Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart RESEARCH

# Katja Nording

Numerische Analyse der dieselmotorischen Gemischbildung, Verbrennung und Emissionsentstehung





## Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart

#### Herausgegeben von

M. Bargende, Stuttgart, Deutschland H.-C. Reuss, Stuttgart, Deutschland J. Wiedemann, Stuttgart, Deutschland Das Institut für Verbrennungsmotoren und Kraftfahrwesen (IVK) an der Universität Stuttgart erforscht, entwickelt, appliziert und erprobt, in enger Zusammenarbeit mit der Industrie, Elemente bzw. Technologien aus dem Bereich moderner Fahrzeugkonzepte. Das Institut gliedert sich in die drei Bereiche Kraftfahrwesen, Fahrzeugantriebe und Kraftfahrzeug-Mechatronik. Aufgabe dieser Bereiche ist die Ausarbeitung des Themengebietes im Prüfstandsbetrieb, in Theorie und Simulation.

Schwerpunkte des Kraftfahrwesens sind hierbei die Aerodynamik, Akustik (NVH), Fahrdynamik und Fahrermodellierung, Leichtbau, Sicherheit, Kraftübertragung sowie Energie und Thermomanagement – auch in Verbindung mit hybriden und batterieelektrischen Fahrzeugkonzepten.

Der Bereich Fahrzeugantriebe widmet sich den Themen Brennverfahrensentwicklung einschließlich Regelungs- und Steuerungskonzeptionen bei zugleichminimierten Emissionen, komplexe Abgasnachbehandlung, Aufladesysteme und -strategien, Hybridsysteme und Betriebsstrategien sowie mechanisch-akustischen Fragestellungen.

Themen der Kraftfahrzeug-Mechatronik sind die Antriebsstrangregelung/Hybride, Elektromobilität, Bordnetz und Energiemanagement, Funktions- und Softwareentwicklung sowie Test und Diagnose.

Die Erfüllung dieser Aufgaben wird prüfstandsseitig neben vielem anderen unterstützt durch 19 Motorenprüfstände, zwei Rollenprüfstände, einen 1:1-Fahrsimulator, einen Antriebsstrangprüfstand, einen Thermowindkanal sowie einen 1:1-Aeroakustikwindkanal.

Die wissenschaftliche Reihe "Fahrzeugtechnik Universität Stuttgart" präsentiert über die am Institut entstandenen Promotionen die hervorragenden Arbeitsergebnisse der Forschungstätigkeiten am IVK.

#### Herausgegeben von

Prof. Dr.-Ing. Michael Bargende Lehrstuhl Fahrzeugantriebe, Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland

Prof. Dr.-Ing. Hans-Christian Reuss Lehrstuhl Kraftfahrzeugmechatronik, Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland Prof. Dr.-Ing. Jochen Wiedemann Lehrstuhl Kraftfahrwesen, Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland Katja Nording

# Numerische Analyse der dieselmotorischen Gemischbildung, Verbrennung und Emissionsentstehung



Katja Nording Stuttgart, Deutschland

Zugl.: Dissertation Universität Stuttgart, 2016

D93

Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart ISBN 978-3-658-17637-2 ISBN 978-3-658-17638-9 (eBook) DOI 10.1007/978-3-658-17638-9

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

#### Springer Vieweg

© Springer Fachmedien Wiesbaden GmbH 2017

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Vieweg ist Teil von Springer Nature Die eingetragene Gesellschaft ist Springer Fachmedien Wiesbaden GmbH Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

### Vorwort

Die hier vorliegende Dissertation wurde bei der Daimler AG in Stuttgart Untertürkheim in der Abteilung RD/RPE erstellt und durch Herr Prof. Dr. Michael Bargende vom Institut für Verbrennungsmotoren und Kraftfahrwesen der Universität Stuttgart betreut.

