Sven Knecht

Ein Beitrag zur Erhöhung der Straßenverkehrssicherheit durch ein pyrotechnisches Notbremssystem

Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart

Reihe herausgegeben von

M. Bargende, Stuttgart, Deutschland H.-C. Reuss, Stuttgart, Deutschland J. Wiedemann, Stuttgart, Deutschland Das Institut für Verbrennungsmotoren und Kraftfahrwesen (IVK) an der Universität Stuttgart erforscht, entwickelt, appliziert und erprobt, in enger Zusammenarbeit mit der Industrie, Elemente bzw. Technologien aus dem Bereich moderner Fahrzeugkonzepte. Das Institut gliedert sich in die drei Bereiche Kraftfahrwesen, Fahrzeugantriebe und Kraftfahrzeug-Mechatronik. Aufgabe dieser Bereiche ist die Ausarbeitung des Themengebietes im Prüfstandsbetrieb, in Theorie und Simulation. Schwerpunkte des Kraftfahrwesens sind hierbei die Aerodynamik, Akustik (NVH), Fahrdynamik und Fahrermodellierung, Leichtbau, Sicherheit, Kraftübertragung sowie Energie und Thermomanagement – auch in Verbindung mit hybriden und batterieelektrischen Fahrzeugkonzepten.

Der Bereich Fahrzeugantriebe widmet sich den Themen Brennverfahrensentwicklung einschließlich Regelungs- und Steuerungskonzeptionen bei zugleich minimierten Emissionen, komplexe Abgasnachbehandlung, Aufladesysteme und -strategien, Hybridsysteme und Betriebsstrategien sowie mechanisch-akustischen Fragestellungen.

Themen der Kraftfahrzeug-Mechatronik sind die Antriebsstrangregelung/Hybride, Elektromobilität, Bordnetz und Energiemanagement, Funktions- und Softwareentwicklung sowie Test und Diagnose.

Die Erfüllung dieser Aufgaben wird prüfstandsseitig neben vielem anderen unterstützt durch 19 Motorenprüfstände, zwei Rollenprüfstände, einen 1:1-Fahrsimulator, einen Antriebsstrangprüfstand, einen Thermowindkanal sowie einen 1:1-Aeroakustikwindkanal.

Die wissenschaftliche Reihe "Fahrzeugtechnik Universität Stuttgart" präsentiert über die am Institut entstandenen Promotionen die hervorragenden Arbeitsergebnisse der Forschungstätigkeiten am IVK.

Reihe herausgegeben von

Prof. Dr.-Ing. Michael Bargende Lehrstuhl Fahrzeugantriebe, Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland

Prof. Dr.-Ing. Hans-Christian Reuss Lehrstuhl Kraftfahrzeugmechatronik, Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland Prof. Dr.-Ing. Jochen Wiedemann Lehrstuhl Kraftfahrwesen, Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland

Weitere Bände in der Reihe http://www.springer.com/series/13535

Sven Knecht

Ein Beitrag zur Erhöhung der Straßenverkehrssicherheit durch ein pyrotechnisches Notbremssystem

Sven Knecht Stuttgart, Deutschland

Zugl.: Dissertation Universität Stuttgart, 2017

D93

Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart ISBN 978-3-658-20593-5 ISBN 978-3-658-20594-2 (eBook) https://doi.org/10.1007/978-3-658-20594-2

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden GmbH 2018

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Vieweg ist Teil von Springer Nature Die eingetragene Gesellschaft ist Springer Fachmedien Wiesbaden GmbH Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Vorwort

Diese Arbeit entstand während meiner Tätigkeit am Institut für Verbrennungsmotoren und Kraftfahrwesen der Universität Stuttgart und dem Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart.

Mein besonderer Dank gilt dem Inhaber des Lehrstuhls Kraftfahrwesen Prof. Dr.-Ing. J. Wiedemann. Er hat mir dieses sehr interessante und vielseitige Thema ermöglicht und mit wertvollen Anregungen zum Gelingen der Arbeit beigetragen.

Frau Prof. Dr.-Ing. C. Salander danke ich für die freundliche Übernahme des Mitberichts und das große Interesse, das sie dieser Arbeit entgegengebracht hat.

Herrn Dipl.-Math. Jens Neubeck, Leiter des Bereichs Fahrzeugtechnik und Fahrdynamik des FKFS, danke ich für die sorgfältige und kritische Durchsicht des Manuskripts und die hilfreichen Verbesserungsvorschläge hierzu.

Weiter haben mich viele Kollegen und Studenten bei der Anfertigung dieser Arbeit unterstützt. Dafür herzlichen Dank!

