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Preface.

In the spring of 1972 I had the opportunity to lecture at Lund

University and more extensively at Amsterdam University and at the

C.I.M.E. session in the. summer of 1973.on some topics of complex

analysis of my choice. The subject has been chosen within the

limited range of my personal knowledge and is intended for a

non excessively specialized audience. We have tried therefore

not to obscure the ideas, in the attempt to obtain the most gen

eral statements, with an excess of technical details; for this

reason, for instance, our main attention is devoted to complex

manifolds, and we have recalled basic facts and definitions when

needed. The purpose was not to overcome the listeners with admir

ation for the preacher but to share with hime the pleasure of in

specting some beautiful facets of this field. Indeed I was very

grateful .to receive many valuable suggestions; in particular I am

indebted to L. Garding, L. Hormander, F. Oort, A.J.R.M. van de

Ven and e.pecially to P. de Paepe who undertook the heroic

task of writing the notes.

The material deals with the theory of Levi convexity and its

applications, with the duality theorem of Serre and Malgrange,

and with the Hans Lewy problem. The limited time at our disposal

may account for some conciseness that, however we hope, will

turn to the advantage of the reader.

P. de Paepe has corrected several mistakes of mathematics and

presentation; probably only few remained undected.

San Pellegrino al Cassero, September 1973,

Aldo Andreotti.
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Chapter I. Ele!llent ary t heory o f hol omor ohi c convexi t y .

1.1 Prel iminaries.

a) Let 11 be 'ill op en s et in lCn
I t he Cartesi an pr oduct

of n copies o f t he complex f ield II: I wit h coor di nat e funct

ions Zl"",Zn'
A f unction f: .a. - lC is c al l ed l101omorl) hic if for ev ery

poi nt Z it J1.
o

.!l on which f

pans i on

t here ex i ~ts a neighborhood U( zo ) of Zo in

admi t s an absolutely converge nt power s er i es ex-

for every

Here a

0), a .I 'a... I'" ,'""".1 n

= nat ur al number s including
a. 0. 1 d.n

Z = zl ,zn

is hol omorphi c .
maps i s ( where it is def i ned )

A map f = (fl, ••• , f ) : .Ii. ~ a;m. m
if e ach comnonen t fi, 1 ~ i ~ m,

The c ompos i tion of two holomor phic

a hol omor phi c map.

i s s aid to be holomorphic

b) We will write Z = x + iy with x, y ]Rn , i = ~.
1 - 1 - t he bar den ot es compl exThen x = 2(z+z) y = 2i(Z-Z) where

con jugation, and will wri te 1 - dy = 1 -we dx = 2( dz+dz) , 21 (dz-dz) .
For any fu nction f : .0.-11: of cl ass Cl we have

ae = ~=l
a! dZ

j
n o f dZ

j
+ jh a=<3 Zj z .

where J

af
= .!(of + .!~)

aZ
j 2 ex j 1 oYj

af .!(~. 1 o f )
a'Z j = - I aYj2 oXj
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we define

=

=af

if

n af
j~l azj

~ u
j=l 0

Zj

The following theorem est ablishes a cr i t er i on for a function
1 .

ot class C to be a holomorphic function.

Theorem. A function f : .n
phic iff at every point of n f

equations:

at = °
(1.e. at 0, •.. , af 0,

all = - =
oZn

-; of class Cl is holomor

satisfies the Cauchy-Riemann

i.e.

for 1 1 j ~ n) •

c) Let f be holomorphic in a neighborhood of the closed

polycil1nder

for 1 ~ j ~ n

then for every Z c ~, the interior 0 f P, we h ave the

Cauchy integral formula

From this tormula it follows easily (by ex pansion of the
kernel of the integral in power series) that a continuous func
tion t: Jl, - a: which is separately holomorphic in each variable

is a holomorphic function (Osgood's lemma). This is even true

it the condition that t is continuous is removed (Hartogs'

theorem) but t his is much more difficult to prove.
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d) We recall the following result:

the set of points where a holomorphic function has a

zero of infinite order is open and closed (principle

of analytic continuation) ..