Herrn Prof. Dr. Michael Bargende danke ich für das Ermöglichen, die Unterstützung und Förderung dieser Arbeit sowie die Übernahme des Hauptreferates. Herrn Prof. Dr. Konstantinos Boulouchos danke ich für das entgegengebrachte Interesse an der Arbeit und die Übernahme des Koreferates.

Dem Teamleiter Herrn Dr. Christian Krüger und dem Abteilungsleiter Herrn Dr. Bernd Krutzsch bin ich sehr dankbar dafür, dass sie mir die Chance gaben, meine Dissertation in dieser Abteilung anzufertigen.

Den Herren Dr. Ulrich Michels, Dr. Galin Nakov und Paul Wenzel danke ich für die gute Einarbeitung zu Beginn meiner Promotionszeit, den Herren Dr. Martin Fritzsche, Dr. Johannes Ernst, Dr. Katsuyoshi Koyanagi und Dr. Matthias Blessing für die gute Zusammenarbeit und die zugrundeliegenden Messungen und Herrn Alexandros Hatzipanagiotou für die zielführenden Gespräche am Ende meiner Promotionszeit.

Besonderer Dank gilt natürlich meiner Familie und meinen Freunden für ihre Geduld und ihr Verständnis während der Anfertigung dieser Arbeit.

Ostfildern

Katja Nording

## Inhaltsverzeichnis

| V | orwort                                                | V    |
|---|-------------------------------------------------------|------|
| A | bbildungsverzeichnis                                  | XI   |
| T | abellenverzeichnis                                    | XVII |
| A | bkürzungsverzeichnis                                  | XIX  |
| N | omenklatur                                            | XIII |
| K | urzfassung                                            | XVII |
| A | bstract                                               | XIX  |
| 1 | Einleitung                                            | 1    |
|   | 1.1 Motivation                                        | 1    |
|   | 1.2 Aufbau der Arbeit                                 | 4    |
| 2 | Phänomenologie der dieselmotorischen Verbrennung      | 5    |
|   | 2.1 Düseninnenströmung                                | 5    |
|   | 2.2 Strahlausbreitung                                 | 8    |
|   | 2.3 Gemischbildung                                    | 17   |
|   | 2.4 Zündung und Verbrennung                           | 20   |
|   | 2.5 Schadstoffbildung                                 | 23   |
| 3 | Stand der Technik der dieselmotorischen               |      |
|   | Verbrennungssimulation                                | 27   |
|   | 3.1 Strömungsmechanische Grundlagen                   | 27   |
|   | 3.1.1 Erhaltungsgleichungen für turbulente Strömungen | 27   |
|   | 3.1.2 Turbulenzmodellierung                           | 31   |
|   | 3.1.3 Die gemittelten Erhaltungsgleichungen           | 34   |
|   | 3.2 Modellierung der Düseninnenströmung               | 35   |
|   | 3.2.1 Beschreibung von Mehrphasenströmungen           | 35   |
|   | 3.2.2 HRIC ("High-Resolution Interface-Capturing")    | 36   |
|   | 3.2.3 Kavitation                                      | 37   |
|   | 3.3 Strahlmodellierung                                | 38   |
|   | 3.3.1 Beschreibung der Gasphase                       | 38   |
|   | 3.3.2 Beschreibung der dispersen Phase                | 38   |
|   | 3.3.3 Lagrangesches Strahlmodell                      | 39   |

