod P, except P
itself.

The ideal  L( M) satisfies the following lemma :
Lemma 2,1, 1) If ]\yﬁ ) # 0 andnil (i.e. contains only nilpo-

tent elements) then there exist m, ,m a sequence of elements

in M such that m,m, k%‘L 0 for every k, but every
other product of the i's belongs to L(M). 2) L( M is locally
nilpotent mod. Mo
(Proof omitted)

We use this lemma to obtain the main properties of nil
semi-groups of rings with polynomial identities :
Theorem 2.2, Let R satisfy a polynomial identity pEx]= 0 of
degree d , and Mbe a semi-group in R and Mo the ideal in
R which is annihilated by all coefficients of R. Then

i)If M is nilpotent modulo Mo of index n thenM‘:Z“l gene-

rates a nilpotent ideal in R modulo M of index f(n,d) &

]
d
e B ;

i) f M is nil mod M_, then M 5']4N R;M, )= the

1
sum of all nilpotent ideals in R mod Mo
iii) The result (1i1i) is best possible.

We shall review the proof only for the case R satisfies a
polynomial identity p Exl T KXo Xt which is homo-
geneous and multilinear (in this case M, =0):

R*‘

Let be the ring with a unit adjoined to R, and say
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M =0 If t> [] and R MR is nilpotent of 1ndexr4 [»

then consider the sets :

) s

T =M IR¥ SN VAoV SR SN VLt B -V
1 3 2j-1

‘ ] p .

T, v IR M T4=Mt 2R T, -mt R

¥ *
By taking a, éTi’ then aiajéR Mt R if j&gi ; furthermore
if the a, range over the elements of Ti - then the products
a will range on set of generators of the additive set

1 2
M 1R“ MJ , where r =2j or =2j-1. Writing the identity in the
g y

form : ()¢ X Xgeoo Xy 7 -z‘w(i) xil... Xid and setting

t
x, =a, weget that aa,...a eR S R* Hence it follows

i i 12
d
from the previous remarks that (Mt ! R‘S IVI CR M R* and by

multiplying both sides by R we get:
t-1 d+ * L
®¥ M Y 1c R M R

and hence R* t-1 ré(’ d”l" 0 . Consequently , i1 t>[§]

* -
R Mt IR*- the ideal generated by ' ! in also nilpotent of index

(t-1) (d+1)(N()
" B
Now since for t=n, rr'(n) =1, andif n >[—2-] , one can
use the above procedure to show that
d d
d (n-[3]) n-(5))
["J([El) $(d+1 []+1)( (d+1) zrﬂ(n) FISI
* [53 ¢

To prove (ii):let M be nil and L(M) be the Lower Radical

which  shows that R is nilpotent,
of M. Bylemma 2.1, if M#L(M) then if follows that there exists

m,M,, ..., My, ... such that m ...m, *L( M) and every other
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product mj mj € L(M) . Setting - X = m in the identity (g we

d
get m, m . md € Q L(M) from which one concludes that the pro-

5
duct my .. mdé L(M) which is a contradiction. Consequently ,
M = L(M) and thus M is locally nilpotent. This implies that if

- ,arEM then they generate a nilpotent ideal and the- _by

d
cesa Z]gene-

1

the first part of the theorem it will follow that al,.

rates a nilpotent ideal and thus i_‘:Nl(R) . This being true for every,
d

r =[-2-] elements yields  that a8, ... 8 NI(R) which  proves

(ii)

The proof of (iii) is omitted,

d
2

The previous result has some interesting corollaries :
Corollary 2,3, In Fn every nil multiplicative set M 1is nil-
potent (of index n)

Proof, N1 (Fn)= 0 since Fn has no nilpotent ideals and so
(i) of theorem 2,3 implies the corollary . Noting that Frl satis-

fies an identity of degree 2n, it follow that the inuex of nil-

2n!

potent is exactly [?fn .
Corollary 2.4 . The identities of matrix rings Fn are of degree
>2n ; and hence the ring of alla finite matrices does not satisiy
an identity,

Indeed, Fn contains nilpotent rings of index n exactly,

d
hence the preceding result yields that [EJZ n, or d> 2n.,

3. Primitive rings with identities :

A ring R is (left) primitive if it has an irreducible

faithful left module V = R V.
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In this case we know that HomR(V,V) =D is a division ring
D , and R 1is a dense ring (in the finite topology) of the ring of
linear transformations of V as a vector space over D .
The existence of an identity for primitive ring R introduces
a strong restriction on the ring and we can determine the ring com-
pletely. The properties of primitive rings with identities is summari-
zed in the following theorem :
Theorem 3.1
i) A primitive ring satisfies a properl) identity of degree d
if and only if R is a central simple algebra of dim
nf[-:—-f over its center C .
ii) A minimal identity of R is Son Cxl, xzn] =0,
iii) With the exceptions R = GF(2) , [GF(Z_E}2 , the minimal
identities of R  are linear combinations of the standard
polynomials in 2n indeterminates.
iv) The identities of R are the same as that of Cn
Part (i) is known as Kaplansky's theorem (1948) . the
bound for n was given by Levitzki . Parts (ii) - (iii) are known
as the Amitsur - Levitzki identity.
The proof of parts (ii) and (iii) is long and tedious
(although the original proof can be shortened ) The second part has
been shown by Kostant to be connected with other subjects in

Mathematics : Representations of the alternative group and Cohomology

of the orthogonal group.