In particular if f . is defined in.n. , if.n iscon
nected and if f vanishes at some point of..o. of infinite order

then f is identically zero on n .
e) We denote by H(n) the set of all holomorphic functions

in n. It is a vector space over t.
We can provide /I (Jl) with a locally convex topology defined

by the family of seminorms

= sup
K

Ir ]

where K is a compact s ubset of .fL. A fundamental system of

neighborhoods of the origin is then given by the sets

V(K, e ) = f r € !I(Jl.)

for K compac t in 11 and E. > O. This topology is the topol

ogy of uniform convergence on compact subsets of n . _
If Kl C KZ e, K3 c, ••• is a ae quenc e of compact sets such

<S'

that K c, KO 1 for m =1,Z, ••• , and.D:: =1U If-in m+ m- m
one easily verifies that the count able s et of seminorms

defines the swne topology, Thus #(Q) isa metrizable space,

one can t ake for Lns t anc e as a di s t ance the function

r, g eo HUl.).
Ilf-gll~

= ~ ~
mel ~m

d(f,g)
1 + Ilf-gll K

:n

Since continuous functions satisfying the Cauchy integral
formula are necessarily holomorphic, it fo l lows that H (U) is

a complete met r i c sp ace (i.e. a Frechet sp ace) and therefore a

Batre space.
We - also note th at bounded sets B c: /I (il) are relatively

compact. This is a consequence of
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Vitali's t :leorem:

functions on II.

exists a constant

If ffv~ 1s a seguence of ho1omorphic

s uch that for every compact set K c. n ~
C(K) for which we have

/lfJI K ~ C(K) v = 1,2, •••

then we can extract from ffu~ a sUbseguence ~ful ~

converges uniformly on any c ompact subset of n .
In particu1ar'the unit ball in the norm

compact with respect to the norm II II~
of Frechet-Schwartz (e r, [14] ).

refer to [28], [31] I [431.

II II 1s re1a-
Km+1

1.e. H(fL) is a space

For more det~ls we

1.2 Hartogs domains.

Consider the subset in m3 (coordinates x I .YIt,

Z =x + iy)

T = liz) < b I 0 s, t c e5 \J fa < Iz I <. b, 0 ~ t < d 5

(or Hartogs domain) in

points z = (zl""'z ). n
contained in a top hat

where o < a < b and 0 < c < d.

Bec ause 0 fits sh ape we call T a "top hat ll • A top hat
n n-1

II: = a: "-II: , n 2 2, is the set of all

in a:n for which (zl' (j~~ I z jI2)t) is

in m3•

Theorem (1.2.1). (Hartogs). ~ f be holomorphic in the

top hat

T = ! Iz1 / <. b , j~2 IZj/2 < c2 SU {a <. I zi <: b ,

j ~2 I Z j I2" d
2 S

in II:
n , n ~ 2.

~ f extends holomorphical1y t o the filled up top hat

n 2 2
j ; 2 IZ j) <. d 5 •
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!:!::221. Let the functions ~, p e Ii, be defined by the

Cauchy integral

J llsI =b-p

f(~, z2' ••• ,zn)

S -zl

extendsh(T)

If P is large ~ is well-defined, continuous and holomor

phic in each variable for I zll b-l/p and j~2 IZj 12
<: d2

Therefore ~ is holomorphic. Moreover ~~ is independent of

p. Set g =~, then g is defined in T, is holomorphic

there and glT = f because g-t is holomorphic in T, is zero

on ~ Izll < b, ~ IZjl2 < c
2 S and T is connected. Q..E.D.

2

- II:
n be a biholomorphic map onto an open set

(i.e. h is invertible and h and h-l are both

"Let h: T
" nh(T) of 11:,

holomorphic). Then any holomorphic function on
"holomorphically to h(T).

This is a consequence of Hartogs l theorem and the fact that

the composition of two holomorphic maps is a holomorphic map.

It is sometimes called the "disc theorem".

We quote some "s i mpl e consequences of Hartogs l theorem."

Let n L 2 and f holomorphic on the punctured ball

to ~ ~ Iz j/
2 < r 2 J then f extends holomorphically to the ball

1r I Zj/2 < r2S. In tact we can put a top hat T in the

punctured ball so that T covers the origin. I n particular it

follows that a holomorphic function f in n ~ 2 variables

cannot have an "isolated s ingularity" nor an isolated zero

(since this would be an isolated singuaarity for l/f).