Sven Knecht

Inhaltsverzeichnis

Vo	rwor	t		V
At	bildu	ngsver	zeichnis	IX
Та	bellei	nverzei	chnis	XIII
Fo	rmelz	eichen		XV
Αt	kürzı	ıngsvei	rzeichnis	XIX
Zu	samn	nenfass	ung	XXI
1	Ein	leitung	g und Motivation	1
2	Not	brems	systeme für Kraftfahrzeuge	7
	2.1	Grund	lagen und Begriffsbestimmung	7
	2.2	Notbre	emssysteme für Kfz Stand der Technik	15
		2.2.1	Modifikation des Reibbeiwerts zwischen Reifen Fahrbahn	
		2.2.2	Änderung des Reifen-Fahrbahnkontakts	21
		2.2.3	Änderung der Fahrzeugumströmung und der Druckverhältnisse	26
		2.2.4	Rückstoßantriebe als Notbremssystem	28
	2.3	Fazit 1	Notbremssysteme	33
3	Der	Radla	stbooster als Notbremssystem	37
	3.1		ngsfähigkeit und Analyse wesentlicher ssfaktoren von Rückstoßantrieben als Notbremssy	stem 37
	3.2		u eines Demonstrationsfahrzeuges mit	47

VIII Inhaltsverzeichnis

4 Serienkonzept eines Radlastbooster			65		
	4.1	Pyrote	echnischer Aktor	66	
	4.2	Mechanische Integration ins Gesamtfahrzeug			
	4.3	3 Vernetzungsarchitektur eines Fahrzeugs mit RLB			
	4.4	.4 Elektronik und Elektrik (E/E)			
	4.5 RLB-Notbremsfunktion				
	4.6	Sicher	heit und Zulassung	100	
		4.6.1	Gefahren und Risiken einer RLB-Aktivierung	101	
		4.6.2	Fehlerhafte RLB-Aktivierung	117	
		4.6.3	Zertifizierung und Zulassung	121	
5	Faz	it und	Ausblick	125	
Li	terat	urverz	eichnis	129	
Ar	nhang	2		135	

Abbildungsverzeichnis

Abbildung 1.1:	Technischer Fortschritt in der Aktiven Sicherheit2
Abbildung 1.2:	Wirkfeld von Notbremssystemen4
Abbildung 2.1:	Funktionsweise der PreSafe-Bremse [6]8
Abbildung 2.2:	Wirkende Längskräfte bei der Verzögerung eines Kfz11
Abbildung 2.3:	Geschwindigkeitsreduktion eines Notbremssystems 14
Abbildung 2.4:	Streumaterial als Notbremssystem17
Abbildung 2.5:	Klebstoffe und Lösungsmittel als Notbremssystem20
Abbildung 2.6:	Mechanische Bremselemente als Notbremssystem23
Abbildung 2.7:	Braking Bag und Impulskräfte als Notbremssystem25
Abbildung 2.8:	Luft- und Vakuumsysteme als Notbremse27
Abbildung 2.9:	Rückstoßantriebe als Notbremssystem32
Abbildung 3.1:	Verzögerung eines RLB-Fahrzeugs bei unterschiedlichen Schubkraftkonfigurationen 0-12.000 N und Düsenwinkel 0-90°
Abbildung 3.2:	Radlastschwingungen bei unterschiedlichen Fahrwerksabstimmungen, 6.000 N Schubkraft und 90° Düsenwinkel
Abbildung 3.3:	Verzögerungsfähigkeit des Radlastboosterfahrzeug mit angepasstem ABS Regelalgorithmus44
Abbildung 3.4:	Kraftschlusskurven unterschiedlicher Radlasten45
Abbildung 3.5:	Prinzipskizze des Heißwasserantriebssystems49
Abbildung 3.6:	Gemessener Schubverlauf des Radlastboosters52
Abbildung 3.7:	Heißwassermotoren im Fahrzeugkofferraum [38]53
Abbildung 3.8:	RLB-System im Erprobungsfahrzeug [37]53
Abbildung 3.9:	Radlasterhöhung des Demonstrationsfahrzeugs durch ein Heißwasserantriebssystem55
Abbildung 3.10:	Bremsentest mit dem Demonstrator [40]55

