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A. Andreotti

Preface.

In the spring of 1972 I had the opportunity to lecture at Lund
University and more extensively at Amsterdam University and at the
C.I.M.E., session in the.summer of 1973.on some topics of complex
analysis of my choice. The subject has been chosen within the
limited range of my personal knowledge and is intended for a
non excessively specialized audience. We have tried therefore
not to obscure the ideas, in the attempt to obtain the most gen-
eral statements, with an excess of technical details; for this
reason, for instance, our maln attention is devoted to complex
manifolds, and we have recalled basic facts and definitions when
needed, The purpose was not to overcome the listeners with admir-
ation for the preacher but to share with hime the pleasure of in-
specting some beautiful facets of this field. 1Indeed I was very
grateful to receive many valuable suggestions; in particular I am
indebted to L. Garding, L. Hormander, F. Oort, A.J.H.M. van de
Ven and egpecially to P, de Paepe who undertook the heroic
task of writing the notes.

The material deals with the theory of Levi convexity and its
applications, with the duality theorem of Serre and Malgrange,
and with the Hans Lewy problem. The limited time at our disposal
may account for some conciseness that, however we hope, will
turn to the advantage of the reader.,

P. de Paepe has corrected several mistakes of mathematics and
presentation; probably only few remained undected.

San Pellegrine al Cassero, September 1973,

Aldo Andreotti.
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Chapter I. Elesentary theory of holomornhic convexity.

1.1 Preliminaries.
a) Let .} be .n oven set in L% , the Cartesian product

of n copies of the complex field & , with coordinate funct-

ions Zl""’zn‘
A function f : Q2 - @ 1is called Rholomornhic if for every

point z, € {1 there exi.-ts a neighborhood U(zo) of z  1in

N on which f admits an absolutely convergent power series ex-

pansion

£ =Za.‘.,(z--z‘3)‘E for every z e U(z ).

% (N = natural numbers including

a a
1 n
2= 2Z) ..l 2 .

Here a4 = (41,...,an) e W

0 a = a
)1 a 91""'¢n ]
Amap f=(f),...,8) 18 > € is said to be holomorphic
if each comnronent fi y 1¢1gm 1is holomorphic.
The composition of two holomorphic maps is (where it is defined)
a holomorphic map.
b) We will write z = x +4iy with x, y R", 1 =V-1,
Then X = %(z+§) 5 Yy = %i(z-i) where the bar denotes complex

conjugation, and we will write dx = %(dz+d§), dy = %i(dz—di) .
For any function f : Q0 - E of class c we have

2

o]

af n -
el 5, 9t h D
where J
af 1,2f 1l af
= = (22 + =22
o] i
az‘j 2 xJ i yJ
2f , deat _loat,
i 3y .
dzJ 2 axJ i yJ
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we define

5f = g ?-g' di .

The following theorem establishes a criterion for a function
of class Cl to be a holomorphic function.

Theorem. A function f : Q - & of class ¢* 1s holomor-
phic iff at every point of 1l f satisfies the Cauchy-Riemann

equations:
at = 0
af £
(i'el a_!'x = 0’ooo| g—gn = 0, i.e.
of 1. f .
a—xj =i—.§_yj for 1 g jgn) .

c) Let £ be holomorphic in a neighborhood of the closed
polycilinder

P={z¢¢n]|’{zj|51 for 1 ¢ j ¢ n

then for every 2 € B s the interior of P, we have the
Cauchy integral formula

j' f(‘gl'..o"gn)

1 )
2z) = m " Igllzl 5 s |§n‘ =1 dﬁl..dé'n.
(E,l-zl)-u@n—zn)

From this formula it follows easily (by expansion of the
kernel of the integral in power series) that a continuous func-
tion f :.Jt = & which is separately holomorphic in each variable
is a holomorphic function (Osgood's lemma). This is even true
1f the condition that f is continuous is removed (Hartogs'
theorem) but this is much more difficult to prove.
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d) We recall the following result:
the set of points where a holomorphic¢ function has a

zero of infinite order is open and closed (principle
of analytic continuation).
In particular 1if f is defined in .l , if (1 1is -con-
nected and if £ wvanishes at some point of 4 of infinite order
then f£ is identically zero on (1.
e) We denote by 4 (f) the set of all holomorphic functions
in N, It is a vector space over [,