li3 Open set. of holomorphYT

a) Open sets with a smooth

len has a smooth boundary if for

we can find a neighborhood U(zo)

f: U(z ) • lR such thato

boundary. An open set D.. in

every point Z e. 0 n =rt _ [L
o

and a C 6' function
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This amounts to say that by a local diffeomorphism near Zo

n 0 U(zo) can be transformed into an open subset of a half

space. Indeed we can select a set of real C tJ> coordinates in

which + - +(zo) =xl is the first coordinate. Thus il () U(zo)

is an open subset of the halfspace t. xl c, °S.
Let.Q. be an open subset of a:n (= m2n) with a smooth boundary

and let zo" on. be a boundary point of.n.. Given f € /I (Q.)

we will say that f is holomorphically extendable over Zo if

we can find a neighborhood V(zo) of Zo and a holomorphic

function f G II (n u V( z » such thato

fIn. = f •

Definition. Let.ft be an open subs et of a:n with a smooth

boundary. We say th at..Cl. is an open set of holomonphy if for

every boundary point zed Il. = Ii. (l. we c an find a holomorphic
o -

function fell (rl) which cannot be extended holomorphically

over Zoe

Examples.

1. Every open subset 12 c.. a: wi th smooth boundary is an open

set of holomorphy. Indeed for every Zo 6 »s: f = (z-Zo)-l

is not extend~ble over Zoe

2. The ball it = Tj~l IZj 1
2

<:. b
2 ~ in a:n is an open set of

-1holomorphy. Indeed f = (zl - b) is not extend able over

(b,O, ••• ,0). Since the unit ary gr oup U(n) ac t s transitively

on a Q. ' by holomorphic transformations, the a..s s e r t i on follows.

3. The ' circular shell Il. = 1a2
c, jt. I zjl 2 <. b2 $ for

° < a < b, if n ~ 2 is not an ODen s et of holomorphy.

Indeed for every point Z of the inner bound ;ITy o~l Iz
Jo)2

= a
2

o " J=
we can pl ace a top h at T in [l such that zo" T.
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S Co #(A)
"
~ is an

b) Open sets with arbitrary boundary.

By a domain we mean an open connected set.

Let /J c. A be two domains in a:n and let

set 0 f holomorphic functions in A. We sa:y that

S - completion 0 t /J. if

be a

/\

i.e. if every f e S extends holomorphically to 4 .
Note that by the principle of analytic continuation the extension

of f to f £ #(A) is unique.
'"For instance for a top hat T, T is an )/(T)-completion of

! (nn :2).

of'"- completion ,1every

Definition.

Let n. be an open set in a:n • We say that D.. is an open set

of holomorphY if:
for every domain Il c, fl

b. is contsd.ned in .a. ."
Remark: "Op en sets of holomorphy with a smooth bound ary are

necessarily open sets of holomorphy in the sense of this general

definition. We will see later th at the converse is also true.

we will refer for the moment to the definition given before for

o pen sets of holomorphy with a smooth boundary as the

"provisorlal definition of open sets of holomorphy".

c) Holomorphlc convexity. characterization of ope n sets

of holomorphy.
An open set SL in a:n is called holomorphically convex if

for every compact subset K c. n.. the holomorphically convex,..
envelope K of K in IL, de f i ned by

K= tZ".n I If(z)/ ~ IIfll K for every t « #((1.) 5,

is also comp ac t , '
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Theorem (1.3.1). An open set .D. e, a:n
(1)

convex if for every divergent seguence

exists an f 4. !lUI.) such that

is ho10morphical1y

~ X,;5 c (l. ~

sup /f(X,,) I = + '" ("condition DII).
V

!:!:£.2.!. Condition D implies that .n. is ho1omorphic all y

convex. Indeed, if K is comp act and K is not we can f ind a

divergent sequence [xvS in n. t £xv} C K •

But then for every f ~ /I(U) , If(X) I ~ 11 f II K c: <P which

contradicts condition D.

Conversely let n be ho10morphical1y convex. We want to

show that condition D holds. Of t his f act ~e will give two

proofs.

1st proof: By absurdity; suppose that there eXists a diver

gent sequence ~ xvl c. Q. such that for every t ~ II (ft)

sup If(X)1 < tP. By passing to a subsequence we may assume

'"~ xv~ contained in a connected component of 12.. Without loss of

generality .we may t hus assume .fl connected. Set

A = 1fe J.I (Q.) I sup /f(X ) I ~ 1 ~ .'
v "

Then

1I(n.) = '"
m~l m A.