|   |     | 3.3.4 3D-Euler-Modell                                        | 42 |
|---|-----|--------------------------------------------------------------|----|
|   |     | 3.3.5 ICAS-Modell (1D-Euler-Modell)                          | 43 |
|   |     | 3.3.6 Strahlausbreitung                                      | 45 |
|   | 3.4 | Modellierung der Verbrennung und Schadstoffbildung           | 54 |
|   |     | 3.4.1 Modellierungsansätze                                   | 54 |
|   |     | 3.4.2 Erhaltungsgleichung des Mischungsbruchs und            |    |
|   |     | dessen Varianz                                               | 55 |
|   |     | 3.4.3 Selbstzündung                                          | 57 |
|   |     | 3.4.4 Verbrennung                                            | 60 |
|   |     | 3.4.5 Rußbildung und -oxidation                              | 62 |
| 4 | Ana | alyse der Datenbasis                                         | 65 |
|   | 4.1 | Experimentelle Datenbasis                                    | 65 |
|   |     | 4.1.1 Messungen in der Hochdruck-/ Hochtemperaturkammer      | 65 |
|   |     | 4.1.2 Strahlkraftmessungen                                   | 69 |
|   |     | 4.1.3 Messungen unter motorischen Randbedingungen            | 70 |
|   | 4.2 | Numerische Analyse entsprechend bisherigem Stand der Technik | 75 |
|   |     | 4.2.1 Ladungswechsel                                         | 75 |
|   |     | 4.2.2 Düseninnenströmung                                     | 77 |
|   |     | 4.2.3 Einspritzung, Verbrennung und Schadstoffbildung        | 79 |
| 5 | Det | aillierung der Randbedingungen                               | 83 |
|   | 5.1 | Diskretisierung des Brennraumes                              | 83 |
|   |     | 5.1.1 Detaillierte Netze inklusive der Ventiltaschen und     |    |
|   |     | -rückstände                                                  | 83 |
|   |     | 5.1.2 Einfluss der Netzfeinheit                              | 85 |
|   | 5.2 | Strömungsinitialisierung                                     | 93 |
|   |     | 5.2.1 Vorgehensweise zur Projektion des                      |    |
|   |     | Ladungswechselergebnisses auf das Verbrennungsnetz           | 93 |
|   |     | 5.2.2 Einfluss der Strömungsinitialisierung auf              |    |
|   |     | Gemischbildung und Verbrennung                               | 94 |
|   | 5.3 | Kopplung von Düseninnenströmung und Einspritzstrahl          | 97 |
|   |     | 5.3.1 Funktionalität der Kopplungsschnittstelle              | 97 |
|   |     | 5.3.2 Analyse des Strahleindringverhaltens in der            |    |
|   |     | Hochdruck-/Hochtemperaturkammer                              | 99 |
|   |     | 5.3.3 Einfluss lokaler Düseneffekte unter motorischen        |    |
|   |     | Randbedingungen                                              | 11 |

| 6 | Ergebnisse der Analyse der dieselmotorischen             |     |
|---|----------------------------------------------------------|-----|
|   | Wirkmechanismen                                          | 115 |
|   | 6.1 Einfluss der Strömungsinitialisierung                | 115 |
|   | 6.2 Auswirkung von Düseneffekten auf den Einspritzstrahl | 124 |
| 7 | Zusammenfassung                                          | 137 |
| 8 | Ausblick                                                 | 141 |

