Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart RESEARCH

Systemsimulation zur verbesserten Auslegung von Benzin-Direkteinspritzungssystemen

Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart

Reihe herausgegeben von

Michael Bargende, Stuttgart, Deutschland Hans-Christian Reuss, Stuttgart, Deutschland Jochen Wiedemann, Stuttgart, Deutschland Das Institut für Verbrennungsmotoren und Kraftfahrwesen (IVK) an der Universität Stuttgart erforscht, entwickelt, appliziert und erprobt, in enger Zusammenarbeit mit der Industrie, Elemente bzw. Technologien aus dem Bereich moderner Fahrzeugkonzepte. Das Institut gliedert sich in die drei Bereiche Kraftfahrwesen, Fahrzeugantriebe und Kraftfahrzeug-Mechatronik. Aufgabe dieser Bereiche ist die Ausarbeitung des Themengebietes im Prüfstandsbetrieb, in Theorie und Simulation. Schwerpunkte des Kraftfahrwesens sind hierbei die Aerodynamik, Akustik (NVH), Fahrdynamik und Fahrermodellierung, Leichtbau, Sicherheit, Kraftübertragung sowie Energie und Thermomanagement – auch in Verbindung mit hybriden und batterieelektrischen Fahrzeugkonzepten. Der Bereich Fahrzeugantriebe widmet sich den Themen Brennverfahrensentwicklung einschließlich Regelungs- und Steuerungskonzeptionen bei zugleich minimierten Emissionen, komplexe Abgasnachbehandlung, Aufladesysteme und -strategien, Hybridsysteme und Betriebsstrategien sowie mechanisch-akustischen Fragestellungen. Themen der Kraftfahrzeug-Mechatronik sind die Antriebsstrangregelung/Hybride, Elektromobilität, Bordnetz und Energiemanagement, Funktions- und Softwareentwicklung sowie Test und Diagnose. Die Erfüllung dieser Aufgaben wird prüfstandsseitig neben vielem anderen unterstützt durch 19 Motorenprüfstände, zwei Rollenprüfstände, einen 1:1-Fahrsimulator, einen Antriebsstrangprüfstand, einen Thermowindkanal sowie einen 1:1-Aeroakustikwindkanal. Die wissenschaftliche Reihe "Fahrzeugtechnik Universität Stuttgart" präsentiert über die am Institut entstandenen Promotionen die hervorragenden Arbeitsergebnisse der Forschungstätigkeiten am IVK.

Reihe herausgegeben von

Prof. Dr.-Ing. Michael Bargende Lehrstuhl Fahrzeugantriebe Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland

Prof. Dr.-Ing. Jochen Wiedemann Lehrstuhl Kraftfahrwesen Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland

Prof. Dr.-Ing. Hans-Christian Reuss Lehrstuhl Kraftfahrzeugmechatronik Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland

Weitere Bände in der Reihe http://www.springer.com/series/13535

Michael Spitznagel

Systemsimulation zur verbesserten Auslegung von Benzin-Direkteinspritzungssystemen

Michael Spitznagel IVK, Fakultät 7, Lehrstuhl für Fahrzeugantriebe Universität Stuttgart Stuttgart, Deutschland

Zugl.: Dissertation Universität Stuttgart, 2019

D93

ISSN 2567-0042 ISSN 2567-0352 (electronic) Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart ISBN 978-3-658-27376-7 ISBN 978-3-658-27377-4 (eBook) https://doi.org/10.1007/978-3-658-27377-4

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von allgemein beschreibenden Bezeichnungen, Marken, Unternehmensnamen etc. in diesem Werk bedeutet nicht, dass diese frei durch jedermann benutzt werden dürfen. Die Berechtigung zur Benutzung unterliegt, auch ohne gesonderten Hinweis hierzu, den Regeln des Markenrechts. Die Rechte des jeweiligen Zeicheninhabers sind zu beachten.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag, noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Springer Vieweg ist ein Imprint der eingetragenen Gesellschaft Springer Fachmedien Wiesbaden GmbH und ist ein Teil von Springer Nature.

Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als Mitarbeiter der Robert Bosch GmbH im Geschäftsbereich Powertrain Solutions, in Zusammenarbeit mit dem Institut für Verbrennungsmotoren und Kraftfahrwesen (IVK) der Universität Stuttgart.

Mein besonderer Dank gilt Herrn Prof. Dr.-Ing. Michael Bargende für die intensive Betreuung meiner Arbeit, die vielen wertvollen Ratschläge und das entgegengebrachte Vertrauen.