Now A is a closed subset 0 f 1-1 (.0.) • Thus by the Baire category

theorem A must contain an interior point. But A is convex

and symmetric (A =- A) thus A must contain a neighborhood of

the origin say

V(K, z ) =[f .. 1I(n.)

( for a comp act K c, n. and some l. > 0). We may assume as well

that K has non-empty interior.

(1) By thiS We mean a sequence [x ,,~ with no accumulation point
in .('L •
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Now for every f il 0, f ~ #(Q),

fore ror every f <1 I/(Q)

sup [r(xv)1 ~ ~ IIrJl K •
v

In particular, replacing r by ~, we get

sup I fI(x)1 ~ ! IIfll\K
-V -f.

i.e"

1

sup !r(x )1 So (f}i !lfll K •v v

This shows that

Ii Andreotti

rEA, there-

sup I f(X
Il

) J s I)f 1/ K

forevery fE-lim). Hence tXv~CK. This 'contradictstheholo

Inorphic convexity 0 f Jl •

2nd proof: Select a sequence 1~S of compact subsets of

such that

Let ~ XlJ~ be a divergent sequence in..Q. Repl acing ~ KmS and

[Xv5 by subsequences we may assume that

X m E. Km+l • for m = 1,2, •••

Since Xm1 Km =Km we c an find ~ ~ lI(fIJ such that

Choose positive integers .A
m successively so th at
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..Am
Now f s £ ~ converges uniformly on every Km and thus on

every compact subset of D.. as any such set is contained in

some Km'
1hus f is a holomorphic function in LL. But from the last

inequality we derive that /f(Xm) I> m.

Therefore sup
v

If(x ) J s + rI' •
\J

Theore. (1.3.2). (Cartan - Thullen). An open set a G mn

is an open set of holomorphY ifi n is holomorphicallY convex.

sup

~ c;"
K is bounded. Let 2 xvJ C K be a divergent

sequence in ..Q such that x" ~ Zo ~ (la. Let Jl Z 1/ =
denote the polycilindrical norm in mn , and let

f£22!. If J1 is holomorphically convex, then condition D

holds, thus clearly Jl is an open set of holomorphy.

Conversely suppose that n. is an open set of holomorphy. We

want to prove that fL is holomorphically convex. If t his is not
"the case, then there exists a compact s ubset K Co fL such that K

is not compact.

Because for each coordinate function we h ave IlZjJl = IIZj/l~,
K ._

p =polycil1ndric al di s t an ce of K and an."
Certainly p > o. If P s 00 then .n. =mn which is clearly

holomorphically convex. We may assume p c <p. Let K' be the

set of points in f.l whose polycilindrical distance from K is

~ 1-P. Then K' is a compact subset of 11.. For every n - tuple

4 of non-negative integers an d every f ~ #(Q)
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"therefore for an.y x e K

For z ~ K we have by the Cauchy formula

an.d therefore

(2)

From (1)
a point

and (2)
1\

x ~ K

1
1~1

(~)

it follows that the Taylor series of f at

1 Dt1 f ( x ) (z_x)dat
is majorized by the series

d.

1\ r II K' ) ;ii~ I
and therefore is abs ol ut el y convergent in Q(x) = ~ f1z-x 1\ c P/4S.

Now for v sufficiently large Q(x,,) contains the pointzo •

Let A be the connected component of Q(x.) Il n. containing x 1J.

)in et
we set D =
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Then Q(x'll) is an II(U)/tJ -completion of A. But Q(X
iI

) ¢ .a
ss it contains the point Zoe Therefore Jl cannot be an open

set of holomorphy.

Remark. Let .n. be an open set in II:n with a smooth boundary.

If .Q is an open set of holomorphy then by the Cartan-Thullen

theorem J1 is holomorphically convex and therefore s atisfies

condition D. Hence .R is an open set 0 f ho lomorphy in the pro-. .

visorial sense. For open sets with a s mooth bound ary the pro-

visorial and the general definition of open "set of holomorphy are

eqUivalent.

