Practical
MATLAB Deep
Learning

A Project-Based Approach

Michael Paluszek
Stephanie Thomas

Practical MATLAB
Deep Learning

Michael Paluszek
Stephanie Thomas

Apress-

Practical MATLAB Deep Learning: A Project-Based Approach

Michael Paluszek Stephanie Thomas

Plainsboro, NJ Plainsboro, NJ

USA USA

ISBN-13 (pbk): 978-1-4842-5123-2 ISBN-13 (electronic): 978-1-4842-5124-9

https://doi.org/10.1007/978-1-4842-5124-9

Copyright © 2020 by Michael Paluszek and Stephanie Thomas

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to
the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the
authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made.
The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: MarkPowers

Cover designed by eStudioCalamar
Cover image designed by Freepik (http://www freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny @springer-sbm.com, or

visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial @apress.com; for reprint, paperback, or audio rights, please email
bookpermissions @springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also
available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.
com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on GitHub
via the book’s product page, located at www.apress.com/9781484251232. For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-5124-9
http://www.freepik.com
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:editorial@apress.com
mailto:bookpermissions@springernature.com
http://www.apress.com/bulk-sales
http://www.apress.com/bulk-sales
http://www.apress.com/9781484251232
http://www.apress.com/source-code

Contents

About the Authors

About the Technical Reviewer

Acknowledgements

1 What Is Deep Learning?

Deep Learning
History of Deep Learning . . .
Neural Nets

2

1.1
1.2
1.3

1.4
1.5

1.6
1.7

1.3.1
1.3.2

Daylight Detector . .
XOR Neural Net . .

Deep Learning and Data . . .
Types of Deep Learning . . .

1.5.1
1.5.2
1.5.3
1.5.4
1.5.5
1.5.6
1.5.7
1.5.8
1.5.9
1.5.10

Multilayer Neural Network
Convolutional Neural Networks (CNN)
Recurrent Neural Network (RNN)
Long Short-Term Memory Networks (LSTMs)
Recursive Neural Network
Temporal Convolutional Machines (TCMs)

Stacked Autoencoders

Extreme Learning Machine (ELM)
Recursive Deep Learning
Generative Deep Learning L.
Applications of Deep Learning
Organization of the Book . . .

MATLAB Machine Learning Toolboxes
Commercial MATLAB Software

2.1

2.2

2.1.1 MathWorks Products
MATLAB Open Source . . .
2.2.1 Deep Learn Toolbox
2.2.2 Deep Neural Network

XI

XIIT

XV

[<IN “NEN N TSN

18
18
18
18
19
19
19
19
19
19
20
20
22

25
25
25
27
28
28

I

CONTENTS

223 MatConvNet e 28
224 Pattern Recognition and Machine Learning Toolbox (PRMLT) . . . 28
2.3 XORExample e e e 28
2.4 Training e e 37
2.5 Zermelo’s Problem L 38
Finding Circles with Deep Learning 43
3.1 Introduction 43
3.2 Structure e e e e e 43
3.2.1 imagelnputLayer 44
322 convolution2dLayer, 44
323 batchNormalizationLayer 46
324 reluLayer 46
325 maxPooling2dLayer 47
3.2.6 fullyConnectedLayer 48
3.2.7 softmaxLayer 49
3.2.8 classificationLayer 49
3.2.9 Structuring the Layers, 50
33 Generating Data: Ellipses and Circles 51
3.3.1 Problem 51
332 Solution L 51
333 HowlItWorks 51
34 Training and Testing 55
34.1 Problem 55
342 Solution L 56
343 HowItWorks 56
Classifying Movies 65
4.1 Introductiono 65
4.2 Generating a Movie Database 65
4.2.1 Problem 65
422 Solution e 65
4.2.3 HowItWorks 65
43 Generating a Movie Watcher Database 68
4.3.1 Problem 68
4.3.2 Solution L 68
433 HowItWorks, 68
4.4 Training and Testing 70
4.4.1 Problem 70
442 Solution L 70
443 HowlItWorks 71