Abbildung 3.11:	ABS Regelung eines Fahrzeugs mit RLB58	
Abbildung 3.12:	Einfluss unterschiedlicher Bauzustände des RLB- Demonstrators auf den Bremsweg	59
Abbildung 3.13:	μ-Split Bremsung eines Fahrzeugs mit und ohne RLB mit Lenkeingriff des Fahrers	60
Abbildung 3.14:	Gaswegnahme in der Kurve mit und ohne aktivierten Radlastbooster	61
Abbildung 3.15:	Fahrzeugreaktion bei einer einseitigen Auslösung wäh- rend eines Bremsvorganges	63
Abbildung 4.1:	Idealer und gemessener Schubverlauf eines pyrotechnischen Radlastboosters	68
Abbildung 4.2:	Beispiel eines Beifahrerairbag-Gasgenerators	69
Abbildung 4.3:	Aufbau eines pyrotechnischen Doppelpulsmotors [41]	71
Abbildung 4.4:	Maßnahmen zur Schallreduktion an RLB-Gasgeneratoren. Düse mit Blütenmischer links, Chevrons rechts [40]	73
Abbildung 4.5:	Beispiel einer Vorbaustruktur mit einem Bauraum- Volumenmodell für die Integration eines Radlastboosters	77
Abbildung 4.6:	Beispiel eines vormontierten Radlastboostermoduls	78
Abbildung 4.7:	Beispielhafte Integration eines Boostermoduls in ein Gesamtfahrzeug	80
Abbildung 4.8:	Beispiel eines Kotflügels mit Klappe	81
Abbildung 4.9:	Beispiel für eine Steuergerätetopologie	83
Abbildung 4.10:	Beispiel einer Steuergerätearchitektur für ein Fahrzeug mit RLB	86
Abbildung 4.11:	Beispiel eines Leitungssatzes für ein Fahrzeug mit RLB	90
Abbildung 4.12:	Flussdiagramm RLB-Funktion	92
Abbildung 4.13:	Notbremsfunktion mit RLB im Längsverkehr	93
Abbildung 4.14:	Bewegungsgrößen während einer Notbremsung mit	06

Abbildung 4.15:	Anzahl der je Fahrzeugseite benötigter RLB am Beispiel eines konstant fahrenden Objekts99
Abbildung 4.16:	CFD - Modell des Radlastboosters [42]101
Abbildung 4.17:	Strömungsfeld des RLB bei einer überlagerten Fahrtwindströmung mit 10m/s103
Abbildung 4.18:	Temperaturfeld des RLB bei einer überlagerten Strömung 10 m/s
Abbildung 4.19:	Gemessener Schalldruckpegel eines Radlastboosters110
Abbildung 4.20:	Schalldruckpegel Grenzwerte nach Smoorenburg [45]110
Abbildung 4.21:	Beispiel zur Gefährdung des nachfolgenden Verkehrs

Tabellenverzeichnis

Tabelle 2.1:	Bewertungsmatrix der Notbremssysteme	35
Tabelle 4.1:	Rand- und Anfangsbedingungen der CFD Simulation [40]	102
Tabelle 5.1:	Fehlerwahrscheinlichkeit nach ISO 26262 [50]	138
Tabelle 5.2:	Beherrschabrkeit nach ISO 26262 [50]	138
Tabelle 5.3:	Verletzungsschwere nach ISO 26262 [50]	139
Tabelle 5.4:	Risiko-Matrix nach ISO 26262 [50]	140

Formelzeichen

Zeichen	Einheit	Bedeutung
A	m	Stirnfläche des Fahrzeugs
A_E	m	Querschnittsfläche am Düsenaustritt
a_{ego}	m/s^2	Beschleunigung des Ego-Fahrzeugs
a_i	m/s^2	Beschleunigung in einem Zeitschritt
a_m	m/s^2	Mittlere Beschleunigung
a_{rel}	m/s²	Relativer Beschleunigung zwischen Ego- und Targetfahrzeug
a_{System}	m/s ²	Von einem Notbremssystem hervorgerufene Beschleunigung
a_{target}	m/s^2	Beschleunigung des Targetfahrzeugs
a_x	m/s^2	Längsbeschleunigung
a_y	m/s^2	Querbeschleunigung
a_1	m/s²	Relative Beschleunigung in der ersten Phase einer RLB-Auslösung
a_2	m/s²	Relative Beschleunigung in der zweiten Phase einer RLB-Auslösung
C_P	J/(kgK)	Spezifische Wärmekapazität bei konstantem Druck
c_w	-	Luftwiderstandsbeiwert
c_1	m/s	Strömungsgeschwindigkeit im Zustand 1
c_2	m/s	Strömungsgeschwindigkeit im Zustand 2
e	-	Drehmassenzuschlagsfaktor
F_B	N	Bremskraft
F_{Boost}	N	Schubkraft
F_R	N	Rollwiderstandskraft