Ebenso bedanke ich mich bei Herrn Prof. Dr. techn. Christian Beidl für sein reges Interesse an der Arbeit und die Übernahme des Korreferats.

Herrn Prof. Dr.-Ing. Thomas Maier danke ich für die Übernahme des Vorsitzes der Prüfungskommission.

Ganz besonders möchte ich mich bei Herrn Dr. rer. nat. Dr.-Ing. Uwe Iben und Herrn Dr.-Ing. Ronny Leonhardt für die fachliche Betreuung der Arbeit, die vielen Diskussionen sowie die unzähligen Anregungen bedanken. Darüber hinaus danke ich meinem früheren Vorgesetzten Herrn Dipl.-Ing. Uwe Müller, der mich besonders zu Beginn meiner Arbeit sehr unterstützt und die Erstellung dieser Dissertation somit ermöglicht hat. Ebenso danke ich allen Mitarbeiterinnen und Mitarbeitern der Abteilungen PS-GI/ENP und PS-GI/ENG-TH für die wertvollen fachlichen Diskussionen.

Nicht zuletzt möchte ich mich bei meinen Eltern sowie bei Julia für die stete Unterstützung und den Rückhalt in jeglicher Hinsicht bedanken.

Michael Spitznagel

Inhaltsverzeichnis

Abbildungsverzeichnis ID Tabellenverzeichnis XV Abkürzungsverzeichnis XV Symbolverzeichnis XII Kurzfassung XX Abstract XXII 1 Einleitung und Zielsetzung XXIII 2 Grundlagen 2.1 2.1 Fluideigenschaften 2.1.2 2.2 Strömungsmechanische Erhaltungsgleichungen 1 2.3 Druckverluste in ausgewählten Hydraulikkomponenten 1 2.3.1 Druckverluste in Blenden, Drosseln und Spalten 1 2.4 Kapazität, Induktivität und Widerstand in der Hydraulik 1 2.5 Hydraulisches Verhalten im Frequenzbereich 2 3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3	Vc	orwort	t	V
Tabellenverzeichnis XV Abkürzungsverzeichnis XVI Symbolverzeichnis XII Kurzfassung XXV Abstract XXII 1 Einleitung und Zielsetzung XXIII 2 Grundlagen 2.1 2.1 Fluideigenschaften 2.1.1 2.1.2 Gase in Flüssigkeiten 2.1.2 2.3 Druckverluste in ausgewählten Hydraulikkomponenten 1 2.3.1 Druckverluste in Rohrleitungen 1 2.3.2 Druckverluste in Blenden, Drosseln und Spalten 1 2.4 Kapazität, Induktivität und Widerstand in der Hydraulik 1 2.5 Hydraulisches Verhalten im Frequenzbereich 2 3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3	Ał	obildu	Ingsverzeichnis	IX
Abkürzungsverzeichnis XVI Symbolverzeichnis XII Kurzfassung XXV Abstract XXV 1 Einleitung und Zielsetzung XXV 2 Grundlagen XXV 2.1 Fluideigenschaften 2.1.1 Homogene flüssige Phase 2.1.2 Gase in Flüssigkeiten 2.1.2 Gase in Flüssigkeiten 2.3 Druckverluste in ausgewählten Hydraulikkomponenten 1 2.3.1 Druckverluste in Rohrleitungen 1 2.3.2 Druckverluste in Blenden, Drosseln und Spalten 1 2.4 Kapazität, Induktivität und Widerstand in der Hydraulik 1 2.5 Hydraulisches Verhalten im Frequenzbereich 2 3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3	Та	beller	nverzeichnis	XV
Symbolverzeichnis XII Kurzfassung XXV Abstract XXV 1 Einleitung und Zielsetzung 2 Grundlagen 2.1 Fluideigenschaften 2.1.1 Homogene flüssige Phase 2.1.2 Gase in Flüssigkeiten 2.3 Druckverluste in ausgewählten Hydraulikkomponenten 1 2.3.1 Druckverluste in ausgewählten Hydraulikkomponenten 1 2.3.2 Druckverluste in Blenden, Drosseln und Spalten 1 2.5 Hydraulisches Verhalten im Frequenzbereich 2 3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenaalyse 3 4.1 Systemsimulation	Ał	okürzı	ungsverzeichnis	XVII
Kurzfassung XXV Abstract XXD 1 Einleitung und Zielsetzung XXD 2 Grundlagen 2.1 2.1 Fluideigenschaften 2.1.1 2.1.1 Homogene flüssige Phase 2.1.2 2.1.2 Gase in Flüssigkeiten 2.1.2 2.3 Druckverluste in ausgewählten Hydraulikkomponenten 1 2.3.1 Druckverluste in Rohrleitungen 1 2.3.2 Druckverluste in Blenden, Drosseln und Spalten 1 2.4 Kapazität, Induktivität und Widerstand in der Hydraulik 1 2.5 Hydraulisches Verhalten im Frequenzbereich 2 3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3	Sy	mbol	verzeichnis	XIX
Abstract XXII 1 Einleitung und Zielsetzung XXII 2 Grundlagen 2.1 2.1 Fluideigenschaften 2.1.1 Homogene flüssige Phase 2.1.2 Gase in Flüssigkeiten 2.1.2 Gase in Flüssigkeiten 2.2 Strömungsmechanische Erhaltungsgleichungen 1 2.3 Druckverluste in ausgewählten Hydraulikkomponenten 1 2.3.1 Druckverluste in Rohrleitungen 1 2.3.2 Druckverluste in Blenden, Drosseln und Spalten 1 2.4 Kapazität, Induktivität und Widerstand in der Hydraulik 1 2.5 Hydraulisches Verhalten im Frequenzbereich 2 3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3	Κι	ırzfas	sung	XXV
1 Einleitung und Zielsetzung 2 Grundlagen 2.1 Fluideigenschaften 2.1.1 Homogene flüssige Phase 2.1.2 Gase in Flüssigkeiten 2.2 Strömungsmechanische Erhaltungsgleichungen 1 2.3 Druckverluste in ausgewählten Hydraulikkomponenten 1 2.3.1 Druckverluste in Rohrleitungen 1 2.3.2 Druckverluste in Blenden, Drosseln und Spalten 1 2.4 Kapazität, Induktivität und Widerstand in der Hydraulik 1 2.5 Hydraulisches Verhalten im Frequenzbereich 2 3.1 Aufbau und Grundbegriffe 3.2 Das V-Modell 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4.1 Systemsimulation 3 4.1 Systemsimulation	Ał	ostraci	t	XXIX