We can provide 4 () with a locally convex topology defined
by the family of seminorms

l|f||K = s;p ]ﬂ

where K is a compact subset of {1 . A fundamental system of
neighborhoods of the origin is then given by the sets

V(E,e) = {teHQ) i IIfIlK‘fa}

for K compact dm N and € > 0, This topology is the topol=-
ogy of uniform convergence on compact subsets of 0, -

If K1 e K2‘= K3 S 4se 1is a sequence of compact sets such

L

®
that %cKmlfu Hoe 1y 2yaeny mdﬂ=mh K.
one easily verifies that the countable set of seminorms Km
defines the same topology; Thus A#(R) is a metrizable space,
one can taxe for instance as a distance the function

® || £-g |
ace,g) = 5, L K
R S T e g
m

Since continuous functions satisfying the Cauchy integral
formula are necessarily holomorphic, it follows that # (&) 1is

a complete metric space (i.e. a Frechet space) and therefore a

] f; EQH(-H-).

Balre space.
We- also note that bounded sets B« A (L) are relatively

compact. This is a consequence of
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Vitali's theorem: If {f,} 1s a sequence of holomorphic
functions on {l such that for every compact set K< (]l there

exists a constant C(K) for which we have

Ilf_‘Jl K s C(K) N o= 1'2‘-00 ’

then we can extract from ffvg a_subsequence ifui which

converges uniformly on any compact subset of (.,

In particular’ the unit ball in the norm “ H is rela-
Kne1
compact with respect to the norm ” ”Km i.e. H(Q) 1s a space
of Frechet-Schwartz (cf. [14] ). For more details we

refer to (231, [31] , [43].

1.2 Hartogs domains.
Consider the subset in IR3 (coordinates x, y, t,

z =% + 1y)
T = §lz] < b,Ogt'ﬂc}U{aCIzlt.‘o,ogt(dS

where 0 < a <b and 0< c¢c < d,

Because of its shape we call T a "top hat®. A top hat
(or Hartogs domain) in " = "En-l, n > 2, is the set of all
points 2z = (_z.l,...,zn) in _En for which (z.l, (jgg lzjla)‘}) is

contained in a top hat in ]1!3.

Theorem (1l.2.1). (Hartogs). Let £f be holomorphic in the

top hat
T = El'zllib, jgz {zjla< czfu{ac lzll < b,

jga }zj}a < dai

in En, n > 2.

Then f extends holomorphically to the filled up top hat

n 2 2
T =§lzl < v, Jga)sz a8 k.
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Proof. Let the functions gp s, Pe€ N, be defined by the
Cauchy integral

g ¢ ¥ 1 TeE., ZZ""'Zn> iz
'l..’ —-— -
By, 0’ T2 ) L g -2,
P
If p 1is large 1s well-defined, continuous and holomor-

phic in each variable for lef b-1/p and [zdfa < d2 .

n
%2
Therefore gp is holomorphic. Moreover SPA is independent of
p. Set g = gp y then g is defined in T , is holomorphie
there and g|T = £ because g-f 1s holomorphic in T , 1is zero

on {|z,l< b, 2 ]zjlac ¢®! and T is connected. Q.E.D.
2

Let h : % -t" be a biholomorphic map onto an open set
n(%) of T®, (i.e. h dis invertible and h and h~L are both
holomorphic). Then any holomorphic function on h(T) extends
holomorphically to h(%).

This 1s a consequence of Hartogs' theorem and the fact that
the composition of two holomorphic maps is a holomorphic map.
It is sometimes called the "disc theorem". _

We quote some ‘simple consequences of Hartogs' theorem.

Let n » 2 and f holomorphic on the punctured ball

fo¢ ? Iz Jfa< r®} then f extends holomorphicaily to the ball

5? {zjla< rE}; In fact we can put a'top hat T in the

punctured ball so that "f covers the origin. In particular it
follows that @a holomorphic function f in n > 2 variables

cannot have an "isolated singularity" nor an isolated zero
(since this would be an isolated singularity for 1/f).