## Abbildungsverzeichnis

| 1.1  | Einflussgrößen und Prozesse der dieselmotorischen              |    |
|------|----------------------------------------------------------------|----|
|      | Verbrennung                                                    | 2  |
| 2.1  | Standardausprägungen von Sacklochdüsen.                        | 6  |
| 2.2  | Erläuterung der am Kavitationsprüfstand untersuchten           |    |
|      | Düseninnenströmung                                             | 7  |
| 2.3  | Dampfdruckkurve.                                               | 7  |
| 2.4  | Schematische Darstellung von Düseninnenströmung,               |    |
|      | Strahlausbreitung und Strahl-Wand-Interaktion im               |    |
|      | Brennraum von Dieselmotoren mit Direkteinspritzung             | 8  |
| 2.5  | Vorstellungen des Primärzerfalls                               | 11 |
| 2.6  | Aerodynamische Zerfallsmechanismen.                            | 12 |
| 2.7  | Konkurrierende Instabilitäten im Katastrophen-Zerfallsregime.  | 13 |
| 2.8  | Mögliche Endzustände einer binären Tropfenkollision            | 15 |
| 2.9  | Kollisionsbereiche für binäre Tropfenkollisionen               | 15 |
| 2.10 | Turbulente Dispersionsregimes                                  | 16 |
| 2.11 | Prinzipbild der Tropfenverdampfung                             | 18 |
| 2.12 | Strömungsstrukturen im dieselmotorischen Brennraum             | 19 |
| 2.13 | Exemplarischer Einspritz- und Brennverlauf im Dieselmotor      | 21 |
| 2.14 | Einspritz- und Brennverlauf bei früher und später Verbrennung. | 22 |
| 2.15 | Quellterme für die Rußbildungsprozesse bei $p = 50$ bar und    |    |
|      | 0% AGR in Abhängigkeit von Oxidatortemperatur und              |    |
|      | Mischungsbruch.                                                | 26 |
| 2.16 | Quellterme für die Rußabbauprozesse bei $p = 50$ bar und       |    |
|      | 0% AGR in Abhängigkeit von Oxidatortemperatur und              |    |
|      | Mischungsbruch.                                                | 26 |
| 3.1  | Diskretisierung von Mehrphasenströmungen am Beispiel           |    |
|      | der Düseninnenströmung                                         | 36 |
| 3.2  | Das Tropfenensemble wird durch eine statistische               |    |
|      | Verteilung beschrieben und durch stochastische Partikel        |    |
|      | diskretisiert                                                  | 40 |
| 3.3  | Lagrange-Ansatz: Diskretisierung der Verteilungsfunktion       | 43 |
| 3.4  | Euler-Ansatz: Diskretisierung der Verteilungsfunktion          | 43 |
| 3.5  | Berechnungskonzept für die dieselmotorische Einspritzung       | 44 |

| 3.6  | Beispiel einer Gegenstrom-Diffusionsflamme, Projektion     |    |
|------|------------------------------------------------------------|----|
|      | in den Mischungsbruchreum bei Annehme einer nicht          |    |
|      | rachtiven Strömung Burke Schumenn Lösung der               |    |
|      | Paaktandan im Mischungsbruchroum für eine reaktive         |    |
|      | Strömung                                                   | 56 |
| 27   | Examplerizaba Misahungstafal zur Pastimmung der            | 50 |
| 5.7  | Exemplatische Mischangstatel zur Bestimmung der            |    |
|      | das DDE Zündmedell                                         | 50 |
| 38   | Comischehendlung heim Mixing Timescale Modell und          | 59 |
| 5.0  | 7 Sparies DDE Timescale Modell                             | 67 |
|      | 7-spezies-rDr-Timescale-Modeli                             | 02 |
| 4.1  | Geometrie und Hydraulische Eigenschaften der               |    |
|      | verwendeten Sacklochdüse                                   | 66 |
| 4.2  | Kombination von Schlieren- und Streulichtmesstechnik an    |    |
|      | der Hochdruck-/Hochtemperaturkammer.                       | 67 |
| 4.3  | Auswertung der Schlieren-/Streulicht-                      |    |
|      | Hochgeschwindigkeitsaufnahmen                              | 68 |
| 4.4  | Eindringverhalten des Einspritzstrahls in der heißen       |    |
|      | Kammer bei Variation des Raildrucks.                       | 68 |
| 4.5  | Messprinzip der Strahlkraftmessung                         | 69 |
| 4.6  | Einzylinder-Forschungsmotor als CAD-Modell                 | 71 |
| 4.7  | Einlasskanäle des OM651 mit Position der EKAS-Klappe       | 73 |
| 4.8  | Ergebnisse aus dem Strömungslabor: Drallzahl und           |    |
|      | Durchflusskennwert über dem EKAS-Klappenwinkel             | 73 |
| 4.9  | Messtechnik am Einzylinder-Transparentmotor                | 74 |
| 4.10 | Simulationsergebnis des Drallzahlverlaufes während des     |    |
|      | Ladungswechsels                                            | 76 |
| 4.11 | Strömungsgeschwindigkeit im Brennraum während der          |    |
|      | Kompression bei geöffneter bzw. geschlossener Drallklappe. | 77 |
| 4.12 | Netztopologie zur Simulation der Düseninnenströmung        | 78 |
| 4.13 | Geschwindigkeit und turbulente Längenskala für die         |    |
|      | Sitzwinkelvarianten im Schnitt; Einspritzverlauf und       |    |
|      | Nadelhubverlauf der drei Sitzwinkelvarianten               | 79 |
| 4.14 | Sektornetz zur Simulation von Einspritzung, Verbrennung    |    |
|      | und Schadstoffbildung                                      | 80 |
| 4.15 | $\lambda$ -Isoflächen während Einspritzung und Verbrennung | 81 |