2 Grundlagen 2.1 Fluideigenschaften 2.1.1 Homogene flüssige Phase 2.1.2 Gase in Flüssigkeiten 2.2 Strömungsmechanische Erhaltungsgleichungen 1 2.3 Druckverluste in ausgewählten Hydraulikkomponenten 1 2.3.1 Druckverluste in Rohrleitungen 1 2.3.2 Druckverluste in Blenden, Drosseln und Spalten 1 2.4 Kapazität, Induktivität und Widerstand in der Hydraulik 1 2.5 Hydraulisches Verhalten im Frequenzbereich 2 3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponenten analyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3 4.2 Fluid 4	1	Einl	leitung und Zielsetzung	1
2.1 Fluideigenschaften 2.1.1 Homogene flüssige Phase 2.1.2 Gase in Flüssigkeiten 2.1.2 Gase in Flüssigkeiten 2.1 Strömungsmechanische Erhaltungsgleichungen 1 1 2.3 Druckverluste in ausgewählten Hydraulikkomponenten 1 2.3.1 Druckverluste in Rohrleitungen 1 2.3.2 Druckverluste in Blenden, Drosseln und Spalten 1 2.3.2 Druckverluste in Blenden, Drosseln und Spalten 2.4 Kapazität, Induktivität und Widerstand in der Hydraulik 1 2.5 Hydraulisches Verhalten im Frequenzbereich 2 3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3 4.2 Fluid 4	2	Gru	Indlagen	5
2.1.1 Homogene flüssige Phase 2.1.2 Gase in Flüssigkeiten 2.2 Strömungsmechanische Erhaltungsgleichungen 1 2.3 Druckverluste in ausgewählten Hydraulikkomponenten 1 2.3.1 Druckverluste in Rohrleitungen 1 2.3.2 Druckverluste in Blenden, Drosseln und Spalten 1 2.3.2 Druckverluste in Blenden, Drosseln und Spalten 2.4 Kapazität, Induktivität und Widerstand in der Hydraulik 1 2.5 Hydraulisches Verhalten im Frequenzbereich 2 3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3 4.2 Fluid 4		2.1	Fluideigenschaften	5
2.1.2 Gase in Flüssigkeiten 2.2 Strömungsmechanische Erhaltungsgleichungen 1 2.3 Druckverluste in ausgewählten Hydraulikkomponenten 1 2.3.1 Druckverluste in Rohrleitungen 1 2.3.2 Druckverluste in Blenden, Drosseln und Spalten 1 2.4 Kapazität, Induktivität und Widerstand in der Hydraulik 1 2.5 Hydraulisches Verhalten im Frequenzbereich 2 3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3 4.2 Fluid 4			2.1.1 Homogene flüssige Phase	5
2.2 Strömungsmechanische Erhaltungsgleichungen 1 2.3 Druckverluste in ausgewählten Hydraulikkomponenten 1 2.3.1 Druckverluste in Rohrleitungen 1 2.3.2 Druckverluste in Blenden, Drosseln und Spalten 1 2.4 Kapazität, Induktivität und Widerstand in der Hydraulik 1 2.5 Hydraulisches Verhalten im Frequenzbereich 2 3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3 4.2 Fluid 4			2.1.2 Gase in Flüssigkeiten	
2.3 Druckverluste in ausgewählten Hydraulikkomponenten 1 2.3.1 Druckverluste in Rohrleitungen 1 2.3.2 Druckverluste in Blenden, Drosseln und Spalten 1 2.4 Kapazität, Induktivität und Widerstand in der Hydraulik 1 2.5 Hydraulisches Verhalten im Frequenzbereich 2 3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3 4.2 Fluid 4		2.2	Strömungsmechanische Erhaltungsg	leichungen 11
2.3.1 Druckverluste in Rohrleitungen 1 2.3.2 Druckverluste in Blenden, Drosseln und Spalten 1 2.4 Kapazität, Induktivität und Widerstand in der Hydraulik 1 2.5 Hydraulisches Verhalten im Frequenzbereich 2 3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3 4.2 Fluid 4		2.3	Druckverluste in ausgewählten Hydr	aulikkomponenten 13
2.3.2 Druckverluste in Blenden, Drosseln und Spalten 1 2.4 Kapazität, Induktivität und Widerstand in der Hydraulik 1 2.5 Hydraulisches Verhalten im Frequenzbereich 2 3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3 4.2 Fluid 4			2.3.1 Druckverluste in Rohrleitung	gen 15
2.4 Kapazität, Induktivität und Widerstand in der Hydraulik 1 2.5 Hydraulisches Verhalten im Frequenzbereich 2 3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3 4.2 Fluid 4			2.3.2 Druckverluste in Blenden, D	prosseln und Spalten17
2.5 Hydraulisches Verhalten im Frequenzbereich 2 3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3 4.2 Fluid 4		2.4	Kapazität, Induktivität und Widersta	nd in der Hydraulik 19
3 Analyse des BDE-Systems 2 3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3 4.2 Fluid 4		2.5	Hydraulisches Verhalten im Frequen	zbereich 22
3.1 Aufbau und Grundbegriffe 2 3.2 Das V-Modell 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3 4.2 Fluid 4	3	Ana	lyse des BDE-Systems	
3.2 Das V-Modell. 2 3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3 4.2 Fluid 4		3.1	Aufbau und Grundbegriffe	
3.3 Messtechnische Untersuchung 3 3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3 4.2 Fluid 4		3.2	Das V-Modell	
3.4 Systemstruktur 3 3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3 4.2 Fluid 4		3.3	Messtechnische Untersuchung	
3.5 Komponentenanalyse 3 4 Modellentwicklung für Komponenten des BDE-Systems 3 4.1 Systemsimulation 3 4.2 Fluid 4		3.4	Systemstruktur	
4 Modellentwicklung für Komponenten des BDE-Systems		3.5	Komponentenanalyse	
4.1 Systemsimulation	4	Mod	dellentwicklung für Komponenten d	es BDE-Systems 39
4.2 Fluid 4		4.1	Systemsimulation	
12 1 1010		4.2	Fluid	

