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Preface

Equilibrium thermodynamics is a revolutionary “young” science (it has only more
than 170 years!) because it can change our understanding of planet Earth. It is a
science that needs to be known by those who want to quantify the damage and
degradation which humans are causing to the planet’s capacity to support the human
species. Engineers, physicists, chemists, geologists, environmentalists, ecologists,
economists, forecasters and policymakers must learn from equilibrium thermody-
namics and develop it further. This book focuses particularly on the abiotic (i.e.
non-living) resources of our planet and on how they have been and will be affected
by human behaviour.

Although this book presents a novel application of thermodynamics for assessing
the Earth’s mineral wealth, no expertise in the academic discipline of thermody-
namics is required to understand the book’s main message. A reader who is not well
versed in thermodynamics can readily cherry-pick various parts of the individual
chapters that (s)he finds illuminating.

Chapter 1 presents the context of the Earth’s mineral resources and how this book
proposes to assess their degradation.

Chapter 2 provides information on the extraction anduse of energy andnon-energy
mineral resources from the past to the present. It focuses on key raw materials in the
decarbonisation of the economy and describes some of the mineral criticality studies
that currently exist.

While Chap. 2 focuses on economic demand, Chap. 3 addresses economic supply,
analysing the availability of minerals on Earth. Besides, a description of the mining
and refining processes of raw materials and the associated environmental and social
impacts are presented.

After analysing mineral supply and demand, we outline in Chap. 4 the thermody-
namic methodology proposed in this book. It describes a model of an economically
degraded planet, Thanatia, used as a reference to assess the current state of mineral
resources and their degradation velocity. In addition, the equations for calculating
the exergy of mineral resources are provided, and thermodynamic rarity is proposed
as an indicator of raw material criticality.
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Using the thermodynamic tools presented inChap. 4, Chap. 5 quantifies the exergy
degradation of mineral resources on the planet since 1900. Various minerals’ peak-
production rates are assessed via Hubbert curves traditionally applied to fossil fuels.
The novelty brought is that these can be represented in the same graph, taking into
account the quantity and the quality of the resources. A study is also carried out
on the mineral exergy balance of various regions of the world. With this approach,
it is possible to detect the enormous inequalities between exporting and importing
countries immediately. Finally, a monetary assessment of the exergy replacement
costs of raw materials is undertaken. The adoption of such an accounting would
imply a fairer appraisal of the mineral heritage of nations, taking into account future
generations.

Chapter 6 focuses on assessing the potential raw material demand for the energy
transition. Data are provided on the expected penetration of clean technologies,
as well as on their material composition. Based on International Energy Agency
or Greenpeace scenarios, the energy transition’s exergy flows are analysed. It then
becomes clear that there will be a shift from a dependence on fossil fuels to a multi-
dependence on minerals, some of which very scarce, with extraction localised in
only a few places of the world. Finally, some likely material bottlenecks in the
development of clean technologies are identified.

Yet it is not only renewable energies that are mainly dependent on these scarce
raw materials. So are new technologies that increasingly incorporate electrical and
electronic components. Chapter 7 analyses these devices’ thermodynamic rarity,
focusing on probably the most resource-intensive technology: the vehicle.

Chapter 8 provides solutions to slow down the degradation of scarce mineral
resources, showing how thermodynamics can help to manage the mineral wealth
better. Thus, material substitution possibilities for various resource-intensive tech-
nologies are addressed. It also discusses the so-called circular economy and the
thermodynamic limits it faces. Eco-design measures to increase the recoverability
of raw materials at the end of life of products are also discussed. Finally, an insight
into alternative mineral sources is presented: urban mining and asteroid mining.

We finally offer in Chap. 9 some reflections and conclusions drawn from our own
research findings, claiming the need for a new humanism that cares about the future
of the planet.

Here are some introductory remarks for readers versed in thermodynamics. Let
us start with an example of the First Law of Thermodynamics: It is generally agreed
that a calorie is a very small amount—just enough to raise the temperature of a gram
of water by 1 °C. But if that gram of water were to carry a speed of 329 km/h,
it would have the energy, now kinetic, of a calorie! This is surprising because we
have not internalised the concept of energy. Moreover, we seem to associate energy
with damage rather than heat. Yet in reality, a punch from a boxer can communicate
less energy than a gentle caress. Numbers say nothing if they are not internalised.
As Protagoras said, “man is the measure of all things”, but be careful; the sense of
physical damage is not an appropriate measure of deterioration.