| 5.1  | Hexaedervollnetz zur Simulation von Einspritzung,            |
|------|--------------------------------------------------------------|
|      | Verbrennung und Schadstoffbildung                            |
| 5.2  | Kombiniertes Hexaeder-/Polyedervollnetz zur Simulation       |
|      | von Einspritzung, Verbrennung und Schadstoffbildung 84       |
| 5.3  | Diskretisierungsnetze bei Variation des Aspect Ratio im      |
|      | Düsennahbereich                                              |
| 5.4  | Geschwindigkeit, Luftverhältnis, turbulente kinetische       |
|      | Energie und Dissipationsrate bei Variation des Aspect Ratio  |
|      | im Düsennahbereich                                           |
| 5.5  | Geschwindigkeit, Luftverhältnis, turbulente kinetische       |
|      | Energie und Dissipationsrate bei Variation der               |
|      | Gesamtparcelanzahl                                           |
| 5.6  | Druck und Wärmefreisetzung im Brennraum bei Variation        |
|      | des Aspect Ratio im Düsennahbereich                          |
| 5.7  | Druck und Wärmefreisetzung im Brennraum bei Variation        |
|      | der Gesamtparcelanzahl                                       |
| 5.8  | Parcelanzahl pro Diskretisierungszelle bei Variation der     |
|      | Gesamtparcelanzahl                                           |
| 5.9  | Diskretisierungsnetze bei Variation der radialen und axialen |
|      | Auflösung des strahlangepassten Bereiches                    |
| 5.10 | Geschwindigkeit, Luftverhältnis, turbulente kinetische       |
|      | Energie und Dissipationsrate bei Variation der radialen und  |
|      | axialen Auflösung des strahlangepassten Bereiches 92         |
| 5.11 | Druck und Wärmefreisetzung im Brennraum bei Variation        |
|      | der radialen und axialen Auflösung des strahlangepassten     |
|      | Bereichs                                                     |
| 5.12 | Verlauf der Drallzahl, turbulenten kinetischen Energie,      |
|      | Dissipationsrate, Diffusivität während Kompression und       |
|      | Verbrennung                                                  |
| 5.13 | Druck, Wärmefreisetzung und Diffusivität im Brennraum 96     |
| 5.14 | Luftverhältnis $\lambda$ auf der Schnittfläche A-A (siehe    |
|      | Abbildung 5.2)                                               |
| 5.15 | Kraftstoffmassenbruch $Y_{KS}$ auf der Schnittfläche A-A     |
|      | (siehe Abbildung 5.2)                                        |
| 5.16 | Lage des Düsennetzes im Verhältnis zum Brennraumnetz 97      |
| 5.17 | Netze für die Simulation von Düseninnenströmung und          |
|      | Einspritzstrahl                                              |