CONTENTS

5 Algorithmic Deep Learning

5.1

52

53

Building a Detection Filter

5.1.1 Problem
5.1.2 Solution
5.1.3 How It Works
Simulating Fault Detection
5.2.1 Problem
5.2.2 Solution
5.2.3 How It Works
Testing and Training
5.3.1 Problem
5.3.2 Solution
5.3.3 How It Works

6 Tokamak Disruption Detection

6.1
6.2

6.3

6.4

6.5

6.6

7.1

Introduction
Numerical Model
6.2.1 Dynamics
6.2.2 Sensors
6.2.3 Disturbances
6.2.4 Controller
Dynamical Model
6.3.1 Problem
6.3.2 Solution
6.3.3 How It Works
Simulate the Plasma
6.4.1 Problem
6.4.2 Solution
6.4.3 How It Works
Control the Plasma
6.5.1 Problem
6.5.2 Solution
6.5.3 How It Works
Training and Testing
6.6.1 Problem
6.6.2 Solution
6.6.3 How It Works

7.1.1
7.1.2

Classifying a Pirouette
Introduction

Inertial Measurement Unit

Physics

77
81
81
81
82
84
84
84
84
87
87
87
88

91
91
93
93
96
96
98
100
100
100
100
102
102
102
103
104
104
106
106
107
107
107
108

CONTENTS

7.2 Data Acquisition L. 120
7.2.1 Problem 120
7.2.2 Solution 120
7.2.3 HowItWorks 121
7.3 Orientation e e e e e e e 126
7.3.1 Problem 126
7.3.2 Solution 126
7.3.3 HowItWorks 126
7.4 Dancer Simulation e 128
7.4.1 Problem 128
7.4.2 Solution 128
7.4.3 HowItWorks 128
7.5 Real-Time Plotting 132
7.5.1 Problem 132
7.5.2 Solution 132
7.5.3 HowItWorks 132
7.6 Quaternion Display L 134
7.6.1 Problem 134
7.6.2 Solution 135
7.6.3 HowItWorks 135
7.7 Data Acquisition GUL 138
7.7.1 Problem 138
7.7.2 Solution e e 138
7.7.3 HowItWorks 138
7.8 Making the IMUBelt 146
7.8.1 Problem 146
7.8.2 Solution 146
7.8.3 HowItWorks 146
7.9 Testing the System L 147
7.9.1 Problem 147
7.9.2 Solution e e 147
79.3 HowItWorks 147
7.10 Classifying the Pirouette 149
7.10.1 Problem 149
7.10.2 Solution e 149
7.103 HowlItWorks 150
7.11 Hardware SOurces i e e e e 154
Completing Sentences 155
8.1 Introduction e 155
8.1.1 Sentence Completion, 155
8.1.2 Grammar e e e e e e e e 156

