
Professional Assembly Language

Richard Blum

01_579010 ffirs.qxd 1/7/05 10:19 AM Page iii

C1.jpg

01_579010 ffirs.qxd 1/7/05 10:19 AM Page ii

Professional Assembly Language

01_579010 ffirs.qxd 1/7/05 10:19 AM Page i

01_579010 ffirs.qxd 1/7/05 10:19 AM Page ii

Professional Assembly Language

Richard Blum

01_579010 ffirs.qxd 1/7/05 10:19 AM Page iii

Professional Assembly Language
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2005 by Wiley Publishing, Inc., Indianapolis, Indiana. All rights reserved.

Published simultaneously in Canada

ISBN: 0-7645-7901-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/SW/QR/QV/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted
under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-
sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to
the Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475
Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, e-mail:
brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE
NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS
OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAP-
PEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

Blum, Richard. 1962-
Professional assembly language / Richard Blum.

p. cm.
Includes index.
ISBN 0-7645-7901-0 (paper/website)

1. Assembly language (Computer program language) 1. Title.
QA76.73.A8B58 2005
005.13'6—dc22

2004029116

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, Programmer to Programmer and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

01_579010 ffirs.qxd 1/7/05 10:19 AM Page iv

www.wiley.com

About the Author
Richard Blum has worked for a large U.S. government organization for more than 15 years. During that
time, he has had the opportunity to program utilities in various programming languages: C, C++, Java,
and Microsoft VB.NET and C#. With this experience, Rich has often found the benefit of reviewing
assembly language code generated by compilers and utilizing assembly language routines to speed up
higher-level language programs.

Rich has a bachelor of science degree in electrical engineering from Purdue University, where he worked
on many assembly language projects. (Of course, this was back in the eight-bit processor days.) He also
has a master of science degree in management from Purdue University, specializing in Management
Information Systems.

When Rich is not being a computer nerd, he is either playing electric bass for the church worship band
or spending time with his wife, Barbara, and two daughters, Katie Jane and Jessica.

01_579010 ffirs.qxd 1/7/05 10:19 AM Page v

01_579010 ffirs.qxd 1/7/05 10:19 AM Page vi

Credits
Executive Editor
Chris Webb

Development Editor
Adaobi Obi Tulton

Production Editor
William A. Barton

Technical Editor
Paul Carter

Copy Editor
Luann Rouff

Editorial Manager
Kathryn Malm Bourgoine

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Erin Smith

Graphics and Production Specialists
Jonelle Burns
Amanda Carter
Carrie A. Foster
Lauren Goddard
Denny Hager
Joyce Haughey

Quality Control Technicians
David Faust
Susan Moritz
Carl William Pierce

Media Development Specialist
Angie Denny

Proofreading
TECHBOOKS Production Services

Indexing
Richard T. Evans

01_579010 ffirs.qxd 1/7/05 10:19 AM Page vii

01_579010 ffirs.qxd 1/7/05 10:19 AM Page viii

This book is dedicated to my wife, Barbara, and my daughters, Katie Jane
and Jessica. “Trust in the Lord with all your heart and lean not on your
own understanding; in all ways acknowledge him, and he will make your
paths straight.” Pr 3:5-6 (NIV)

01_579010 ffirs.qxd 1/7/05 10:19 AM Page ix

01_579010 ffirs.qxd 1/7/05 10:19 AM Page x

Acknowledgments

First, all honor, glory, and praise go to God, who through His Son makes all things possible and gives us
the gift of eternal life.

Many thanks go to the great team of people at John Wiley & Sons Publishing. Thanks to Chris Webb, the
acquisitions editor, for offering me the opportunity to write this book. I am forever indebted to Adaobi
Obi Tulton, the development editor, for her work in making this book presentable and her overall guid-
ance through the book writing process. Also, many thanks go to Paul Carter, the technical editor of the
book. Paul’s comments throughout the book were invaluable in presenting the topic in the best way and
for pointing out my goofs and blunders. I would also like to thank Carole McClendon at Waterside
Productions, Inc., for arranging this opportunity for me, and for helping out in my writing career.

Finally, I would like to thank my parents, Mike and Joyce Blum, for their dedication and support while
raising me, and to my wife, Barbara, and daughters, Katie Jane and Jessica, for their love, patience, and
understanding, especially while I was writing this book.