| 5.18 | Strömungsgeschwindigkeit und Kavitationsgebiet in der                |     |
|------|----------------------------------------------------------------------|-----|
|      | Düse bei der Raildruckvariation des Basispunktes in der              |     |
|      | heißen Kammer.                                                       | 101 |
| 5.19 | Strömungsfeld am Düsenaustritt.                                      | 102 |
| 5.20 | Einfluss der Parcelanzahl N auf die Anzahl der Parcel/Zelle.         | 104 |
| 5.21 | Eindringverhalten des Einspritzstrahls in der heißen                 |     |
|      | Kammer bei Variation der Parcelanzahl <i>N</i>                       | 104 |
| 5.22 | Eindringverhalten des Einspritzstrahls in der heißen                 |     |
|      | Kammer bei Variation der Konstante $C_{l_i}$ *                       | 105 |
| 5.23 | Vergleich der Tropfengrößen bei Variation der Konstante $C_{l_t}$ *. | 105 |
| 5.24 | Eindringverhalten des Einspritzstrahls in der heißen                 |     |
|      | Kammer bei Variation des turbulenten Dispersionsmodells              | 105 |
| 5.25 | Vergleich der Einspritzstrahlen bei Variation des                    |     |
|      | turbulenten Dispersionsmodells.                                      | 105 |
| 5.26 | Eindringverhalten des Einspritzstrahls in der heißen                 |     |
|      | Kammer bei Variation des Zerfallsmodells                             | 107 |
| 5.27 | Vergleich der Einspritzstrahlen bei Variation des                    |     |
|      | Zerfallsmodells.                                                     | 107 |
| 5.28 | Eindringverhalten des Einspritzstrahls in der kalten                 |     |
|      | Kammer bei Variation des Raildrucks.                                 | 108 |
| 5.29 | Eindringverhalten des Einspritzstrahls in der heißen                 |     |
|      | Kammer bei Variation des Raildrucks.                                 | 108 |
| 5.30 | Eindringverhalten des Einspritzstrahls in der heißen                 |     |
|      | Kammer bei Variation der Kammertemperatur.                           | 109 |
| 5.31 | Eindringverhalten des Einspritzstrahls in der heißen                 |     |
|      | Kammer bei Variation der Kammerdichte.                               | 109 |
| 5.32 | Vergleich des simulierten Strahls mit optischen Aufnahmen.           | 110 |
| 5.33 | Einspritzstrahl bei Simulation mit 180°-Sektor.                      | 110 |
| 5.34 | Zeitlicher Verlauf der Tropfengrößenverteilung für zwei              |     |
|      | Positionen im Düsenaustritt.                                         | 112 |
| 5.35 | Flüssigkeitsmassenbruch und Luftverhältnis $\lambda$ während         |     |
|      | Vor- und Haupteinspritzung.                                          | 113 |
| 5.36 | Druck und Wärmefreisetzung im Brennraum                              | 113 |
| 6.1  | Kanalkonzept und Ventilsitzbearbeitung bei Serien- und               |     |
|      | Nulldrallzylinderkopf                                                | 115 |
| 6.2  | FSN-NO <sub>x</sub> -Trade-Off sowie Druckverlaufsanalyse der        |     |
|      | Zylinderkopfvarianten                                                | 116 |