	4.3	Wellro	ohr	
		4.3.1	Modellierung der Druckverluste	49
		4.3.2	Modellierung der Nachgiebigkeit	54
	4.4	Flexib	le Leitungen	56
	4.5	Filtere	elemente	61
	4.6	Querse	chnittsübergänge	63
		4.6.1	Querschnittsverengung	64
		4.6.2	Querschnittserweiterung	66
		4.6.3	Implementierung in AMESim	68
	4.7	Druck	dämpfer	
	4.8	Flachs	sitzventile	74
	4.9	Förder	reinheit	
		4.9.1	Modellentwicklung	
		4.9.2	Validierung	81
5	Inte	gration	zu Teilsystemen	85
	5.1	Tanke	inbaueinheit	85
	5.2	Nieder	rdruckleitungssystem	88
		5.2.1	Konfiguration 1	89
		5.2.2	Konfiguration 2	
	5.3	Nieder	rdruckbereich der Hochdruckpumpe	
	5.4	Förder	r- und Antriebseinheit der Hochdruckpumpe	
	5.5	Hochd	łruckkreis	
6	Inte	gration	zum Gesamtsystem	
	6.1	Validie	erung des AMESim-Modells	
	6.2	Softwa	arevergleich AMESim - GT-Suite	107
7	Aus	blick		
Li	teratu	rverzeic	hnis	113
Ar	nhang			119