1.3 Open setm of holomorphyr
a) Open sets with a smooth boundary. An open set O in

t” has a smooth boundary if for every point z, € 2l s -0L
we can find a neighborhcod U(z,) and a C% function
$: U(z,) = R such that
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(), #0, R0 Uz =}z e Uz,) 4 (2)< & (28
This amounts to say that by a local diffecomorphism near 2.0
Qa0 U(zo) can be transformed into an open subset of a half
space, Indeed we can select a set of real ¢® coordinates in
which ¢4 -#(zo) = X is the first coordinate, Thus Q0 U(zo)
is an open subset of the halfspace 1 % ¢ 0 T

Let © ©be an open subset of I° (= ]Ran) with a smooth boundary
and let z, < 2l be a boundary point of 0 . Given fe #(Q)
we will say that f is holomorphically extendable over Zy if

we can find a neighborhood V(zo) of Z, and a holomorphic
function ? e Ao V(zo)) such that

;l_&:f.

Definition. Let {1 be an open subset of E° with a suooth
boundary. We say that (L is an open set of holomorphy if for

every boundary point zoean =0 _0n we can find a holomorphic
function fe H(Q) which cannot be extended holomorphically
over z,.

Examnles,

1, Every open subset {1 ¢« § with smooth boundary is an open
set of holomorphy. Indeed for every 1z e a2 £ = (z-zo)"l
is not extendable over Zgye

2. The ball O = 5321 |Zjl2 < be} in €% is an open set of

holomorphy. Indeed f= (zl - b)-l is not extendable over

(9,0544440)s Since the unitury group U(n) acts transitively
on 30 by holomorphic transformations, the assertion follows.

3. Thecircular shell Q =§;aaa jgli zjlzz. b'z% for

0O<a<b, if n 22 is not an onen set of holomorphy.

Indeed for every point 3z  of the inner boundary jgl {zj]Z = al

we can place a top hat T in (L such that 2y T.
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b) Open sets with arbitrary boundary.

By a domain we mean an open connected set.
Let A < A be two domains in E" and let S< #(A) be a
set of holomorphic functions in 4. We say that A is an

S - completion of A if

Im{ #A) » HM} 5 s
i.e. if every f e S extends holomorphically to E 5
Rote that by the‘principle of analytic continuation the extension
of £ to fTe A(R) is unique.
For instance for a top hat T , T 1is an H(T)=completion of
T (n)22).

Definition.
Let {1 be an open set in L . We say that {l is an open set
of holomorphy if:
for every domain A< (1 every /:f(Q)lA - completion 3 of
A 1is contained in Q.

Remark: - Open sets of holomorphy with a smooth boundary are
necessarily open sets of holomorphy in the sense of this general
definition. We will see later that the converse is also true.
We will refer for the moment to the definition given before for
o pen sets of holomorphy with a smooth boundary as the
"provisorial definition of open sets of holomorphy".

c) gggmorpl_zic convexity, characterization of open sets
of holomorphy.
An open set [ in g" is called holomorphically convex 1if
for every compact subset K < (L the holomorphically convex
envelope K of K in Q, defined by

E=§ze.ﬁ| |£Cz)] £ lIf"K for every fe& AQ) 3,

is also compact.



-13-

A. Andreotti

Theorem (l.3.1). An open set ()< t is holomorphically
convex 1f for every divergent 1 seguence ixigca there
exists an f e H(N) such that

sup lf(xv)l = + ® (¥Ycondition D"),
Vv

Proof. Condition D dimplies that (L is holomorphically
convex. Indeed, if K 1is compact and K is not we can find a
divergent sequence §x,{ in (L , ¥x,}cK.

But then for every f e #(Q), |f(xv)| 4 ”f“K < @ wywhich
contradicts condition D,

Conversely let (1 be holomorphically convex., We want to
show that condition D holds. Of this fact we will give two
proofs,

lst proof: By absurdity; suppose that there exists a diver-
gent sequence ‘ixu}c QU such that for every fe A (L)

B\L}p lf(xu)l < ®, By passing to a subsequence we may assume
§xv? contained in a connected component of 2. Without loss of
generality_we may thus assume (L connected, Set

A=ife HR | sup le(x )| £ 1%,

Then
#@) = 5 ma.

Now A 1is a closed subset of #(Q). Thus by the Balre category
t heorem A must contain an interior point. But A is convex
and symmetric (A = =-A) thus A must contaln a neighborhood of
the origin say

V(K,e) =§te i@ | el <edca

(for a compact K cQ and some & > 0). We may assume as well
that K has non-empty interior.

(‘I"_gymmug with no accumulation point
n v .



-14-

A Andreotti

E
Now for every f 20, f € 4(R), TFT- ¢+ fe A, there-
fore for every f e #/(Q)

sup [£(x )| & Hells o
- v/ SE K

In particular, replacing f by fm, we get

sgp fi’m(xu)] 1% “fmllK

1.30‘

=

1l.m
sgp If(xu)} < (f) ”f”K .