| 6.3  | Strömungsfeldauswertung durch Kreuzkorrelation zweier                  |     |
|------|------------------------------------------------------------------------|-----|
|      | aufeinanderfolgender Transparentaggregataufnahmen bzw.                 |     |
|      | Simulationsergebnis der Strömungsgeschwindigkeit für                   |     |
|      | Serien- und Nulldrallzylinderkopf.                                     | 118 |
| 6.4  | $\lambda$ -Isoflächen während Haupt- und Nachverbrennung der           |     |
|      | Zylinderkopfvarianten.                                                 | 119 |
| 6.5  | Transparentaggregataufnahmen der Einspritzung der                      |     |
|      | Zylinderkopfvariation.                                                 | 120 |
| 6.6  | Transparentaggregataufnahmen der Vorverbrennung der                    |     |
|      | Zylinderkopfvariation.                                                 | 120 |
| 6.7  | Transparentaggregataufnahmen der Hauptverbrennung der                  |     |
|      | Zylinderkopfvariation.                                                 | 121 |
| 6.8  | Stromlinien im OT als Resultat der                                     |     |
|      | Ladungswechselsimulationen der Zylinderkopfvarianten                   | 122 |
| 6.9  | Rußbildungs- und Rußoxidationsrate eines                               |     |
|      | Brennraumsektors der Zylinderkopfvarianten                             | 123 |
| 6.10 | Rußbildungs- und Rußoxidationsrate der                                 |     |
|      | Zylinderkopfvarianten (als Brennraum-Integral)                         | 123 |
| 6.11 | Düsengeometrien der Sitzwinkelvarianten der 7-Loch-                    |     |
|      | Injektoren                                                             | 124 |
| 6.12 | Ruß und $C_d$ (gespiegelt) über dem Sitzwinkel                         | 125 |
| 6.13 | Transparentaggregatergebnisse der Sitzwinkelvariation der              |     |
|      | 7-Loch-Injektoren                                                      | 126 |
| 6.14 | Transparentaggregataufnahmen (mit offener Blende) der                  |     |
|      | Vor- und Haupteinspritzung der Sitzwinkelvariation der 7-              |     |
|      | Loch-Injektoren                                                        | 127 |
| 6.15 | Kalt-Kammer-Aufnahmen der Haupteinspritzung der                        |     |
|      | Sitzwinkelvariation der 7-Loch-Injektoren                              | 128 |
| 6.16 | Aus Kalt-Kammer-Aufnahmen ermittelter                                  |     |
|      | Strahlkegelwinkel der Haupteinspritzung der                            |     |
|      | Sitzwinkelvariation der 7-Loch-Injektoren                              | 128 |
| 6.17 | Höhenwinkelvermessung der Sitzwinkelvariation der 7-                   |     |
|      | Loch-Injektoren                                                        | 129 |
| 6.18 | Einfluss des Höhenwinkels auf den Partikel-NO <sub>x</sub> -Trade-Off. | 129 |
| 6.19 | Schnitt durch die CAD-Geometrien der "mittleren                        |     |
|      | Düsenlöcher" der Sitzwinkelvarianten                                   | 130 |
| 6.20 | $\lambda$ -Isoflächen während Haupt- und Nachverbrennung der           |     |
|      | Sitzwinkelvarianten der 7-Loch-Injektoren                              | 132 |

| 6.2 | 21 | Rußbildungs- und Rußoxidationsrate eines                   |     |
|-----|----|------------------------------------------------------------|-----|
|     |    | Brennraumsektors der Sitzwinkelvarianten der 7-Loch-       |     |
|     |    | Injektoren                                                 | 133 |
| 6.2 | 22 | Simulierte Strahleindringtiefe der Sitzwinkelvarianten der |     |
|     |    | 7-Loch-Injektoren                                          | 134 |
| 6.2 | 23 | Simulierter massengewichteter Höhenwinkel der              |     |
|     |    | Sitzwinkelvarianten der 7-Loch-Injektoren                  | 134 |
| 6.2 | 24 | Schematische Darstellung der Zonenlambda-Definition        | 135 |
| 6.2 | 25 | Luftverhältnis der Sitzwinkelvarianten der 7-Loch-         |     |
|     |    | Injektoren in Mulde bzw. Quetschspalt                      | 135 |
|     |    |                                                            |     |