01_579010 ffirs.qxd 1/7/05 10:19 AM Page xi

01_579010 ffirs.qxd 1/7/05 10:19 AM Page xii

Contents

Acknowledgments xi
Contents xiii
Introduction xxiii

Chapter 1: What Is Assembly Language? 1

Processor Instructions 1
Instruction code handling 2
Instruction code format 3

High-Level Languages 6
Types of high-level languages 7
High-level language features 9

Assembly Language 10
Opcode mnemonics 11
Defining data 12
Directives 14

Summary 15

Chapter 2: The IA-32 Platform 17

Core Parts of an IA-32 Processor 17
Control unit 19
Execution unit 24
Registers 25
Flags 29

Advanced IA-32 Features 32
The x87 floating-point unit 32
Multimedia extensions (MMX) 33
Streaming SIMD extensions (SSE) 33
Hyperthreading 34

The IA-32 Processor Family 34
Intel processors 35
Non-Intel processors 36

Summary 37

02_579010 ftoc.qxd 1/7/05 10:37 AM Page xiii

xiv

Contents

Chapter 3: The Tools of the Trade 39

The Development Tools 39
The Assembler 40
The Linker 42
The Debugger 43
The Compiler 44
The object code disassembler 44
The Profiler 44

The GNU Assembler 45
Installing the assembler 45
Using the assembler 47
A word about opcode syntax 49

The GNU Linker 50
The GNU Compiler 53

Downloading and installing gcc 53
Using gcc 54

The GNU Debugger Program 56
Downloading and installing gdb 56
Using gdb 57

The KDE Debugger 60
Downloading and installing kdbg 60
Using kdbg 60

The GNU Objdump Program 62
Using objdump 63
An objdump example 64

The GNU Profiler Program 65
Using the profiler 65
A profile example 68

A Complete Assembly Development System 69
The basics of Linux 69
Downloading and running MEPIS 70
Your new development system 71

Summary 72

Chapter 4: A Sample Assembly Language Program 73

The Parts of a Program 73
Defining sections 74
Defining the starting point 74

Creating a Simple Program 75
The CPUID instruction 76
The sample program 77

02_579010 ftoc.qxd 1/7/05 10:37 AM Page xiv

xv

Contents

Building the executable 80
Running the executable 80
Assembling using a compiler 80

Debugging the Program 81
Using gdb 81

Using C Library Functions in Assembly 86
Using printf 87
Linking with C library functions 88

Summary 90

Chapter 5: Moving Data 91

Defining Data Elements 91
The data section 91
Defining static symbols 94
The bss section 95

Moving Data Elements 97
The MOV instruction formats 97
Moving immediate data to registers and memory 98
Moving data between registers 99
Moving data between memory and registers 99

Conditional Move Instructions 106
The CMOV instructions 107
Using CMOV instructions 109

Exchanging Data 110
The data exchange instructions 111
Using the data exchange instruction 116

The Stack 119
How the stack works 119
PUSHing and POPing data 120
PUSHing and POPing all the registers 123
Manually using the ESP and EBP registers 123

Optimizing Memory Access 123
Summary 124

Chapter 6: Controlling Execution Flow 127

The Instruction Pointer 127
Unconditional Branches 129

Jumps 129
Calls 132
Interrupts 135

02_579010 ftoc.qxd 1/7/05 10:37 AM Page xv

xvi

Contents

Conditional Branches 136
Conditional jump instructions 136
The compare instruction 138
Examples of using the flag bits 140

Loops 144
The loop instructions 144
A loop example 145
Preventing LOOP catastrophes 145

Duplicating High-Level Conditional Branches 146
if statements 147
for loops 150

Optimizing Branch Instructions 153
Branch prediction 153
Optimizing tips 155

Summary 158

Chapter 7: Using Numbers 161

Numeric Data Types 161
Integers 162

Standard integer sizes 162
Unsigned integers 164
Signed integers 166
Using signed integers 168
Extending integers 169
Defining integers in GAS 172

SIMD Integers 173
MMX integers 173
Moving MMX integers 174
SSE integers 176
Moving SSE integers 177