This shows that
sup [2(x))| 5 Nellg

~ "
for every fe& #(Q). Hence {x,§ €K. This contradicts the holo-
morphic convexity of Ll .

End proof: Select a sequence Eng of compact subsets of

such that

o ® A
Kp© Ko v pi1 Kp = Qo Ky =Ko
Let §$x,% be a divergent sequence inQ . Replacing Eng and

{xvg by subsequences we may assume that

xm¢ Km ’ xme Km+1 « for m=1,2,... .

Since xmq/ K =K wecan find g < H({) such that

”gm” Km <1 Igm(xm)

Choose positive integers lm successively so that
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L

X

1. m=-1 1'i

Xm o
lgy =~ x| > m+ B, T4 +| 51 & (“m))'

Now f = £ g;m converges uniformly on every lﬂn and thus on
every compact subset of () as any such set is contained in
some Km.

Thus f is a holomorphic functiom in {:, But from the last
inequality we derive that [ £(x,) | > me

Therefore sup |f(x )| = + = .
v v

Theorem (1.3.2), (Cartan - Thullen). An open set (1 < e
is an open set of holomorphy iff (0 1is holomorphically convex.

Proof. If 0 4is holomorphically convex, then condition D
holds, thus clearly [l is an open set of holomorphy.

Conversely suppose that (1 is an open set of holomorphy. We
want to prove that (L is holomorphically convex. If this is not
the case, then there exists a compact subset K < (L such that K
is not compact.

Because for each coordinate function we have llzjil : = }]zj ”K 5

K is bounded. Let §$x,} <K be a divergent
sequence in (0 such that x -+ z, ¢ 30. Let || zI = sup lzd|
denote the polycllindrical norm in ﬂn , and let

p = polycilindrical distance of K and 3Q.

Certainly P » 0. If p = ® then () =C" which is clearly

holomorphically convex, We may assume P < o, Let K' be the
set of polnts in L whose polycilindrical distance from K is
<3p. Then K' 18 a compact subset of L . For every n - tuple
4 of non-negative integers and every f <« #(Q)
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1 a 1
Lo0%r . My O,
therefore for any x e f
. a a
@) lgoew) i ol .
For z € K we have by the Cauchy formula
0% (a3 = | =2 o f [ =8 o I -
,(2n1)n Igl'zll = s n—zn!
£(€)
T d T % e 0g
(%1-21) (§n-zn)
and therefore
q 1
(2) |p#(z)) <at et {f :—E-)—Tﬂ-
2

From (1) and (2) it follows that the Taylor series of f at
A
a point x€ K

L ) (z0)¥

!
is majorized by the series

z=X
Nell g, )m

and therefore is absolutely convergent in Q(x) = 3 Hz=x 1| < p/48.
Now for » sufficiently large Q(x,) contains the point Zg o
Let A Tbe the connected component of Q(x»)n Q. containing Xy

] 4

{1}
n o«
As usual for o = (d74...,2)) N we set D =
“1+...+dn
a ¥ ﬂ! =d1!|o-an!, ]di Edl+co-+d‘n .

e &
32y 1., R
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Then Q(xy) 1is an ,C/(Q)m -completion of A . But ax,) & Q
as it contains the point 2z . Therefore {l cannot be an open
set of holomorphy.

Remark. Let ([ be an open set in T with a smooth boundary.
If Q 1is an open set of holomorphy then by the Cartan-Thullen
theorem L 1is holomorphically convex and therefore satisfies
condition D. Hence .l 1is an open set of holomorphy in the pro-
visorial sense. For open sets with a smooth boundary the pro-
visorial and the generazl definition of open-set of holomorphy are
equivalent.

(L)

1.4 Levli -_convexity.

a) Let {1 be an open subset of E° and let ¢ : (L3 R be
a C® function. At a point a ¢ (L we consider the Taylor
expansion of q: 3+ with obvious notations for the partial deriva-

tives, we have,

$(2) =4(a) + I d4(a)(zma) + & ~4(a)(Z,-3) +

+ «}E?ﬂaé(a)(zd-ad)(za-aﬂ)
+ ‘i‘z 9&5 a)(id-é:)(iﬁ-aﬂ)

—a JCE =B a3
+& ad‘_;p(a)(z“ acc)(z@ aﬂ) + of])z-a Il .