## Tabellenverzeichnis

| 3.1 | Koeffizienten des Standard- $k$ - $\varepsilon$ -Turbulenzmodells | 32  |
|-----|-------------------------------------------------------------------|-----|
| 4.1 | Thermodynamische Zustände in der kalten und heißen                |     |
|     | Kammer zur Analyse des Einspritzstrahls                           | 66  |
| 4.2 | Motordaten und hydraulische Eigenschaften der Mini-               |     |
|     | Sacklochdüse                                                      | 71  |
| 4.3 | Versuchsbedingungen am Einzylindermotor                           | 72  |
| 4.4 | An Einzylinder- und Transparentmotor eingestellter                |     |
|     | Betriebspunkt.                                                    | 75  |
| 5.1 | Netzvarianten zur Simulation von Einspritzung,                    |     |
|     | Verbrennung und Schadstoffbildung                                 | 86  |
| 5.2 | Simulationsmatrix zur Validierung der Einspritzstrahlmodelle.     | 100 |
| 5.3 | Netze und entsprechende Auswahl von Zeitschritt und               |     |
|     | Parcelanzahl zur Analyse des Strahleindringverhaltens in der      |     |
|     | Hochdruck-/Hochtemperaturkammer.                                  | 103 |
| 6.1 | Vergleich von gemessener und simulierter Rußemission der          |     |
|     | Zylinderkopfvarianten                                             | 117 |
| 6.2 | Analyse der CAD-Daten des "mittleren Düsenlochs"                  | 130 |
| 6.3 | Vergleich von gemessener und simulierter Rußemission der          |     |
|     | Sitzwinkelvarianten der 7-Loch-Injektoren                         | 131 |

# Abkürzungsverzeichnis

| nulldimensional                                  |
|--------------------------------------------------|
| eindimensional                                   |
| zweidimensional                                  |
| dreidimensional                                  |
| Abgasrückführung                                 |
| Bandpassfilter                                   |
| Baureihe                                         |
| Brennverlauf                                     |
| Computer-Aided Design (engl.)                    |
| Continuous Droplet Model (engl.)                 |
| Computational Fluid Dynamics (engl.)             |
| Courant-Friedrichs-Lewy(-Bedingung)              |
| chemisch                                         |
| Discrete Droplet Model (engl.)                   |
| Düseninnenströmung                               |
| Dispersion                                       |
| Digital Rate Shaping (engl.)                     |
| Drallzahl im oberen Totpunkt                     |
| Einlasskanalabschaltung                          |
| Einspritzverlauf                                 |
| Filter Smoke Number (engl.)                      |
| Gleichgewicht                                    |
| Lage des 50%-Umsatzpunktes (aus dem Heizverlauf) |
| hydraulischer Durchfluss                         |
| Haupteinspritzung; hydroerosiv                   |
| High-Resolution Interface-Capturing (engl.)      |
|                                                  |

| ICAS<br>init. | Interactive-Cross-Section-Averaged-Spray (engl.) initialisiert |
|---------------|----------------------------------------------------------------|
| KL            | Laserextinktionsfaktor                                         |
| konv.         | konventionell                                                  |
| korr.         | korrigiert                                                     |
| KW            | Kurbelwinkel                                                   |
| L2F           | Laser 2-Focus Velocimeter (engl.)                              |
| LA            | Lochanzahl                                                     |
| lam.          | laminar                                                        |
| LIEF          | Laser-induced Exciplex Fluorescence (engl.)                    |
| LW            | Ladungswechsel                                                 |
| NEFZ          | Neuer Europäischer Fahrzyklus                                  |
| NFZ           | Nutzfahrzeug                                                   |
| NIR           | Infrarotlicht ("'nahes Infrarot"')                             |
| NSK           | NO <sub>x</sub> -Speicherkatalysator                           |
| OM651         | Modellbezeichnung des Vierzylinder-Reihendieselmotors          |
| OT            | oberer Totpunkt                                                |
| PDF           | Wahrscheinlichkeitsdichtefunktion (engl. "'Probability Densi-  |
|               | ty Function"')                                                 |
| physik.       | physikalisch                                                   |
| PIV           | Particle Image Velocimetry (engl.)                             |
| PKW           | Personenkraftwagen                                             |
| RD.           | Reitz-Diwakar                                                  |
| RANS          | Reynolds-averaged Navier-Stokes (engl.)                        |
| SB            | Spritzbeginn                                                   |
| SCR           | selektive katalytische Reduktion (engl. "'Selective Catalytic  |
|               | Reduction"')                                                   |
| SMD           | Sauter Mean Diameter (engl.)                                   |
| SMR           | Sauter Mean Radius (engl.)                                     |