Abbildungsverzeichnis

2.1	Kreisrundes Volumenelement (links), zweidimensionales	
	Volumenelement bei einer Spaltströmung (rechts)	11
2.2	Hydraulisch glattes Rohr (links), hydraulisch rauhes Rohr (Mitte),	
	Wellrohr (rechts)	15
2.3	Leitung mit Anregung (links) und Randbedingung (rechts)	23
2.4	Übertragungsfunktion einer Leitung, Volumenstromanregung (links)	
	und Druckanregung (rechts)	. 24
2.5	Helmholtz-Resonator mit einem Volumen (links) und zwei	
	Volumina (rechts)	25
2.6	Übertragungsfunktion eines Helmholtz-Resonators	26
3.1	Aufbau des Benzin-Direkteinspritzungssystems	. 27
3.2	Definition des Förderwinkels	28
3.3	Modellentwicklung anhand des V-Modells	. 29
3.4	Prüfstandsaufbau des BDE-Systems	31
3.5	Betrachtete Leitungselemente im Niederdruckleitungssystem	31
3.6	Nockenhub (links) sowie Nockengeschwindigkeit (rechts) über dem	
	Nockenwinkel	32
3.7	Prinzipieller Aufbau des BDE-Systems mit den Messstellen	33
3.8	Messstellen in den Niederdruckleitungssystemen, Konfiguration 1	
	(links) und Konfiguration 2 (rechts)	33
3.9	Die Systemstruktur des Benzin-Direkteinspritzungssystems	36
4.1	Approximation der Dichte ρ mit der Modellgleichung	41
4.2	Approximation der dynamischen Viskosität η mit der	
	Modellgleichung	42
4.3	Approximation des Dampfdrucks p_{Da} mit der Modellgleichung	43
4.4	Ostwaldkoeffizient Os in Abhängigkeit des Drucks	43
4.5	Stoffmengenkonzentration c an Luft im Fluid (links),	
	Implementierung in AMESim (rechts)	45
4.6	Wellrohr (links) sowie die gesamte Tankeinbaueinheit (rechts)	48
4.7	Geometrische Daten des Wellrohrs	48
4.8	Prüfaufbau zur Bestimmung des Druckabfalls Δp_V	49