XVI Formelzeichen

Zeichen	Einheit	Bedeutung
F_{trans}	N	Translatorischer Längskraftanteil einer Beschleunigung
F_{rot}	N	Rotatorischer Längskraftanteil einer Beschleunigung
F_W	N	Luftwiderstandskraft
F_X	N	Kraft in Fahrzeug-Längsrichtung
F_Z	N	Kraft entlang der Fahrzeug-Hochachse
f_R	-	Rollwiderstandsbeiwert
g	m/s^2	Gravitationskonstante
γ	0	Neigungswinkel der RLB-Düse zur Horizontalen
h_1	J/kg	Spezifische Enthalpie im Zustand 1
h_2	J/kg	Spezifische Enthalpie im Zustand 2
i	-	Zeitschritt
I_{ges}	Ns	Gesamtimpuls eines Rückstoßantriebsystems
J_{red}	kgm²	Auf die Radgeschwindigkeit reduziertes rotatorisches Massenträgheitsmoment
m	kg	Fahrzeugmasse
m_F	kg	Vom Rückstoßantrieb ausgestoßene Fluidmasse
N	-	Anzahl der Boosterelemente
n	-	Polytropenexponent
η_{Motor}	-	Wirkungsgrad des Heißwasserantriebsystems
p_0	Pa	Atmosphärendruck
p_E	Pa	Druck am Düsenausgang
p_1	Pa	Druck eines Fluides im Zustand 1
p_2	Pa	Druck eines Fluides im Zustand 2
ψ	0	Gierwinkel

Formelzeichen XVII

Zeichen	Einheit	Bedeutung
q_i	-	Gütefaktor der ABS-Regelsystems
q_{12}	J/kg	Spezifische Wärmezufuhr zwischen zwei Zuständen
r_{dyn}	m	Dynamischer Radhalbmesser
$ ho_L$	kg/m^3	Luftdichte
$ ho_F$	kg/m^3	Fluiddichte
S	m	Weg / Abstand
S_1	m	Änderung des relativen Abstands in einer Notbremssituation mit aktivierten Radlast- booster
<i>s</i> ₂	m	Änderung des relativen Abstands in einer Notbremssituation ohne aktivierten Radlast- booster
S_B	m	Bremsweg
S_m	m	Mittlerer Bremsweg
$S_{e,go}$	m	Zurückgelegter Weg des Ego-Fahrzeugs
S_{rel}	m	Relativer Abstand zwischen Ego- und Targetfahrzeug
S_{target}	m	Zurückgelegter Weg des Targetfahrzeugs
T	S	Schubdauer eines Boosterelements
T_f	K	Temperatur des Fluids
T_1	K	Fluidtemperatur im Zustand 1
T_2	K	Fluidtemperatur im Zustand 2
t	S	Zeit
$t_{2^{\circ}}$	ms	Zeit bis zu einer Verbrennung zweiten Grades
μ	-	Reibbeiwert
μ_R	-	Längskraftbeiwert

XVIII Formelzeichen

Zeichen	Einheit	Bedeutung
μ_{System}	-	Von einem Notbremssystem realisierter Längskraftbeiwert
v	m/s	Fahrzeuggeschwindigkeit
Δv_1	m/s	Geschwindigkeitsabbau in einer Notbremssituation mit aktivierten Radlastbooster
Δv_2	m/s	Geschwindigkeitsabbau in einer Notbremssituation ohne aktivierten Radlastbooster
v_{ego}	m/s	Geschwindigkeit des Ego-Fahrzeugs
v_f	m/s	Geschwindigkeit des Fluids
v_{rel}	m/s	Relative Geschwindigkeit zwischen Ego- Fahrzeug und Targetfahrzeug
v_{target}	m/s	Geschwindigkeit des Targetfahrzeugs
w_E	m/s	Gasgeschwindigkeit am Düsenausgang
w_t	W	Verrichtete technische Arbeit zwischen zwei Zuständen
z_1	m	Höhe im Zustand 1
z_2	m	Höhe im Zustand 2

Abkürzungsverzeichnis

Abkürzung Bedeutung

ABS Anti-Blockier-System

ACC Adaptive Cruise Control

ASIC Application Specific Integrated Circuit

ASIL Automotive Safety Integrity Level

ASR Antriebs-Schlupf-Regelung

BAS Brems-Assistent

BUS Binary Unit System

C(NH₂)₃NO₃ Guanidiniumnitrat

C0 – C3 Beherrschbarkeit eines Fehlers nach ISO 26262

CAN Controller Area Network

CE Konformitätsnachweis für pyrotechnische Ge-

genstände

CFD Computational Fluid Dynamics

CMS Collision Mitigation System

CO₂ Kohlenstoffdioxid

Cu Kupfer

Cu(NO₃)₂ Kupferdinitrat

Cu(OH₂) Kupferdihydroxid

E/E Elektrik und Elektronik

E0-E4 Wahrscheinlichkeit einer Situation nach

ISO 26262

ESP Elektronisches Stabilitätsprogramm

FKFS Forschungsinstitut für Kraftfahrwesen und Fahr-

zeugmotoren Stuttgart