Because E_ = %— and because ¢ 1s real-valued, we must
have W = 3&«3) H $P4z8-5 =dd—5¢(a) :adéﬁ(a) =a<"paza'5-

=4
In particular the quadratic form

L(8) (v) = Sadéua) v, 3\6

(1)
Eugenio Elia Levi, 1883 - 1917.
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is hermitian; it is called the Levi-form of ¢ at a.
A biholomorphic change of coordinates near a acts on
L(¢)a with a linear change of variables

v » J(a)v

where J(a) 1is the Jacoblan matrix of the change of variables
at a.

It follows that the number of positive and the number of nega-
tive eigenvalues of the Levi-form at a do2s not depend on the
thoice of local coordinates,

Remark., If (dk)a # 0 we can perform a change of coordinates
fin which a is at the origin and in which the new z, - coordinate
is

Lo #a)(z-a) + 3TD fi(a)(zd-ad)(zﬁ-a ¥

<P &
Then ¢ takes the following Taylor expansion:
$(2) = 4(0) + 2 Re 2, + L(§)(z) + Ol = (|7} .

b) Let us assume that (dé)a #0 and, for simplicity of
notations that a 1is at the origin. Set

U=93z ..:Q] $(z) < $(0) .
Then 3U = U - U is smooth near a = 0 and the real tangent
plane to U at the origin is given by
I (0)x + % - (0)y. = 0.
6x¢ a 3.‘!4 (=3
This plane contains the (n-1l) - dimensional complex plane with

equation
s gd:}:(O) z, = 0 .

This is called the analytic tangent plane to 3U at a and
will be denoted by Ta(aU).
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Consider the Levi-form of ¢ at a restricted to T,(3U) ,

z 3 aﬁ(a)\& Va

L(4) =
a’I’a(aU)
s aqb(a)vd = 0

We obtain in this way a hermitian form in n-1 variables and
again we realize that the number of positive and negative eigen=-
values is independent of the choice of local holomorphic
coordinates,

Suppose now that U 4is defined in a neighborhood of a by
a nother €€ function ¥ with (df)_, £#0 :

U=j3z¢€ Ql‘if(z)< ¥(a) .

By subtracting constants from ¢ and ¥ we may assume that
4#(a) =¢(a) = 0. Then either 4 or ¥ can be tacen among a set
of C < real local coordinates (cf. 1.3. a)l Applying the
Taylor formula with the rest in integral form we recalize that in
a neighborhood of a ¢ =h¥ with h a C% function and
invertible (i.e. h(a) # 0). Since ¢ > O where ¥ 5 O we
must have h(a) > 0.

Now

d.3p =a(h 3Y¥+ 3n.Y)

=133V +3h.51 +3h2F 5357

and therefore

Wbalp ouy = B LWgp oy -

This shows that the signature (i.e. the number of positive and
negative eigenvalues) of the Levi-form restricted to the analytic
tangent plane to 9U at a is independent alsc of the choice of
the defining function ¢ for U near a,
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Proposition (1l.4.1). Let U be an open subset of E° with a_
smooth boundary. At any point ae 39U the Levi-férm of any
defining function for » U restricted to the analytic tangent

plane to. aU at a has a signature which is independent of
local holomorphic coordinates and of the choice of the

defining function.
Let p(a) (q(a)) Dbe the number of strictly positive
(strictly negative) eigenvalues of L(¢)

a[ Ta(aU) +« These are

biholomorphic invariants of the triple (U, 3 U, a), Note that
we must have

p(a) + q(a) g n -1,

As an exercise we can show that there is an analytic disc of
dimension p

z: DP » g
(1.e. the biholomorphic image of the unit ball
P =5te P | §[tila< 1 4n £P) such that

T(0) =a

T(0P) -Jalc -0 .
Analogously there is an analytic disec o : p? 5 g% of dimension
q such that

s(0) = a

c(®dY) -Jaleu .