Despite these paradoxes, we canmake statistics and foresight studies also because
energy is additive. We can add electrical energy to thermal energy and to any other
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energy manifestations without making mistakes, as long as we distinguish between
primary and final energy.

However, what is no longer straightforward is to understand the second law of
thermodynamics quantitatively. If energy is not lost, where does it go? We know
that heat cools, metals rust, the wind stops, water rains, living beings age and die,
and the planet degrades. But how fast does Earth degrade? And how fast does it
regenerate? If the planet is finite, how long will it take until its exhaustion? And
how can we stop this degradation? These are the questions that currently have no
scientific answers. There are proclamations, considerations, predictions, but there
is no quantitative science behind it. We need a transdisciplinary theory based on
thermodynamic criteria, which goes beyond it. We need a science that builds ever
more detailed statistics, even if these are initially based on imprecise and fuzzy but
objective data, that serves as a rudder and thermometer of the damage inflicted by
our civilisation on planet Earth.

From the second law, we know that sooner or later, all quality energy will become
heat. Heat is the sink of all energies, so the energy we receive every day from the Sun
moves the biosphere.Yet, unfortunately, humankind degrades natural resources faster
than the Sun replenishes them. If any degradation can be measured with entropy, we
need to focus on understanding what entropy is.

We can easily understand that if energy is conserved and hot bodies cool spon-
taneously, isolated systems tend to increase their entropy. Unfortunately, entropy
has units of energy divided by temperature, making it complex to comprehend and
impractical to use. First of all, entropy is not a property that behaves linearly like
energy. Losing 1 °C at 5505 °C (i.e., at 5778 Kelvin, the equivalent temperature of
solar radiation) is not the same as losing it at 27 °C (300 K) or losing it at −73 °C
(200 K). In other words, entropy forces us to live with exponential behaviour, which
is difficult to understand for those not used to mathematical thinking. On the other
hand, using units such as kWh/K does not facilitate the quantitative explanation of
the social consequences of degradation. Therefore, it is not surprising that entropy
is often used as a metaphor, moving away from quantitative messages.

The solution to these issues comes with exergy. Exergy is more interesting than
entropy because it simultaneously integrates the First Law of Thermodynamics,
energy conservation, and the second, the entropy law. In other words, exergy simul-
taneously condenses information about energy and entropy. Mathematically, it has
a straightforward formula: the change in energy minus the ambient temperature
multiplied by the entropy change. Its generic formula is:

B = �E − T0�S

where B is the exergy, �E is the energy change with respect to the reference, T0 is
the absolute temperature of the reference and �S is the entropy change with respect
to the reference. It is therefore easy to see that the exergy property integrates both
energy and entropy. It is measured in energy units and is additive, which makes
it much more practical and easy to understand. Technically, exergy measures the
maximum work obtained from a system when it is brought into equilibrium with the
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environment. Alternatively, exergy represents the minimum work necessary to bring
the system from equilibrium with the environment to a given alternative state.

Note that to define exergy, we have added a new concept, the reference environ-
ment, which can open up a new problem rather than providing a solution depending
on how we see it. The reference environment is not originated from the convenience
of calculations but from observing the physical behaviour of matter. It is the ground
if we speak of a ball falling down, it is the absence of wind if we speak of the atmo-
sphere, it is the diluted CO2 in the environment if we speak of a fossil fuel that has
been burned, it is rusted metal, it is a dilution of pollutants in the sea and the atmo-
sphere, it is the unavoidable dispersion of materials throughout the crust, it is the
irretrievable loss of natural resources, and it is death. It is Thanatia, a planet easily
imaginable if we observe Nature’s degradation, at temperature T0, slowly increasing
if we do not stop climate change.