Binary Coded Decimal 178
What is BCD? 178
FPU BCD values 179
Moving BCD values 180

Floating-Point Numbers 182
What are floating-point numbers? 182
Standard floating-point data types 184
IA-32 floating-point values 186
Defining floating-point values in GAS 187
Moving floating-point values 187
Using preset floating-point values 189

02_579010 ftoc.qxd 1/7/05 10:37 AM Page xvi

xvii

Contents

SSE floating-point data types 190
Moving SSE floating-point values 191

Conversions 196
Conversion instructions 196
A conversion example 198

Summary 199

Chapter 8: Basic Math Functions 201

Integer Arithmetic 201
Addition 201
Subtraction 210
Incrementing and decrementing 215
Multiplication 216
Division 221

Shift Instructions 223
Multiply by shifting 224
Dividing by shifting 225
Rotating bits 226

Decimal Arithmetic 227
Unpacked BCD arithmetic 227
Packed BCD arithmetic 229

Logical Operations 231
Boolean logic 231
Bit testing 232

Summary 233

Chapter 9: Advanced Math Functions 235

The FPU Environment 235
The FPU register stack 236
The FPU status, control, and tag registers 237
Using the FPU stack 242

Basic Floating-Point Math 245
Advanced Floating-Point Math 249

Floating-point functions 249
Partial remainders 252
Trigonometric functions 254
Logarithmic functions 257

Floating-Point Conditional Branches 259
The FCOM instruction family 260
The FCOMI instruction family 262
The FCMOV instruction family 263

02_579010 ftoc.qxd 1/7/05 10:37 AM Page xvii

xviii

Contents

Saving and Restoring the FPU State 265
Saving and restoring the FPU environment 265
Saving and restoring the FPU state 266

Waiting versus Nonwaiting Instructions 269
Optimizing Floating-Point Calculations 270
Summary 270

Chapter 10: Working with Strings 273

Moving Strings 273
The MOVS instruction 274
The REP prefix 278
Other REP instructions 283

Storing and Loading Strings 283
The LODS instruction 283
The STOS instruction 284
Building your own string functions 285

Comparing Strings 286
The CMPS instruction 286
Using REP with CMPS 288
String inequality 289

Scanning Strings 291
The SCAS instruction 292
Scanning for multiple characters 293
Finding a string length 295

Summary 296

Chapter 11: Using Functions 297

Defining Functions 297
Assembly Functions 299

Writing functions 299
Accessing functions 302
Function placement 304
Using registers 304
Using global data 304

Passing Data Values in C Style 306
Revisiting the stack 306
Passing function parameters on the stack 306
Function prologue and epilogue 308
Defining local function data 309

02_579010 ftoc.qxd 1/7/05 10:37 AM Page xviii

xix

Contents

Cleaning out the stack 312
An example 312
Watching the stack in action 314

Using Separate Function Files 317
Creating a separate function file 317
Creating the executable file 318
Debugging separate function files 319

Using Command-Line Parameters 320
The anatomy of a program 320
Analyzing the stack 321
Viewing command-line parameters 323
Viewing environment variables 325
An example using command-line parameters 326

Summary 328

Chapter 12: Using Linux System Calls 329

The Linux Kernel 329
Parts of the kernel 330
Linux kernel version 336

System Calls 337
Finding system calls 337
Finding system call definitions 338
Common system calls 339

Using System Calls 341
The system call format 341

Advanced System Call Return Values 346
The sysinfo system call 346
Using the return structure 347
Viewing the results 348

Tracing System Calls 349
The strace program 349
Advanced strace parameters 350
Watching program system calls 351
Attaching to a running program 353

System Calls versus C Libraries 355
The C libraries 356
Tracing C functions 357
Comparing system calls and C libraries 358

Summary 359

02_579010 ftoc.qxd 1/7/05 10:37 AM Page xix

xx

Contents

Chapter 13: Using Inline Assembly 361

What Is Inline Assembly? 361
Basic Inline Assembly Code 365

The asm format 365
Using global C variables 367
Using the volatile modifier 369
Using an alternate keyword 369

Extended ASM 370
Extended ASM format 370
Specifying input and output values 370
Using registers 372
Using placeholders 373
Referencing placeholders 376
Alternative placeholders 377
Changed registers list 377
Using memory locations 379
Using floating-point values 380
Handling jumps 382