Indeed we can coose coordinates at the origin such that

4(z) = Re z; + L(o)o(z) + o(ll zn3)
with
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Pegel
pil 2 2
- w B & & A
O e A A

where the j's are 20 .
Therefore near O, for & > O sufficiently small, if
lZ

o] ([zala + o0+ ]z

el < & and zl-zp+2=...=zq=0

then &$(z) > 0 . .
Thie proves the first statement. The second one is proved with

a similar argument.
¢) Theorem (l.4.2). (E.E.Levi [36]). Let Q be an open
get of holomorphy with a smooth boundary. Then the Levi-form at

each boundary point restricted to the analytic tangent plane is
vositive semidefinite.,

Proof. Assume, if possible, that L(4) has a negative

ol Tyl
eigenvalue at the point 0e d<l, ¢ being a defining function
for Q with ¢ (0) = 0. By suitable choice of the holomorphic
dgoordinates we may write near O

o3 s LT A L= 3
$(z) = 2 Re 2z,(1 + ) ajzj) -2y %, v gLy By 4 o( zlI”)«

First restrict 4 to I =§Im 2) =0, Zg=...=12 = I
There exists € >0 such that for || zll < 2£ on the region
7
]RJngxlsog, (zy = %, +1y,), we have
i s -
fo(ﬂzn)Ic-}lzﬁexl(l+a1xl+aaza)-zaza .

Therefore : for € sufficiently small, ¢ < O on the discs

Dr=le=r, }za}éﬂ, 23=...=zn=0} 1 =€<r< 0.,

i.e. D cQ,
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Also if £ 1is sufficiently small,

zy = 0, %<1z2|(€, 23=.‘.=zn=0§¢ Q.

Hence there exists 8 , 0<® <&, such that

A=§% <Izal <€, Izlla + |23]2+ sl +‘zn)24 SECQ’
and there exists n , 0<N< &, such that
B’ZIZJ_"'§I<Q; lzaf.{E,lzzf2+...+[z.nle<|z§c_ D_

Let A UB = A and let

,& -i‘zaf<£| lzlla-l-lZ}’af...{- znaé S.~

A
By the disc-theoren ’A is an //(.Q)' ~completion of A . But A
contains the origin OF(Q, thus @ 1is not an open set of
holomorphy.

It is natural to ask if the above necessary condition for an
open set Q in g% with a smooth boundary to be an open set o
holomorphy is also sufficient (Levi-problem). The answer is
affirmative for open sets in £® but not for open sets on com=-
rphex manifolds. We will r-turn later to this question.

Exercises.

1, Prove that every convex domain in t® 1is a domain of
holomorphy.

2. Suppose that 2 has a smooth boundary and that at a point
a € (L the Levi-form restricted to the analytic tangent plane
é.t a too(l 1is strictly positive. Prove that we can dicose
1098.1 holomorphic coordinates at a such that 2 is locally

elementary convex at a .
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Hint: we can replace the defining function ¢ by an increasing
convex function ¥ of ¢ 8o that LC¢)a is strictly positive
(for instance take ¥ = o ‘with ¢ 5 0, see [28], p. 263)
and then use the remark in a).

3, Under the same assumption of the previous exercise, prove
that there 1s a fundamental system of neighborhoods B(a) of
a which are domains of holomorphy such that B(a) n (L is an
open set of holomorphy,

Hint: in the above specified local coordinates take for B(a)
any small coordinate ball with center in a, then apply the
first exercise.

The material of this chapter is covered in all standard books
on complex analysis as [28], [Z1].
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Chapter II. Pseudoconcave manifolds,

2.1 Preliminaries.

a) Presheaves. A presheaf on a topological space X 1is a
contravariant functor from the category of open subsets U of
X to the category of abelian groups i.e.

for every U an abelian group S(U) is given and
for every inclusion of open sets V <€ U a homomorphism

P, s(0) »s(V)
is given such that for every chain of inclusions

We Ve U of open subsets of X we have

A presheaf S = S(U) ; I‘UV

open set Q0 = X and every open covering /u =8 uig
the following sequence isexact

is called a sheaf if for every

feI of

&
0 3 8(Q) 5 iLTI s(uy) - (171:.1)(;12 8(Ty N UJ)

where £ 1is defined by

8Dy = ry (D , fes (@
i 1
and where & 1s defined by
v U
8(1) =rJ ¢t -rJd g f=3f FS(U Ya
e 0 vy = To g fuy T Tugovg oy Ui§€1c1 i

Example:
S= {Homcont (U, I), rUv§ , where Homcont (U, &) denotes
the space of continuous functions on U with values in T and

where ru are the natural restriction maps, is a presheaf and

v
also a sheaf,
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In a similar way one defines sheaves of rings and also sheaves

of modules over a sheaf of rings,

b) a stack %J over X of abelian groups is the data of a
t opological space T s & contlnuous surjective map 7 : ’}' + X
such that

a) 7 1is a local homeomorphism i.e. every point ¢ ‘:S'J has
an open neighborhood s = s8(f) such that “’}s is & homeomor=-
phism of 8 onto an open subset of X 3

p) for each point x e X, ayx =n"1(
of an abellan group in such a way that the map

?’xx"}"(l) _9?