4.9	Druckabfall Δp_V über dem Massenstrom <i>m</i> , Fluidtemperatur 21 °C	
	(links) und 36 °C (rechts)	50
4.10	Rohrreibungszahl λ_{WR} über der Reynoldszahl Re	51
4.11	Kern- und Taschenströmung in einem Wellrohr	51
4.12	Geschwindigkeitsprofil der Kernströmung (links) sowie	
	Taschenströmung (rechts) beim Massenstrom $\dot{m} = 15 \text{ g/s}$	52
4.13	Geschwindigkeitsprofil der Kernströmung (links) sowie	
	Taschenströmung (rechts) beim Massenstrom $\dot{m} = 100 \text{ g/s} \dots$	52
4.14	Widerstandszahl ζ_{WR} (links) und	
	Durchflusskoeffizient $\alpha_{D_{WR}}$ (rechts) des Wellrohrs	54
4.15	Prüfaufbau zur Bestimmung der Volumendehnung	55
4.16	Ausgeschobenes Volumen V _{WR} über dem zugehörigen Druck im	
	Wellrohr p_{WR}	55
4.17	Wandfaktor W, Querkontraktionszahl $v_Q = 0.3$	58
4.18	Definition elastisches und viskoelastisches Materialverhalten [16]	59
4.19	Materialmodelle zur Beschreibung der Eigenschaften einer flexiblen	
	Leitung	59
4.20	Kraftstofffeinfilter (links) sowie HDP-Filter (rechts), Darstellung	
	nicht maßstäblich	61
4.21	Druckabfall Δp_V über dem Volumenstrom Q , Kraftstofffeinfilter	
	(links) und HDP-Filter (rechts)	61
4.22	Widerstandszahl ζ_{HDF} (links) und	
	Durchflusskoeffizient $\alpha_{D_{HDF}}$ (rechts) des HDP-Filters	62
4.23	Prinzipielle Abbildung einer Querschnittsverengung (links) sowie	
	einer Querschnittserweiterung (rechts)	63
4.24	Widerstandszahl ζ_{QV} und Durchflusskoeffizient $\alpha_{D_{QV}}$ bei einer	
	Querschnittsverengung	64
4.25	Druckabfall Δp_V (links) und Widerstandszahl ζ_{QV} (rechts) in	
	Abhängigkeit von Volumenstrom und dessen Frequenz f bei einer	
	Querschnittsverengung	65
4.26	Länge des Wirbelgebiets x _{Wir} über der Reynoldszahl Re	66
4.27	Widerstandszahl ζ_{QE} und Durchflusskoeffizient $\alpha_{D_{OE}}$ bei einer	
	Querschnittserweiterung	67
4.28	Druckabfall Δp_V in Abhängigkeit von Volumenstrom bei einer	
	Querschnittserweiterung, aufgetragen über der Frequenz f (links)	
	sowie über der Womersleyzahl Wo (rechts)	67

		~~~
4.29	AMESim-Modellierung eines Querschnittsübergangs	68
4.30	Einfluss <i>V_{Dum}</i> auf die Eigenfrequenzen bei einem	
	Querschnittsübergang. Links: $l = L = 200 \text{ mm}$ ,	
	rechts: $l = L = 1200 \text{ mm}$	69
4.31	Prinzipielle Darstellung des Druckdämpfers	70
4.32	Amplitudengang der Übertragungsfunktion $G_{DD}(s)$	73
4.33	Prinzipielle Darstellung eines Flachsitzventils	74
4.34	Volumenstrom $Q$ durch das Einlassventil bei statischer	
	Druckdifferenz $\Delta p_{stat}$	75
4.35	Prinzipbild der Fördereinheit (links) sowie auf den Kolben	
	wirkenden Kräfte (rechts)	78
4.36	Buchsenkontur und Druckfeld im Spalt	80
4.37	Prüfvorrichtung zur Ermittlung der Kolbenleckage	82
4.38	Untersuchte Kolbenspalte (links), Leckagestrom $Q_{Kol}$ über der	
	Druckdifferenz $\Delta p$ des Kolben/Buchse-Paar 2 (rechts)	83
4.39	Leckagestrom $Q_{Kol}$ für die untersuchten Kolben/Buchse-Paare bei	
	der Druckdifferenz $\Delta p$ von 200 bar	83
5.1	Tankeinbaueinheit und Ansteuerung (blau markiert)	85
5.2	Vergleich Messung und Simulation der TEE-Fördermenge	86
5.3	Niederdruckleitungssystem (blau markiert)	88
5.4	Vergleich Messung und Simulation an der Druckmessstelle $p_{ND1}$ .	
	$n_{HDP} = 500 \text{ 1/min und } FW = 25^{\circ} (\text{links oben}), n_{HDP} = 2000 \text{ 1/min}$	