Thanatia’s message flips the way the degradation of natural resources is perceived
and assessed. Instead of moving from today to a defined temporal future, Thanatia’s
thinking suggests time to run backwards. If we accept an end, i.e., the finitude of
resources, we can ask ourselves how fast we are approaching it. It is as if we had to
take a flight at a fixed date and time.We organise our time backwards, we prepare the
luggage, commutes, and all the necessary steps to arrive on time to take the plane. In
short, it is forward vs. backward thinking. This change in thinking helps us to find a
way to avoid any pessimistic future.

This is, dear reader, what this book is about. It shows that equilibrium thermody-
namics can explain how relentless loss of the planet’s mineral wealth—a loss which
the energy transition will accelerate—can be assessed. However, now we are no
longer talking about the equilibrium between bodies as classical thermodynamics
does, but about the equilibrium between humans and the planet, which is why the
word equilibrium thermodynamics takes on a newnuance. Perhaps to avoid confusion
it should be called the thermodynamics of sustainability.

Our work on this topic started in 1998 with several papers and a book enti-
tled “Desarrollo Económico y Deterioro Ecológico” (meaning “Economic Develop-
ment and Ecological Deterioration”). After three Ph.D.s and more research papers,
our studies led us in 2014 to write a book entitled, Thanatia. The Destiny of the
Earth’s Mineral Resources. A Thermodynamic Cradle to Cradle Assessment. Now,
seven years later, after five additional Ph.D.s and more than 50 scientific papers,
we present this new book, opening up new questions on a crucial issue for twenty-
first-century humankind: the conservation and rational management of the planet’s
mineral resources for future generations.

The authors thank the Spanish Ministry of Economy, Industry and Competitive-
ness for the funding received to write this book through Project ENE2017-85224-R.

Zaragoza, Spain Alicia Valero
Antonio Valero
Guiomar Calvo
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Chapter 1
What Is This Book About?

Abstract Humankind has relied on the extraction of different raw materials for
centuries, starting with iron, copper or gold to a large number of metals and fossil
fuels currently used in multiple sectors, thanks to technological development. Still,
this change has also led to other issues, such as increasing CO2 at a global level and
climate change. One way to mitigate these problems is to rely on renewable energy
sources that use the Sun or wind to generate electricity instead of burning fossil fuels.
However, these technologies need certain elements that are scarce on the planet or
very complicated to extract. To assess our planet’s mineral loss, in this book, we will
use thermodynamics, specifically its second law, that will allow us to explain this
degradation process physically. Using Thanatia as a baseline, a hypothetical land
where all concentrated materials have been extracted and dispersed, and all the fossil
fuels have been consumed, we can assess the cost of replacing minerals through a
grave-to-cradle approach and combine it with the more traditional cradle-to-grave
approach.

Everything around us is made up of minerals. Dozens of chemical elements are used
in smartphones, household appliances, vehicles, concrete, paints, detergents, etc.,
that come from the extraction and processing of these minerals. We start from the
advantage that the natural processes that have been taking place overmillions of years
on our planet have been concentrating these elements in the form ofmineral deposits.
Mining becomes then our primary source, from where we extract the minerals that
we then use. Since these mines are not infinite, it is legitimate to ask what limitations
may exist in the short, medium and long term.

The increase in population, globalisation and the change in consumption trends
are causing the use of resources to increase dramatically every year. In fact, the
primary extraction of quarry products, metallic minerals, fossil fuels and biomass
increase year on year. On a limited planet, are we going to be able to maintain this
pace forever? What consequences will this have on future generations and on the
planet?

Historically, the extraction and use of raw materials have been closely linked to
human development. We have gone from consuming about 3 kg of natural resources
per inhabitant per day in prehistory to 44 kg in our current industrialised society
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(Friends of the Earth, 2009). Our prehistoric ancestors obtained mineral resources
through surface collection, selecting those materials most suitable to serve as cutting
tools, such as quartzite or flint. Other readily available materials have historically
been used as cosmetics and for decorative purposes. The Egyptians used mixtures of
oils with dust from the crushing of lead minerals, such as galena, and copper, such as
malachite, among others, to make kohl, a thick black substance that they later applied
to outline their eyes (Hallmann, 2009).