1)By a proper identity is meant by an identity in R (i.e. R=T), and
that the elements fo R are not annihilated by all coefficients.
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We shall skip the proof of (ii) and (iii) but we shall give a
modern version of the proof of (i):

Let F be a maximal field of D. Consider V as an RF
space - then V is also RF irreducible, faithful andHomRF(V, V)=
=F since it must be contained in D and commute with
F , but F is maximal commutative,

Now R will satisfy also a proper multilinear identity

of degree d, and R@F and, therefore, also RF will satisfy

i i i -I = 1 v j
this identity p [xl,‘..., Xk 0 . Consider pf}l, R xk as a
function on H'OmF(VIV) 2RF; then p [x] is continuous and
vanishes on the dense set RF - hence vanishes on all Homf(V,V) .

It follows, therefore, by theorem 2.2 that HomF(V,V) cannot

contain a nilpotent subring of index [%] Clearly this requires that

n = (V. F)f[%] . But then (V: F)(oo and so RF =Hom_(V.V)
F

= n

F

Furthermore, (V:F)=( V:D)(D:F) - hence (V;D)=m & «
oYy \27) = ) )
(D:F) = r < o, whence (D:C)=r . Thus (R:C)=(mr) =(V:F)
dq 2
SHEE

Conversely , if R is central simple over C , and

and consequently R = Hom Dm . We also get that

(R:C) = n2 and F is a maximal field then R ?F = Fn for
some splitting field F , which shows that R will satisfy
the standard identity SZn Exl,..., Xr] =0 (by part (ii) .
Finally , if the center C is a finite field then
R= Cn by the Wedderburn theorem, and if C is infinite then
R and R@F will satisfy the same identities, and since

the latter is Frl - it follows that the identities of central
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simple algebras are completely determined by the identities of ma-
trix ring F . Now F =C @F so that R, F and C_ have
n n n n n

the same identities,

From the above, one deduces immediately that
Corollary 3.1. The Jacobson radical of a ring with "an identity"
coincides with the Brown-Mc Coy radical of the ring.

Since the primitive images in this case are simple rings

with a unit.

4, TUltra-products and Ultra-powers,

Before proceeding with the structure of rings with identities,
we pause to introduce the new tool of ultra-products, and we begin
with filters :

Let %= {-(} be a set. A set of subsets % = {S} is
a filter in ¥if it satisfies :

) ¢ eF

if) If Sl, Szeo.‘ﬁ then Slf\ Szé d-ﬁ ; and hence every

finite intersection of sets in lies in #
i) ¥ SEF and SgTL ¥ then re¥,
If in addition the filter d:ﬁ satisfies the property
iv) For every T -C-z , either T é°$ or its comple-
ment % - Téq
then we call # an ultra-filter .(iv) is also equivalent to the
comdition that # is a maximal filter ; i.e., it cannot be em-

bedded in greater filter,
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Given a set {Sf} of non-empty subsets of X which
have the finite intersection property, that is:

(v) For every finite number of sets Sf , Sf s Sf
1 2 n

there exists S ¢S S N... 1S
PN n

then one can construct a filter containing all ?f ,and by Zorn's
lemma , we can find an ultra-filter containing all Sf

Examples :

1) X= {n} the set of all integers, then the set of all comple-

ments of finite sets is a filter

2) f any set, then the set of all subsets of Xcontainingafixed
element °(€ *, is an ultra-filter<known as the principal ultra-filter con-
tainingeX , We shall be mainly interested in non-principal ultra filters.

The following example in widely used inthe Zaviski-

Topology of an affine space.

3) Let X= c" be the n-dim. affine space over an infinite field
C,i.e.)Eis all n-tuples ( 31,. ) ,{n) , )iec.

Let C xl,xz,...,xﬂ be the ring of polynomials in n com-
mutative indeterminates over C. For every fE(l, x&f 0
we denote by S -[ (5) e c” ; fL5) ¢ o}; that is the set
of all points on which foJ does not vanish .