	und $FW = 5^{\circ}$ (rechts oben), $n_{HDP} = 2000 \text{ 1/min und } FW = 25^{\circ}$	
	(links unten), $n_{HDP} = 3500  1/\text{min}$ und $FW = 5^{\circ}$ (rechts unten)	89
5.5	Vergleich Messung und Simulation an der Druckmessstelle $p_{ND2}$ .	
	$n_{HDP} = 500 \text{ 1/min und } FW = 25^{\circ} \text{ (links oben)}, n_{HDP} = 2000 \text{ 1/min}$	
	und $FW = 5^{\circ}$ (rechts oben), $n_{HDP} = 2000 \text{ 1/min und } FW = 25^{\circ}$	
	(links unten), $n_{HDP} = 3500  1/\text{min}$ und $FW = 5^{\circ}$ (rechts unten)	90
5.6	Vergleich Messung und Simulation an der Druckmessstelle $p_{ND3}$ .	
	$n_{HDP} = 500 \text{ 1/min und } FW = 25^{\circ} \text{ (links oben)}, n_{HDP} = 2000 \text{ 1/min}$	
	und $FW = 5^{\circ}$ (rechts oben). $n_{HDP} = 2000 \text{ 1/min und } FW = 25^{\circ}$	
	(links unten), $n_{HDP} = 3500  1  / \text{min}$ und $FW = 5^{\circ}$ (rechts unten)	91
5.7	Vergleich Messung und Simulation an der Druckmessstelle $n_{\rm vst}$ .	
	$n_{HDP} = 500 \text{ 1/min und } FW = 25^{\circ} (\text{links oben})$ . $n_{HDP} = 2000 \text{ 1/min}$	
	und $FW = 5^{\circ}$ (rechts oben) $n_{HDP} = 2000 1/\text{min und } FW = 25^{\circ}$	
	(links unten) $n_{HDP} = 3500  1/\text{min}$ und $FW = 5^{\circ}$ (rechts unten)	92
	(minist uncer), $n_{\Pi}p_{\Gamma} = 5500$ r/mini uncer $n_{\Gamma} = 5$ (recents uncer)	/ _

5.8	Niederdruckbereich der Hochdruckpumpe (blau markiert)	93
5.9	Vergleich Messung und Simulation im Druckdämpferraum,	
	$n_{HDP} = 2000  1/\text{min}$ und $FW = 25^{\circ}$	94
5.10	Vergleich Messung und Simulation im Druckdämpferraum,	
	$n_{HDP} = 3000  1/\text{min}$ und $FW = 25^{\circ}$	95
5.11	Vergleich Messung und Simulation der Drucksignale $p_{vHD}$ (links)	
	und $p_{SR}$ (rechts), $n_{HDP} = 3500 \text{ 1/min}$ und $FW = 25^{\circ}$	95
5.12	Förder- und Antriebseinheit (blau markiert)	96
5.13	Liefergrad LG im Bereich von 300 bis 900 1/min, Vergleich	
	zwischen Messung und Simulation	97
5.14	Liefergrad LG im Bereich von 300 bis 900 1/min, Vergleich der	
	neuen zur bisherigen Modellierung für den Systemdruck 200 bar	98
5.15	Hochdruckkreis (blau markiert)	99
5.16	Vergleich Messung und Simulation an der Druckmessstelle $p_{FR}$ .	
	$n_{HDP} = 2000 \text{ 1/min}$ und $FW = 25^{\circ}$ (links), $n_{HDP} = 3500 \text{ 1/min}$	
	und $FW = 45^{\circ}$ (rechts)	.100
5.17	Vergleich Messung und Simulation an der Druckmessstelle $p_{nHD}$ .	
	$n_{HDP} = 2000 \text{ 1/min}$ und $FW = 25^{\circ}$ (links), $n_{HDP} = 3500 \text{ 1/min}$	
	und $FW = 45^{\circ}$ (rechts)	.100
5.18	Vergleich Messung und Simulation an der Druckmessstelle $p_{vRa}$ .	
	$n_{HDP} = 2000  1/\text{min}$ und $FW = 25^{\circ}$ (links), $n_{HDP} = 3500  1/\text{min}$	
	und $FW = 45^{\circ}$ (rechts)	.101
5.19	Raildruck $p_{Rai}$ . $n_{HDP} = 2000 \text{ 1/min}$ und $FW = 25^{\circ}$ (links),	
	$n_{HDP} = 3500  1/\text{min}$ und $FW = 45^{\circ}$ (rechts)	.102
6.1	Vergleich Messung und Simulation der Konfiguration 1,	
	$n_{HDP} = 2000  1/\text{min}$ und $FW = 25^{\circ}$	.104
6.2	Vergleich Messung und Simulation der Konfiguration 1,	
	Druckmessstelle $p_{SR}$ , $n_{HDP} = 3000  1/\text{min}$ , $FW = 5^{\circ}$ (links) und	
	$FW = 45^{\circ}$ (rechts)	.105
6.3	Vergleich Messung und Simulation der Konfiguration 1,	
	Schwingweite an den Druckmessstellen $p_{ND1}$ (links) und	
	$p_{ND2}$ (rechts), $FW = 5^{\circ}$	.106