With the emergence of more complex societies, mining became much more rele-
vant, using materials for own consumption and exchange. Different metals gradually
gained more weight, including copper, bronze (an alloy of copper and tin), and gold,
highly desired both for ornamentation and jewellery and for its economic value.

A well-known example globally is the ancient gold mine of Las Médulas, located
in the province of León (Spain), considered the largest open-pit metal mine in the
Roman Empire (Fig. 1.1). The exploitation was carried out by the force of water,
with the method known as ruina montium. Water was channelled and accumulated at
the top of the mountain and, as this water was released through steep galleries, and
by the force of gravity, the mountain would erode, dragging the gold to the washing
sites located at the bottom (Pérez García et al., 1998). It is estimated that the Romans
were able to extract between five and seven tons of gold from this location, which
has left as an inheritance the characteristic landscape that this area presents. Such is
the value of this natural space that UNESCO included it as a World Heritage Site in
1997.

Fig. 1.1 Ancient gold open-cast exploitation of the Roman Empire of Las Médulas (Castilla y
León, Spain). Author Rafael Ibáñez Fernández. GNU FDL. Wikimedia Commons
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Historically, gold that appears in its native state has also been mined manually
using pans. This technique, widespread in past centuries, consisted of using a pan
filled with sand and immersed in water; through a series of circular movements, and
due to the difference in density of the materials, the gold deposited at the bottom
while the gravel was washed off (Fig. 1.2). This same technique was also used during
the gold rush in the United States in the middle of the nineteenth century, along
with the sluice boxes, where the material was washed. During this time, dry gold
washing also became popular, driven by the lack of water in many regions. In this
case, the mineral was deposited inside a conical wooden pan. Throwing the material
into the air, lighter materials dispersed leaving the heavier ones at the container’s
bottom. However, as can be assumed, this was not a very effective method since only
large gold nuggets could be recovered (Taylor Hansen, 2007). The use of pans and
decantation in artisanal gold mining continues to this day.

The technological development that has taken place over the centuries has progres-
sively increased the number of metals and other elements that are used, from just a
few in the seventeenth century to practically all of those contained in the periodic

Fig. 1.2 Engraving from the work of Georgius Agricola, De re Metallica, published in 1577,
representing gold extraction techniques in Germany in the sixteenth century. The sluice boxes
ensured that gold, a denser material, accumulated in the channels. There is also a person panning,
a traditional method still used in some places
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table today. This is even more evident in the case of elements used in the energy
sector (Zepf et al., 2014). Initially, the materials necessary to manufacture mills that
harnessed the energy of the wind were few: chiefly iron, wood and stone; the same
occurred with candles or oil lamps used for lighting. With the industrial revolu-
tion and the steam engine’s invention, other elements were introduced in the energy
sector: copper, tin, lead, manganese, etc., but they were still few in number. The
appearance of motor vehicles changed the situation drastically again, increasing not
only the consumption of fossil fuels but also that of other metals that until now had
not been very useful.

Today, we use many elements in different applications that increase our conve-
nience and comfort. For instance, in a smartphone,we canfind several dozen elements
of the periodic table, which include tin and indium oxide in the touchscreen and rare
earth elements that produce the colours we see and, of course, lithium in batteries
(Merchant, 2017).

Electricity generation is no exception either, since it requires large amounts of
elements, some of them very valuable and scarce, to produce wind turbines, photo-
voltaic panels, etc. For example, to produce one gigawatt (GW) of electrical power
equivalent to that which a natural gas-fired power plant could supply would require
a total of 200 5-megawatt (MW) wind turbines or 1,000 1-megawatt (MW) wind
turbines. This would imply the use of approximately 160,000 tons of steel, 2,000
of copper, 780 of aluminium, 110 of nickel, 85 of neodymium and 7 of dysprosium
for its construction. These are not negligible amounts if it is estimated that in the
future the energy produced by wind turbines in 2050 could be around 2,200 GW
(International Energy Agency, 2019).

Worse still, as can be seen in Fig. 1.3, wind turbines are one of the renewable
technologies that require the least variety of elements for their production, but others
such as the electric car employ over 40 different elements, and that’s before consid-
ering the rest of the necessarymaterials such as plastics, glass, polymers, etc. (Valero,
2018).