Using Inline Assembly Code 384
What are macros? 384
C macro functions 384
Creating inline assembly macro functions 386

Summary 387

Chapter 14: Calling Assembly Libraries 389

Creating Assembly Functions 389
Compiling the C and Assembly Programs 391

Compiling assembly source code files 392
Using assembly object code files 392
The executable file 393

Using Assembly Functions in C Programs 395
Using integer return values 396
Using string return values 397
Using floating-point return values 400
Using multiple input values 401
Using mixed data type input values 403

Using Assembly Functions in C++ Programs 407
Creating Static Libraries 408

What is a static library? 408
The ar command 409

02_579010 ftoc.qxd 1/7/05 10:37 AM Page xx

xxi

Contents

Creating a static library file 410
Compiling with static libraries 412

Using Shared Libraries 412
What are shared libraries? 412
Creating a shared library 414
Compiling with a shared library 414
Running programs that use shared libraries 415

Debugging Assembly Functions 417
Debugging C programs 417
Debugging assembly functions 418

Summary 420

Chapter 15: Optimizing Routines 421

Optimized Compiler Code 421
Compiler optimization level 1 422
Compiler optimization level 2 423
Compiler optimization level 3 425

Creating Optimized Code 425
Generating the assembly language code 425
Viewing optimized code 429
Recompiling the optimized code 429

Optimization Tricks 430
Optimizing calculations 430
Optimizing variables 433
Optimizing loops 437
Optimizing conditional branches 442
Common subexpression elimination 447

Summary 450

Chapter 16: Using Files 453

The File-Handling Sequence 453
Opening and Closing Files 454

Access types 455
UNIX permissions 456
Open file code 458
Open error return codes 459
Closing files 460

Writing to Files 460
A simple write example 460
Changing file access modes 462
Handling file errors 462

02_579010 ftoc.qxd 1/7/05 10:37 AM Page xxi

xxii

Contents

Reading Files 463
A simple read example 464
A more complicated read example 465

Reading, Processing, and Writing Data 467
Memory-Mapped Files 470

What are memory-mapped files? 470
The mmap system call 471
mmap assembly language format 473
An mmap example 475

Summary 479

Chapter 17: Using Advanced IA-32 Features 481

A Brief Review of SIMD 481
MMX 482
SSE 483
SSE2 483

Detecting Supported SIMD Operations 483
Detecting support 484
SIMD feature program 485

Using MMX Instructions 487
Loading and retrieving packed integer values 487
Performing MMX operations 488

Using SSE Instructions 497
Moving data 498
Processing data 499

Using SSE2 Instructions 504
Moving data 505
Processing data 505

SSE3 Instructions 508
Summary 508

Index 511

02_579010 ftoc.qxd 1/7/05 10:37 AM Page xxii

Introduction

Assembly language is one of the most misunderstood programming languages in use. When the term
assembly language is used, it often invokes the idea of low-level bit shuffling and poring over thousand-
page instruction manuals looking for the proper instruction format. With the proliferation of fancy high-
level language development tools, it is not uncommon to see the phrase “assembly language
programming is dead” pop up among various programming newsgroups.

However, assembly language programming is far from dead. Every high-level language program must
be compiled into assembly language before it can be linked into an executable program. For the high-
level language programmer, understanding how the compiler generates the assembly language code can
be a great benefit, both for directly writing routines in assembly language and for understanding how
the high-level language routines are converted to assembly language by the compiler.

Who This Book Is For
The primary purpose of this book is to teach high-level language programmers how their programs are
converted to assembly language, and how the generated assembly language code can be tweaked. That
said, the main audience for this book is programmers already familiar with a high-level language, such
as C, C++, or even Java. This book does not spend much time teaching basic programming principles. It
assumes that you are already familiar with the basics of computer programming, and are interested in
learning assembly language to understand what is happening underneath the hood.

However, if you are new to programming and are looking at assembly language programming as a place
to start, this book does not totally ignore you. It is possible to follow along in the chapters from the start
to the finish and obtain a basic knowledge of how assembly language programming (and programming
in general) works. Each of the topics presented includes example code that demonstrates how the assem-
bly language instructions work. If you are completely new to programming, I recommend that you also
obtain a good introductory text to programming to round out your education on the topic.