6.4	Vergleich Messung und Simulation der Konfiguration 1,	
	Schwingweite an den Druckmessstellen $p_{ND1}$ (links) und	
	$p_{ND2}$ (rechts), $FW = 35^{\circ}$	.106

6.5	Vergleich Messung, GT-Suite und AMESim, $n_{HDP} = 3000 \text{ 1/min}$	
	und $FW = 15^{\circ}$	. 109
A.1	Baugruppen und Designelemente der Tankeinbaueinheit	119
A.2	Baugruppen und Designelemente der Hochdruckpumpe	120
A.3	Vergleich Messung und Simulation der Konfiguration 1,	
	$n_{HDP} = 500  1/\text{min und } FW = 25^{\circ}$	121
A.4	Vergleich Messung und Simulation der Konfiguration 1,	
	$n_{HDP} = 2000  1/\text{min}$ und $FW = 5^{\circ}$	122
A.5	Vergleich Messung und Simulation der Konfiguration 1,	
	$n_{HDP} = 2000  1/\text{min}$ und $FW = 45^{\circ}$	123
A.6	Vergleich Messung und Simulation der Konfiguration 1,	
	$n_{HDP} = 3500  1/\text{min}$ und $FW = 25^{\circ}$	124
A.7	Vergleich Messung, GT-Suite und AMESim, $n_{HDP} = 1000 \text{ 1/min}$	
	und $FW = 15^{\circ}$	125
A.8	Vergleich Messung, GT-Suite und AMESim, $n_{HDP} = 1000 \text{ 1/min}$	
	und $FW = 35^{\circ}$	126
A.9	Vergleich Messung, GT-Suite und AMESim, $n_{HDP} = 3000  1/\text{min}$	
	und $FW = 35^{\circ}$	127

## Tabellenverzeichnis

<ul> <li>2.2 Hydraulische Eigenfrequenzen eines Leitungselements in Abhängigkeit von Anregung und Randbedingung</li></ul>	2.1	Übersicht Kapazität, Steifigkeit und Induktivität	. 22
<ul> <li>Abhängigkeit von Anregung und Randbedingung</li></ul>	2.2	Hydraulische Eigenfrequenzen eines Leitungselements in	
<ul> <li>3.1 Untersuchte Konfigurationen des Niederdruckleitungssystems</li></ul>		Abhängigkeit von Anregung und Randbedingung	. 25
<ul> <li>3.2 Übersicht der Betriebspunkte des einzelnen Konfigurationen</li></ul>	3.1	Untersuchte Konfigurationen des Niederdruckleitungssystems	. 32
<ul> <li>3.3 Hydraulische Anforderungen an die Komponenten</li></ul>	3.2	Übersicht der Betriebspunkte des einzelnen Konfigurationen	. 34
<ul> <li>4.1 Vergleich der Eigenschaften des Benzin-Ersatzkraftstoffs mit anderen Flüssigkeiten bei 20 °C</li></ul>	3.3	Hydraulische Anforderungen an die Komponenten	. 38
<ul> <li>anderen Flüssigkeiten bei 20 °C</li></ul>	4.1	Vergleich der Eigenschaften des Benzin-Ersatzkraftstoffs mit	
4.2 Eigenfrequenzen sowie die zugehörigen Eigenschwingungsformen (in Knotenlinien und -kreisen) des Druckdämpfers		anderen Flüssigkeiten bei 20 °C	. 47
(in Knotenlinien und -kreisen) des Druckdämpfers	4.2	Eigenfrequenzen sowie die zugehörigen Eigenschwingungsformen	
		(in Knotenlinien und -kreisen) des Druckdämpfers	. 71

# Abkürzungsverzeichnis

AMESim	Advanced Modelling Environment for performing Simulations of engineering systems. Simulationsprogramm der Firma LMS, A Siemens Business.
ANSYS	ANalysis SYStem. Simulationsprogramm der Firma ANSYS, Inc.
AS	Arretierschrauben
AuV	Auslassventil
BDE	Benzin-Direkteinspritzung
BEK	Benzin-Ersatzkraftstoff
CFD	Computational Fluid Dynamics
CFD++	Simulationsprogramm der Firma Metacomp Technologies.
DAV	Druckabbauventil
DBV	Druckbegrenzungsventil
EiV	Einlassventil
EKP	Elektronische Kraftstoffpumpe
FEM	Finite-Elemente-Methode
GT-Suite	Simulationsprogramm der Firma Gamma Technologies.
HD	Hochdruck
HDP	Hochdruckpumpe
MSV	Mengensteuerventil
ND	Niederdruck

ОТ	Oberer Totpunkt
QE	Querschnittserweiterung
QV	Querschnittsverengung
TEE	Tankeinbaueinheit
TMM	Transfermatrixmethode
UT	Unterer Totpunkt