Considering the intense use of materials from clean technologies, will the deploy-
ment of renewable energy required to achieve the Paris Agreement goal (preventing
Earth’s temperature rise of over 2 °C before the end of the century) be possible? We
want to move from a society based on non-renewable energy sources to one based
on renewable sources. However, what has been rarely considered is that these tech-
nologies require a greater diversity of materials than conventional energy sources
and that, in addition, they are highly voracious in many different elements.

As we currently know, society is completely dependent on many elements, almost
all of which come from the primary extraction of certain minerals. In our society,
no product exists that does not contain minerals or whose production does not
directly involve minerals. Consequently, the global extraction of natural resources
has increased exponentially, as can be seen in Fig. 1.4, and the same situation can be
observed for other materials.

The amount of biomass that has been extracted, comparing 1900 and 2017 data,
has increasedfivefold, in the case of fossil fuels 15-fold, and by a factor of 43 and 65 in
the case of metallic and construction minerals, respectively (International Resource
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Fig. 1.3 Some of the elements that are used to manufacture clean technologies (Valero et al., 2018)

Fig. 1.4 Global material extraction from 1900 to 2017 in billions of tons (International Resource
Panel, 2019)
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Panel, 2019). In fact, so far in the twenty-first century (in the last 20 years) we have
extracted almost the same amount of copper that was extracted in the entire twentieth
century, and this same situation can be extrapolated to many other elements (USGS,
2018).

However, this extraction of raw materials is not equally distributed across the
globe. In the case of mineral resources, it is geology that conditions the places where
the elements have been concentrating over time. In Australia, for example, there
are economically profitable deposits of practically all the elements, while in Spain,
despite having a considerable amount of mineral deposits of different elements, only
a few basic metals such as copper, lead or zinc can be economically extracted.

Ifwe take as an example someof the elements that aremost crucial to our economy,
such as lithium, which is essential for electric car batteries, approximately 55% of
the total global extraction originated in Australia in 2019. Another representative
example of that same year are rare earth elements, used in many technological appli-
cations; in this case, China dominated the market with a global extraction quota of
over 60% (USGS, 2020).

Furthermore, this unequal extraction of resources is associated with consumption
that is also unevenly distributed. For example, in Europe, three times more resources
are consumed than in Asia, and four times more than in Africa, and someone born
in the United States consumes even more than an average European. For example, a
child born in the USA in 2019 will, throughout their life (78.6 years), require a total
of 9,129 kg of iron, 937 kg of primary aluminium, 444 kg of copper, 432 kg of lead,
211 kg of zinc, 13,693 kg of salt and 6,503 kg of phosphate rock, among many other
elements, in addition to some 1,800 barrels of oil, 150 tons of coal and 7.7 million
cubic meters of natural gas (Minerals Education Coalition, 2019). This implies that
if all the inhabitants of the planet tried to live today as an average US citizen, we
would need to multiply the current copper extraction by two to cover the demand of
a single year and something similar would happen with the rest of the raw materials.

The exponential extraction of materials also entails an increase in the required
energy dedicated to mining, which in turn can significantly impact the environ-
ment. According to studies by the International Energy Agency, the mining industry
consumes between 8 and 10% of global energy. As an example of how intensive
mining is in terms of energy use, each year, the Australian mining industry consumes
as much electricity as Portugal, and if the cost of transport is also factored in, it is
equal to the energy consumed in Spain. It is clear that there can be no materials
without energy, but neither can there be energy without materials.

So, what does the future hold? Knowing the consumption of mineral resources
in the past or the present is relatively simple: we resort to the mining statistics of
the different countries to obtain approximate figures. However, of equal or greater
importance is trying to predict what future behaviour will be to anticipate eventual
shortage problems. To this end, differentmodels have been created based on statistical
calculations and trend analysis, among others. Some striking insights can be gleaned
from these studies. In the case of silver, gold, copper or nickel, their demand is
estimated to increase fivefold by 2050. Taken alone, this figure doesn’t provide much
value but compared to the known amount of these elements in mines today, it exceeds