1 :4 Levi (1) - convexity;

a) Let.a. be an open subset of II:n and let ~ :.Q ~ lR be

a C ~ function. At a point a e D.. we consider t he Taylor

expansion of f; with obvious notations for the partial der i v a

tives, we h ave,

~ (z) '" ~ (a) + r. d. 4(a)(za-act) + [,;:4(a)(~-8.ct) +

+ t~~j34(a)(zd-ad)(z~-a~)

+ tZ 9 --t>ca)(z -8. )(z -8. )etp . do a: fl (3

+6 l) q(a)(z -a )(z -8.) + o( IIz-a /13)d.p a a; ~ 13

Because and because ~ is r eal-valued, we must

d f (a) '" a--4J( a) ; a - k. a) = Cl- 4(a) •
~, df3 ci~ c{p'" ~ - «. a)

d.have ~ ~( a)
d

In particular the quadratic form

=ta -f(a)
<!13

(i)
Eugenio Elia Levi, 1 883 - 1917.
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is hermitian; it is called the Levi-form of ~ ata.
A biholomorphic change of coordinates near a acts on

L(~) with a linear change of variablesa

v ~ J(a)v

where J( a) is the Jacobian matriX of t he change of vari ables

a t a.

It follows that the number of positive and the number of nega

tive eigenvalues of the Levi-form at a do~s not depend on the

:hoice of local coordinates.

Remark.

lln which

1a

If (dp)a ~ 0 we can perform a change of coordinates

a is at the origin and in which the new ~ - coordinate

~ -0 Ha)(z -a ) + tL' 0d ,,40 ( a )( z -a Hz -af.l.).
d dd. r-- del. ~y

Then ~ takes the following Taylor exp ansion:

~ (z) =4(0) + 2 Re ~ + L(Oo(z) + 0«1 z 11 3) •

b) Let us assume that (d~)a ~ 0 and, for simplicity of

not ations that a is at t he origin. Set

U =~:z E.a./ 4>(z) < ~(o)

Then au
plane to

=u- U i s s mooth near a =0
U at the origin is given by

and the r e al tangent

E

This plane contains the (n-l) - dimensional complex plane with

equ ation

This is called t he analyt i c t angent plane to cU at a and

will be denot ed by Ta(aU).
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Consider the Levi- form 0 f ~ at a restricted to Ta ( au) ,

-..

We obtain in this way a hermitian form in n-l variables and

again we realize that the number of positive and negative eigen

values is 1ndependen~ of the choice of local holomorphic

coordinates.

Suppose now that U

another Ct9 function t
is defined in a neighborhood of

with ( dy-) a # 0

a by

U =zz€ alt(z)( t(a)S.

By subtracting constants from <t and i' we may assume that

~(a) .. t( a) .. O. Then either ~ or t can be t a ;:en among a set

of C <!' r eal local coordinates (c r , 1.3. a)~ Applying the

Taylor formula with the rest in integral form we re~ize that in

a neighborhood of a ~ =h'f with haC d' function and

invertible (i.e. h( a) # 0). Since t > 0 where"t.> 0 we

mus t h ave h( a).> O.

Now

a •H =a (h ar + ah.r)

=hoJt + ah.at + Jh.;;>'F +d ah.Y
and therefore

This shows that the

neg ative eigenvalues)

t ange nt plane to d U

the defining function

signature (i.e. the number of positive and

of the Levi-form r estricted t o t he analytic

at a i s inde pendent also of the choice of

~ f or U near a.
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Proposition (1.4.1). ~ U be an open subset of ICn with a
smooth boundary. At any point a e aU the Levi-fchrm of any

defining function for a U restricted to the analytic tangent

plane to. oU !i a has a signature which is independent of
local holomorphic coordinates and of the choice of the
defining function.

Let pea) (q(a» be the number of strictly positive

(strictly negative) eigenvalues of L(4')aIT
a

( d U) . These are

biholomorphic invariants of the triple (U, a u, a). Note that
we must have

pea) + q(a) S n - 1 •

As an exercise we can show that there is an analytic disc of
dimension p

(i.e. the biholomorphic image of the unit ball

DP .. l t c mil I ~ It i I 2 < 1 in;P) such that

'\ ( 0) .. a

Analogously there is an analytic disc t$ : Dq ~ a:n of dimension
q such that

/S(O) = a

6"' (Dq) -1 aJ c=. U

Indeed we can moose coordinates at the origin such that

with
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.A.
j

where the j's are ) 0 •

Therefore near 0, for a > 0 sufficiently small, if

and ~. Zp+2 = ..• • zn = 0Iz 112<. £.p+o (lz2 J2 + ••• +

then Hz) > 0 •
. This proves the first statement. The second one is proved with

a similar argument.

c) Theorem (1. 4. 2). (E. E. Levi (36]) • ~ .Q be an open

set of holomorphY with a smooth boundary. Then the Levi-form at

each boundary point restricted to the analytic tangent plane is

~ositive semidefinite.