X) has the structure

given by

(€yBp) 2 =R is continuous.

@iven a stack (rgr), m, X) of abelian groups, for every open
set U < X we can consider the abelian group
ru, c}") =§5: 0 -)?J! s continuous, Mo 8 = identitygon
U
of all "sections" s of ¥ over U, If Ve U , the natural
restriction map rUv: ru,3) - F'(VyF) 1is defined and one
obtains in this way a presheaf which is also a sheaf.
Conversely, given a presheaf o =§8(u) ; r“vg one can
associate to it a stack (T, m, X) as follows,
wWe set for every x e X :

?) =l'ﬂ s(u) , i.e. an element of
X X

‘3."){- is a cl .ss of equivalence of couples (U, f) with

. o
&2 the "fibered product" T"x 5’ is defined as the part of

5}“, c; lying abeve the diagonal A of Xx X Dby projection
Tem: T > Xxx g

7T« x‘? = (rx7)7(a).
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Xe U, fe S(U) under the relation

(U, ) » (U, £,)

if there exists 03 3 x, U_3 cUyn U2 such that

The equivalence class in ‘}"x of (U, f) is denoted by f_
and it is called the germ of f at x,

We then define 3 = xlé}x E}; and T by n(cjdx) = X.

If we take on ,}, a8 a basis for open sets the sets of the

xfu f, for all fe S(U), we obtaln, as one verifies,

a stack of abelian groups (%, ™, X).

form

Starting in this construction with a sheaf, constructing the
corresponding stack and then the corresponding sheaf of sections
we get back the original sheaf. We thus have a one-to-one
correspondence between sheaves of abelian groups and stacks of
a belian groups. Although this could generate some confusion it
is customary to represent a sheaf by the associated stack (see
for instance [25] and [30] or [18]).

¢) Meromorphic functions. Let now X be a complex manifold

and let & be the sheaf of germs of holomorphic functions on

X. For every open set Ue X it is defined by the space A4 (U)
and the natural restriction maps. The space /(U) 1is a ring.
let pD(U) be the subset of 4 (U) of divisors of zero, i.e.
D(U) is the set of those holomorphic functions on U vanishing
on some connected component of U. Let @(U) be the quotient
ring of A(U) with respect to O(U) i.e. §(U) 4is the set

of quotients é with fe #(U), ge HU) - D(U) with obvious
identifications:

[
I
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If V< U 4is an inclusion of open sets, the restriction map
rnv: A (U) = #(V) sends #(U) =p(U) into A(V) - O (V) and
thus induces a homomorphism of rings

rUv: >
We obtain in this way a presheaf. The corresponding sheaf 77(15

called the sheaf of germs of meromorphic functions on X. the ring
7{7(){) = [ (X,7) 1s called the ring of meromorphic functions on

on X. Note that & (X) < #(X) but A£(X) may be actually
smaller than 7?(1{).

Example: Take X = Pl(E), the Riemann sphere, Then #(X) =
thus (F(X) = T while ‘;f(x) is isomorphic to the field of all
rational ifunctions in one variable ¢, "/‘f(X) v o(t).

If X 4s connected then ~% (X) and & (X) are tields.

In the sequel we will always assume that X 1is a connected

manifold.,

2.2, Mermorphic functions and holomorphic line bundles.
4) Holomorphic line bundles. Let X be a complex manifoldj

by a holomorphic line bundle on X we mean a triple (F, #», X)
where F is a complex manifold, # : F—=X a holomorphic

surjective map such that
i) 7 is of maximal rank
ii) for every x e X f/‘"l(x) is isomorphic to the complex

field ¥ 4in such a way that
«) the map

F *y F->F
given by (u, v) = v+v is holomorphic
a) the map
L~F—>PF
given by (A, v)—= Av 1is holomorphic.
Given two holomorphic¢ line bundles (F, 7, X), (BE,«, X) over
X a morphism (or bundle map) is a holomorphic map
f : F~E such that
1) 7 =wo ¢