What This Book Covers
The main purpose of this book is to familiarize C and C++ programmers with assembly language, show
how compilers create assembly language routines from C and C++ programs, and show how the gener-
ated assembly language routines can be spruced up to increase the performance of an application.

All high-level language programs (such as C and C++) are converted to assembly language by the com-
piler before being linked into an executable program. The compiler uses specific rules defined by the cre-
ator of the compiler to determine exactly how the high-level language statements are converted. Many
programmers just write their high-level language programs and assume the compiler is creating the
proper executable code to implement the program.

03_579010 flast.qxd 1/7/05 10:39 AM Page xxiii

xxiv

Introduction

However, this is not always the case. When the compiler converts the high-level language code state-
ments into assembly language code, quirks and oddities often pop up. In addition, the compiler is often
written to follow the conversion rules so specifically that it does not recognize time-saving shortcuts that
can be made in the final assembly language code, or it is unable to compensate for poorly written high-
level routines. This is where knowledge of assembly language code can come in handy.

This book shows that by examining the assembly language code generated by the compiler before link-
ing it into an executable program, you can often find places where the code can be modified to increase
performance or provide additional functionality. The book also helps you understand how your high-
level language routines are affected by the compiler’s conversion process.

How This Book Is Structured
The book is divided into three sections. The first section covers the basics of the assembly language
programming environment. Because assembly language programming differs among processors and
assemblers, a common platform had to be chosen. This book uses the popular Linux operating system,
running on the Intel family of processors. The Linux environment provides a wealth of program devel-
oper tools, such as an optimizing compiler, an assembler, a linker, and a debugger, all at little or no
charge. This wealth of development tools in the Linux environment makes it the perfect setting for
dissecting C programs into assembly language code.

The chapters in the first section are as follows:

Chapter 1, “What Is Assembly Language?” starts the section off by ensuring that you understand exactly
what assembly language is and how it fits into the programming model. It debunks some of the myths
of assembly language, and provides a basis for understanding how to use assembly language with high-
level languages.

Chapter 2, “The IA-32 Platform,” provides a brief introduction to the Intel Pentium family of processors.
When working with assembly language, it is important that you understand the underlying processor
and how it handles programs. While this chapter is not intended to be an in-depth analysis of the opera-
tion of the IA-32 platform, it does present the hardware and operations involved with programming for
that platform.

Chapter 3, “The Tools of the Trade,” presents the Linux open-source development tools that are used
throughout the book. The GNU compiler, assembler, linker, and debugger are used in the book for com-
piling, assembling, linking, and debugging the programs.

Chapter 4, “A Sample Assembly Language Program,” demonstrates how to use the GNU tools on a
Linux system to create, assemble, link, and debug a simple assembly language program. It also shows
how to use C library functions within assembly language programs on Linux systems to add extra fea-
tures to your assembly language applications.

The second section of the book dives into the basics of assembly language programming. Before you can
start to analyze the assembly language code generated by the compiler, you must understand the assem-
bly language instructions. The chapters in this section are as follows:

03_579010 flast.qxd 1/7/05 10:39 AM Page xxiv

xxv

Introduction

Chapter 5, “Moving Data,” shows how data elements are moved in assembly language programs. The
concepts of registers, memory locations, and the stack are presented, and examples are shown for mov-
ing data between them.

Chapter 6, “Controlling Execution Flow,” describes the branching instructions used in assembly lan-
guage programs. Possibly one of the most important features of programs, the ability to recognize
branches and optimize branches is crucial to increasing the performance of an application.

Chapter 7, “Using Numbers,” discusses how different number data types are used in assembly lan-
guage. Being able to properly handle integers and floating-point values is important within the assembly
language program.

Chapter 8, “Basic Math Functions,” shows how assembly language instructions are used to perform the
basic math functions such as addition, subtraction, multiplication, and division. While these are gener-
ally straightforward functions, subtle tricks can often be used to increase performance in this area.

Chapter 9, “Advanced Math Functions,” discusses the IA-32 Floating Point Unit (FPU), and how it is used
to handle complex floating-point arithmetic. Floating-point arithmetic is often a crucial element to data
processing programs, and knowing how it works greatly benefits high-level language programmers.