~. Assume, if possible, that

eigenvalue at the point

for -en with oj> (0) =o.
oe<3D., +
By suitable

L(<$)oIT (an.) has a negative
o

being a defining function

choice of the holomorphic

aoordinates we may write near 0

n
, (z) = 2 Re zl (1 + j;l

:B':l.rst restrict ~ to nr =lIm zl = 0, z3 = ••• =zn=OS.

There exists e >0 such that for (\ z II <. 2e on the region

3 ~ (zl + iYl)' havelR (l Xl s, 0 ~ , = Xl we

Therefore: for e SUfficiently s mall, 4> < 0 on the discs

,i.e. D C Q..
r
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Also if £. is sufficiently small,

Zl ,= 0, ~(' lzzl c e , z3 = ••• = zn = OSC:: Q.z
Hence there exists a , 0<:'0<:' e , such that

A =2" ~ c )z21 <. 8, I zl l2 + I z3/ 2 + ••• + Iz)2 c ~5C:: a,
n

and there eXists '1, 0 <: 'l..£. 8, such that

Let A LJ B = 1J. and let

~ ..I zll2 + iZ3/ 2
+ ••• +

"an /IemIA -completion 0 r J. But 4
thus Q is not an open set of

disc-the!?rem A is

origin 0 In.,
By the

cont~ns the

holomorphy.

It is natural to ask if the above necessary condition for an

open set.Q in a:n with a smooth bound ary to be an open set a:
holomorphy is also sufficient (Levi-problem). The answer is

affirmative for open sets in a:n but not for open sets on com

op:L.ex manifolds. We will r (turn later to this question.

Exercises.

I.' Prove that every convex domain in a:n is a domain of

holomorphy.

2. Suppose that Q. has a smooth bound ary and that a t a point

~ • aa the Levi-form restricted to the analytic tangent plane

at a to d n. is strictly positive. Prove that we can choose

lo~al holomorphic coordinates at a such that JQ is locally

elementary convex at a.
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L(V)a is strictly positive
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Hint: we can replace the defining

convex func tion t 0 f ~ so th at

(for instance take t =eCf -wit h

and then use the remark in a).

3. Under the same assumption of the previous exercise, prove

that there is a fundamental system of neighborhoods B(a) of

a which are domains of holomorphy such that B(a) (l Q is an

open set of holomorphy.

Hint: in the above specified local coordinates take for B(a)

any small coordinate ball with center in a, then apply the

first exercise.

The material of this chapter is covered in all standard books

on complex analysis as [ 28], [ 31].
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Chapter II. Pseudoconc ave Inani folds.

2.1 Preliminaries •

• ) Presheaves. A presheaf on a topological space X is a

contravariant functor from the category of open subsets U of

X to the category of abelian groups i.e.

for every U an abelian group 5(U) is given and

for every inclusion of open sets V C U a homomorphism

r U 5(U) ~ 5(V)V
is given such that for every chain of inclusions
Wc.Vc=.U of open subsets of X we have

V U r U
r W 0 r V = W

A presheaf ;) = 5(U) is called a~ if for every

open set n c:.. X- and every open covering ru. = ~ Ui1 iGI 0 f
the following sequence iS lexact

o ~ 5(.Q)

where e is defined by
(l= r U (f)

i
f E 5 (0..)

and where cS is de fi ned by

denotes

and
and

Example:
~ = fHomcont (U, D:), r U

v 5, where Homcont (U, lC)
the space of continuous functions on U with values in lC

where r UV are the natural restriction maps, is a presheaf

also a sheaf ..
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In a similar way one defines sheaves of rings and also sheaves

of modules over a she af of rings.

b) a~ ~ over

topological space T ,
such that

X of abelian groups is the data of a

a .continuous surjective map ~: ~ ~ X

# rz::d) tt is a lacal homeomorphism 1. e. every point .L cJ has

an open neighborhood s = s(f) s uch that w! s is ~ homeomor

phism of s onto an open subset of X

~) for each point x eo X, or x = 1/"-l(x) has the structure

of an abelian group in such a way that the map

~ l( 1J' (1) ~ t
X

given by

is continuous ..