CONTENTS

8.1.3 Sentence Completion by Pattern Recognition 157

8.1.4 Sentence Generation 157

8.2 Generating a Database of Sentences, .. 157
8.2.1 Problem 157

8.2.2 Solution L 157

8.2.3 HowItWorks 157

8.3 Creating a Numeric Dictionary 159
8.3.1 Problem 159

8.3.2 Solution L 159

8.3.3 HowItWorks 159

8.4 Map Sentences to Numbers Lo 160
8.4.1 Problem 160

8.4.2 Solution 160

8.4.3 HowItWorks 160

8.5 Converting the Sentences e 161
8.5.1 Problem 161

8.5.2 Solution 161

8.5.3 HowItWorks 162

8.6 Training and Testing 163
8.6.1 Problem 163

8.6.2 Solution 164

8.6.3 HowItWorks 164

9 Terrain-Based Navigation 169
9.1 Introduction L. 169
9.2 Modeling Our Aircraft 169
9.2.1 Problem 169

9.2.2 Solution L 169

9.2.3 HowItWorks 169

9.3 Generating a Terrain Model 177
9.3.1 Problem 177

9.3.2 Solution 177

9.3.3 HowItWorks 177

9.4 Close UpTerrain 182
9.4.1 Problem 182

9.4.2 Solution 182

9.4.3 HowItWorks 182

9.5 Building the CameraModel 183
9.5.1 Problem 183

9.5.2 Solution 183

9.5.3 HowItWorks 184

9.6 Plot Trajectory overanImage 187

CONTENTS

10

9.6.1 Problem
9.6.2 Solution
9.6.3 HowItWorks
9.7 Creating the Test Images
9.7.1 Problem
9.7.2 Solution
9.7.3 HowItWorks
9.8 Training and Testing
9.8.1 Problem
9.8.2 Solution
9.8.3 HowItWorks
9.9 Simulation.
9.9.1 Problem
9.9.2 Solution
99.3 HowItWorks
Stock Prediction
10.1 Introduction
10.2 Generating a Stock Market
10.2.1 Problem
1022 Solution
1023 HowltWorks
10.3 Create a Stock Market
10.3.1 Problem
10.3.2 Solution
1033 HowItWorks
10.4 Training and Testing
104.1 Problem
1042 Solution
1043 HowltWorks

11 Image Classification

12

11.1
11.2

Introduction
Using a Pretrained Network
11.2.1 Problem
1122 Solution
1123 HowltWorks

Orbit Determination

12.1
12.2

Introduction
Generating the Orbits
122.1 Problem

CONTENTS

12.2.2 Solution e 227

1223 HowItWorks 227

12.3 Training and Testing 234
123.1 Problemo 234

12.3.2 Solution e e 234

1233 HowItWorks 235

124 Implementing an LSTM L 239
124.1 Problem 239

1242 Solution e e 239

1243 HowItWorks 239

12.5 Conic Sections e e e e e e e 243
Bibliography 247
Index 249

IX

About the Authors

Michael Paluszek is President of Princeton Satellite Systems,
Inc. (PSS) in Plainsboro, New Jersey. Mr. Michael founded
PSS in 1992 to provide aerospace consulting services. He used
MATLAB to develop the control system and simulations for the
IndoStar-1 geosynchronous communications satellite. This led
to the launch of Princeton Satellite Systems’ first commercial
MATLAB toolbox, the Spacecraft Control Toolbox, in 1995.
Since then he has developed toolboxes and software packages
for aircraft, submarines, robotics, and nuclear fusion propulsion,
resulting in Princeton Satellite Systems’ current extensive prod-
uct line. He is working with the Princeton Plasma Physics Labo-
ratory on a compact nuclear fusion reactor for energy generation
and space propulsion.

Prior to founding PSS, Mr. Michael was an engineer at GE, Astro Space in East Windsor,
NIJ. At GE he designed the Global Geospace Science Polar despun platform control system and
led the design of the GPS IIR attitude control system, the Inmarsat-3 attitude control systems,
and the Mars Observer delta-V control system, leveraging MATLAB for control design. Mr.
Michael also worked on the attitude determination system for the DMSP meteorological satel-
lites. He flew communication satellites on over 12 satellite launches, including the GSTAR
IIT recovery, the first transfer of a satellite to an operational orbit using electric thrusters. At
Draper Laboratory, Mr. Michael worked on the Space Shuttle, Space Station, and submarine
navigation. His Space Station work included designing of Control Moment Gyro-based control
systems for attitude control.

Mr. Michael received his bachelor’s degree in Electrical Engineering and master’s and engi-
neers’ degrees in Aeronautics and Astronautics from the Massachusetts Institute of Technology.
He is author of numerous papers and has over a dozen US patents. Mr. Michael is the author of
MATLAB Recipes, MATLAB Machine Learning, and MATLAB Machine Learning Recipes: A
Problem-Solution Approach, all published by Apress.