Since C is infinite S, #f, and S, NS =S

and also £ ¢ 0 if both -F# 0 and  gf0. Thus , the sets

?S;% satisfy the finite intersection property and, therefore, they

generate a filter which is the one used for the open sets in the

Zarishi's topology of %

We turn now to the wultra products:
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Let Q, =“ RQ( be the complete product of the rings R .
(or of algebraic st‘r"‘uéctures: groups, etc.) That is; Q consists of
all functions jc defined on % and such that :F(.()é
Addition and multiplication is defined component wise .

To each filter E‘ﬁ = {Si, we make correspond a homomor-

phic image of 7TR , and denote it by TrR’l/% as follows:
Put DC-_- (mod °$ if {o( \ .F ) = glot }Q‘?Tp and in
particular a function f‘ zero mod # if it vanish on a set

of the filter

It is easily seen that this defines a congruence relation in
TrR , and the set of all functions congruent to zero, is an
ideal in "TR . Thus the set of all classes will form the ring

" a(/# which is isomorphic with the quotient ring TR mod
the ideal of zero functions mod
Definition . If 9}2 is an ultra-filter then TrR /¢is called an
ultra-product; and if all Ra( = R then T[ R - all
functions JC ¥—7 R and X/Zﬁ is called an ultra power.

The importance of the ultra-product lies in the fact (proved
in Logic) that the ultra-product ‘n’ /?rf-wﬂl satisfy all "elemen-
tary statements" which holds in all ring Ro( where the in-
dex A range over a set in the filter ; and, in particular, the
ultra-power }?‘/# has the same "elementary" properties as R.

The proof of this fact is straight forward; and in its
application to algebra it is quite often worthwhile to try the proof of
the special properties used in the applications.

Here are some examples of elementary properties, preser-

ved under ultra products:
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1)If all R oA are (ordered) division rings, then the ultra product
‘ﬂ-RJ /\’_‘F is also an (ordered) division ring.

2) If all Ro( satisfy  an identity p [x] = 0, then so dOE‘S‘lTRJ/gf.

3) If all R ,are (real) algebraically closed fields, then so
T r/F

For our sake the following examples is interesting :
Theorem 4.1: Let Ro( be all primitive rings, with faithful

V, ,V )and
v

irreducible modules Ve( , centralizer D!L = Hom .R.gek

centers C& of Duk . Then:

/‘
1) The ultra product ,Q = ” R,(/‘¢13 primitive with an irreducible
R-module aU,= W\g_/# ; a centralizer (igomorphic-with) Db:
= 7TD / whose c¢enter is C::'T]Eo( /%
\ . = 1 -
2) Let {v(l ‘k,n 1,2,..., and if some Sncqﬁ

then V The converse is also true)

Let {o(l( C = nz} - and if some Tneithen (R: C)=

= (the converse is also true) .
Proof. Clearly T]—.‘ acts on ‘”'V pointwise ; i.e. if;Ctjl'l-%J\
e Ty then (£7) () -;5 ) 7

Now, if 1= 0(%) then {,(\ %) () = o}){g[fﬁ(.() - o}
Hence, ?-" 0 #), and by similar methods one verifies that

Trlﬁ /Q\‘ﬁ acts on’n"V*/#
Next , 0\)" is Q-lrredumble for let v #0in OU;A..LV

— -

and choose v, U representatives of v and u respectively then |,
{o(l }f—ufsince v3}0 , and hence its complement, which is
_{d‘ vi) # (%0 To each o/ €S these exist r;{ € R‘( such that



-19 -

S.A. Amitsur
ruL v( ) =u () since V;‘ is I& -irreducible, Put réTch( by
setting ?(.() =T for o € S and zero therwise ; then clearly rv=u
where r is the class of T mod #— , since -{ql?\'/(.() =u@()f

>seF

The rest of (1) is proved similarly,

To prove (2), we can either use the fact that the statement
that (Vb( : DQ() =nf o is elementary, and then use the basic pro-
perty of the ultra-product; or, continue as follows :

Say Sné'q, and for every o & Sn choose a basis V-(l’

. Vo(n of Vo(' Consider the elements -v-. éTer( , defined by:

- - i
V) TV, i AeS end Vi) =0 for o(ksn. Then the classes
vy ‘represented by v, erea basis of a\r over cﬂ Indeed, piven
vé'\y choose "\'/e“\']'\/'_(N representing v, then for every § ¢ S
N e - - -
we can write  v(s{) —f V‘(id“i, dal € D‘< - Put d() d\(i
for L e Sn and zero elsewhere ; then if dié J) are represen-
ted by elements d,; éﬂf)o‘ we get v ";‘Zvi di (modd.r’a )i.e.
ve)v, d, .
Next we show that the évl are @\independent; indeed if
ivi gi =0, S‘léba let Si be representatives of gi then
= =0 3 =
A i.( \Zvi(<)§(°&) HBut then for s(éSn/\A the \C‘,N) i
are D°< -independent , hence ;i(g() =0 for all o{€& Sn/\Aé%
This proves that §i= 0 , which completes the proof of (2). The
rest of the proof is similar .
We shall be applying the preceding context in the following
form :