Given a stack (r, ir, X) of abelian groups, for every open

set U c X we can consider the abe l i an group

r(n, 'f) = l B : U 7 Tis

of all "Bections" s
Urestriction map r V:

obtains in this way a presheaf

continuous, tr 0 B = i de ntity on
uS

over U. If V e, U , t he n atural

7 r (V, 'Jl is defined and one

which is also a Bheaf.

Conversely, given a presheaf 3 =t 5(U) ; r UVS one can

as s oc i a t e t o it a e t ack (1', rr, X) as followB.

We set for every x.. X

~ = lim 5(U) , i.e. an element of
x U~X

1 i is a cl .aa of equivalence of couples (U, r) with

(1) the "fibered p r od uc t " '!.><.X or
:r . r lying above the diagonal b.

1I.f1: 'j.T 7 Xx.X ;

j " ter = (1r ,, 17' ) - 1 (/.1).

is de f i n ed as the part of

of Xx X by p ro j ec t i on
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x e U, f e- S(U) under t he r elation

(U1' fl)
'U ( U2 ' f 2)

if there exists U3 " x, U3 c "i () U2 s uch t hat

Ul f l
U2 f 2r U3

= r U
3

(U; f) is den ot ed by

at x,
r;-?

and 11 by T1 ( :J x) = x ,

o!

t
cr
~ as ~ basis for open sets the s ets of the

f or all f E S(U), we obtain, as one verifies,

We then define

form

If we t ake on

The equivalence class in or:r x
and it is called the germ of

_ U C'r'
- x~xj x

a stack of abeli an groups ( 'r, fi", X).

starting in t his construction with a sheaf, constructing the

corresponding stac k and t hen the corresponding s heaf of sections

we ge t back the original s he af. We t hus have a one~to-one

correspondence between sheaves of abelian groups and stacks of

a belian groups. Although this could generate some confusion it

is cu stomary to "r epr es ent a s he a! by the associated s t ack (see

for i ns t anc e [25] and r30] or [18J).

c) Meromorphic functions. Let

and let e- be t he shea! 0 f germs

X. For every open set U c X it

and the natural restriction maps.

now X be a complex mani fol d

of holomorphic f unctions on

i s defined by t he s p ace II ( U)

The sp ac e /I (U) i s a r ing.

Let D(U) be the aubae t of I-I(U) of di visor s of zero, i. e .

D(U) is the set of those holomorphic functions on U vanishing

on some conn ected component of U. Let cr(U) be the quotient

r ing of //(U) wi t h respect to D (u) i.e. ~(U) i s the set

of quotients ~ with f e- II(U), g e- #(U) - [.J(U) with obvious

i dentific ations:

! f l
g = gl iff fg ' = f I g
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It V c U 1s an inclusion of open sets, the restriction map

r UV: 1/ (U) ~ ..r(V) sends #(U) - O(U) into #(V) - 0 (V) and

thus induces a homomorphism of rings

r U
V: t$ (U) -i" e;t (V) ,

We obtain in this way a presheat. The corresponding sheaf;?/( is

called the sheaf of germs of meromorphic functions on X. the ring

':it(X) :: [(X,?11 is called the ring. of meromorphic functions on

on X. Note that ~ (X) E:. ?t(X) but' q?(X) may be actually

amaller than %(X).

Example: Take X:: Fl (D:), the Riemann sphere. Then #.(X) :: I:

thus 4(X) :: a: while /(X) is isomorphic to the field of all

rationali'functions in one variable t, '/t'(X) ::: lC(t).

If X is connected then ./t (X) and 6? (X) are fields.

In the sequel we will always assume that X is a connected

manifold.

2.2. Mermorphic functions and holomorphic line bundles.

a) Holomorphic line bundles. Let X be a complex manifold;

by a holomorphic line bundle on X we mean a triple (F, 71', X)

where F is a complex manifold, TT: F -." X a holomorphic

surjective map such that

i) ff is of maximal rank

ii) for every x e X ,7-1(X) is isomorphic to the complex

field II: in such a was th at

q) the map

13)

given by

the map

F "x F -;> F

(u, v) -;> v+v is ho1omorphic

D:xF-;.F

given by (A, v)-;:>Av is

Given two ho1omorphic line bundles

X a mOrphism (or bundle map) is

f : F -7 E such that

L) ff:: W 0 f

ho1omorphic.

(F, IT, X),

a ho10morphic

(E,,,,-', X)

map

over