Chapter 10, “Working with Strings,” presents the various assembly language string-handling instruc-
tions. Character data is another important facet of high-level language programming. Understanding
how the assembly language level handles strings can provide insights when working with strings in
high-level languages.

Chapter 11, “Using Functions,” begins the journey into the depths of assembly language programming.
Creating assembly language functions to perform routines is at the core of assembly language optimiza-
tion. It is good to know the basics of assembly language functions, as they are often used by the compiler
when generating the assembly language code from high-level language code.

Chapter 12, “Using Linux System Calls,” completes this section by showing how many high-level func-
tions can be performed in assembly language using already created functions. The Linux system pro-
vides many high-level functions, such as writing to the display. Often, you can utilize these functions
within your assembly language program.

The last section of the book presents more advanced assembly language topics. Because the main topic of
this book is how to incorporate assembly language routines in your C or C++ code, the first few chapters
show just how this is done. The remaining chapters present some more advanced topics to round out
your education on assembly language programming. The chapters in this section include the following:

Chapter 13, “Using Inline Assembly,” shows how to incorporate assembly language routines directly in
your C or C++ language programs. Inline assembly language is often used for “hard-coding” quick rou-
tines in the C program to ensure that the compiler generates the appropriate assembly language code for
the routine.

Chapter 14, “Calling Assembly Libraries,” demonstrates how assembly language functions can be com-
bined into libraries that can be used in multiple applications (both assembly language and high-level
language). It is a great time-saving feature to be able to combine frequently used functions into a single
library that can be called by C or C++ programs.

03_579010 flast.qxd 1/7/05 10:39 AM Page xxv

xxvi

Introduction

Chapter 15, “Optimizing Routines,” discusses the heart of this book: modifying compiler-generated
assembly language code to your taste. This chapter shows exactly how different types of C routines
(such as if-then statements and for-next loops) are produced in assembly language code. Once you
understand what the assembly language code is doing, you can add your own touches to it to customize
the code for your specific environment.

Chapter 16, “Using Files,” covers one of the most overlooked functions of assembly language program-
ming. Almost every application requires some type of file access on the system. Assembly language pro-
grams are no different. This chapter shows how to use the Linux file-handling system calls to read,
write, and modify data in files on the system.

Chapter 17, “Using Advanced IA-32 Features,” completes the book with a look at the advanced Intel
Single Instruction Multiple Data (SIMD) technology. This technology provides a platform for program-
mers to perform multiple arithmetic operations in a single instruction. This technology has become cru-
cial in the world of audio and video data processing.

What You Need to Use This Book
All of the examples in this book are coded to be assembled and run on the Linux operating system, run-
ning on an Intel processor platform. The Open Source GNU compiler (gcc), assembler (gas), linker (ld),
and debugger (gdb) are used extensively throughout the book to demonstrate the assembly language
features. Chapter 4, “A Sample Assembly Language Program,” discusses specifically how to use these
tools on a Linux platform to create, assemble, link, and debug an assembly language program. If you do
not have an installed Linux platform available, Chapter 4 demonstrates how to use a Linux distribution
that can be booted directly from CD, without modifying the workstation hard drive. All of the GNU
development tools used in this book are available without installing Linux on the workstation.

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of con-
ventions throughout the book.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight important words when we introduce them.

❑ We show filenames, URLs, and code within the text like so: persistence.properties.

❑ We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context, or has been shown before.

03_579010 flast.qxd 1/7/05 10:39 AM Page xxvi

xxvii

Introduction

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All of the source code used in this book is avail-
able for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the
Search box or by using one of the title lists) and click the Download Code link on the book’s detail page
to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
0-764-57901-0.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx
to see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, such as a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the book details page, click the Book Errata link. On this page, you can view all
errata that has been submitted for this book and posted by Wrox editors. A complete book list, including
links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.
shtml and complete the form there to send us the error you have found. We’ll check the information,
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

03_579010 flast.qxd 1/7/05 10:39 AM Page xxvii

xxviii

Introduction

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as many common questions specific to P2P and Wrox
books. To read the FAQs, click the FAQ link on any P2P page.

03_579010 flast.qxd 1/7/05 10:39 AM Page xxviii