Theorem 4.2: Let R be a prime ring which is a subring of

'\TR« , then R can be embedded in an ultra-product TI&/#
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Proof. For every r#0 in R we consider the set S, =
{o( \ r(y) F 0:{ . By definition r # 0 implies S, #/ The sets S
satisfy the finite intersection property, since if r #0 then r Rt #
#0 as R is prime, and if we choose rxtk0 then clearly
Sr A St 2 ert '

This proves the existence of an ultra-filter containing all
the sets Sr' Let O$ be such an ultra filter and consider the
composite map : Rﬁﬁ—Ro(“;URa(/# where the first map is the
injection of R and the second is the canonical epimorphism. The
composite is again a monomorphism and gives the required embed-
ding ; indeed let r&R and r=0 (mod ‘#—) then B ={°(i r(o) = O}eo—‘ﬁ—
and if r# 0 then S ={oqr(°() # o}éﬁfbut this will yield thath = B/\S;
which is impossible for a filter,

A simple application of the last resulr, and of the basic pro-
perties of polynomial 1identities in the following .
Theorem 4.3, The free ring C[xl,xz,....J can be embedded 1in
a division ring; and if C 1is ordered then the embedding can be
made into an ordered division ring.
Proof: We quote, without proof, the fact that given C there exists
a division ring D infinite over its center which contains C, and
if C 1is ordered then D ‘can be found to be also ordered.

Let X = {T% the set of al (C-) homomorphisms of
C E(.I’XZ""' ]into D. Each Kf is uniquely  determined by the
i 1’ X2’ ...]into the
functions D¥ by setting ptx/‘l (f) =(f(p [x’\) =p[£|(7(x)1; namely,

we replace the formal polynomial by polynomial functions and this

set of values (xi) =a, . We can map C|x

map is a monomorphism, for if p [xl ((f) =0 for all ke will mean
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that p E{]= 0 vanishes for all xi =ai, i.e. it is an 1identity
for D, But by the previous section, it follows that infinite dimensio-
nal division algebras over their center do not have non trivial identities

fD¥

fore,by theorem 4.2 , it follows that CE(] can be embedded in an

-hence C [x] can be considered as a subring o and, there-

ultra product D)é/o{’f’which is a (ordered) division ring, since these

properties are invariant under wultra products.

5. Prime and semi-prime rings.

Recall a ring R is prime if a R} =0 implies a=0 or b = 0;
and R is semi-prime if it does not have nilpotent ideals .

The previous results will be used to prove the following pro-
perties of prime rings which satisfy polynomial identities
Theorem 5.1. Let R be a prime ring which satisfya ‘'proper!
identity of minimal degree d then :
0) R wsatisfies a strong ore condition (to be stated in the proof)
1) R has a right and left ring of quotients Q
2) Q 1is a finite dimensional central simple algebra with a center
C and RC =Q
3) d=2n where (Q: C) = n2
4) Q satisfies the same identities as R, and if R £ [G F (q):{m
then , R, Q@ K, REK satisfy the same identities , for any
commutative K . ‘
5) The identities of R are the same as those of Cn; and hence

its minimal multilinear identity 1is SZn X10 Xg, "'XZA = 0.
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6) If R is semi-simple, and R*isa primitive image of R then

2
de is a central simple algebra of dim ny £ n over its center

C furthermore n = Max Ny where the maximum ranges over

alzkprimitive images of R.

Remarks 1) Note that (2) implies that R  can actually be embe-
dded in a finite dimensional matrix ring Fn over a field F .
Since Q), FEF_if F is a splitting field of Q . Thus,
the prime rings with identities are subring of matrix rings over
fields.

2) The result stated in (6) is almost immediate if R is
an algebra over  and the coefficient domain © is a field. But
the proof is slightly more complicated for arbitrary coefficients as
it may happen that the given identity p=0 for R will become a
trivial identity in Ro( .

3) The basic results,(l), (4)for prime rings which are algebras
over fields and for identities which are multilinear are due to Posner
who has proved them by showing that prime rings which satisfy iden-
tities satisfy the Goldie-conditions and, therefore, have a ring of
quotients, We shall pursue a different way.

First we need the following interesting result :
Lemma 5.2. The exists a (multilinear) identity which holds in every
proper subalgebra of a matrix ring Fn’ but does not hold in
Frl itselzf. This result is true also for every central simple algebra
of dim n its center.
_P_r_o_of. Let (xil, R xizn_z),yi; i=1,2,...,n be non commutative inde-

terminates, The identity we need is ;