XI

ABOUT THE AUTHORS

Stephanie Thomas is Vice President of Princeton Satellite Sys-
tems, Inc. in Plainsboro, New Jersey. She received her bache-
lor’s and master’s degrees in Aeronautics and Astronautics from
the Massachusetts Institute of Technology in 1999 and 2001. Ms.
Stephanie was introduced to the PSS Spacecraft Control Toolbox
for MATLAB during a summer internship in 1996 and has been
using MATLAB for aerospace analysis ever since. In her nearly
20 years of MATLAB experience, she has developed many soft-
ware tools including the Solar Sail Module for the Spacecraft
Control Toolbox, a proximity satellite operations toolbox for the
Air Force, collision monitoring Simulink blocks for the Prisma
satellite mission, and launch vehicle analysis tools in MATLAB
and Java. She has developed novel methods for space situation
assessment such as a numeric approach to assessing the general rendezvous problem between
any two satellites implemented in both MATLAB and C++. Ms. Stephanie has contributed
to PSS’ Spacecraft Attitude and Orbit Control textbook, featuring examples using the Space-
craft Control Toolbox, and written many software user guides. She has conducted SCT training
for engineers from diverse locales such as Australia, Canada, Brazil, and Thailand and has
performed MATLAB consulting for NASA, the Air Force, and the European Space Agency.
Ms. Stephanie is the author of MATLAB Recipes, MATLAB Machine Learning, and MATLAB
Machine Learning Recipes: A Problem-Solution Approach, published by Apress. In 2016,
Ms. Stephanie was named a NASA NIAC Fellow for the project ‘‘Fusion-Enabled Pluto
Orbiter and Lander.”’

XII

About the Technical Reviewer

Dr. Joseph Mueller specializes in control systems and trajec-
tory optimization. For his doctoral thesis, he developed op-
timal ascent trajectories for stratospheric airships. His active
research interests include robust optimal control, adaptive con-
trol, applied optimization and planning for decision support sys-
tems, and intelligent systems to enable autonomous operations of
robotic vehicles. Prior to joining SIFT in early 2014, Dr. Joseph
worked at Princeton Satellite Systems for 13 years. In that time,
he served as the principal investigator for eight Small Business
Innovation Research contracts for NASA, Air Force, Navy, and
MDA. He has developed algorithms for optimal guidance and control of both formation flying
spacecraft and high-altitude airships, and developed a course of action planning tool for DoD
communication satellites. In support of a research study for NASA Goddard Space Flight Cen-
ter in 2005, Dr. Joseph developed the Formation Flying Toolbox for MATLAB, a commercial
product that is now used at NASA, ESA, and several universities and aerospace companies
around the world. In 2006, he developed the safe orbit guidance mode algorithms and soft-
ware for the Swedish Prisma mission, which has successfully flown a two-spacecraft formation
flying mission since its launch in 2010. Dr. Joseph also serves as an adjunct professor in the
Aerospace Engineering and Mechanics Department at the University of Minnesota, Twin Cities
campus.

XIII

Acknowledgments

The authors would like to thank Eric Ham for suggesting LSTMs and also the idea for
Chapter 7. Mr. Eric’s concept was to use deep learning to identify specific flaws in a pirouette.
Chapter 7 is a simpler version of the problem. Thanks to Shannen Prindle for helping with the
Chapter 7 experiment and doing all of the photography for Chapter 7. Shannen is a Princeton
University student who worked as an intern at Princeton Satellite Systems in the summer of
2019. We would also like to thank Dr. Charles Swanson for reviewing Chapter 6 on Tokamak
control. Thanks to Kestras Subacius of the MathWorks for tech support on the bluetooth device.
We would also like to thank Matt Halpin for reading the book from front to end.

We would like to thank dancers Shaye Firer, Emily Parker, H #' &1 (Ryoko Tanaka) and
Matanya Solomon for being our experimental subjects in this book. We would also like to thank
the American Repertory Ballet and Executive Director Julie Hench for hosting our Chapter 7
experiment.

XV

CHAPTER 1
HEEN

What Is Deep Learning?

1.1 Deep Learning

Deep learning is a subset of machine learning which is itself a subset of artificial intelligence
and statistics. Artificial intelligence research began shortly after World War II [24]. Early work
was based on the knowledge of the structure of the brain, propositional logic, and Turing’s
theory of computation. Warren McCulloch and Walter Pitts created a mathematical formulation
for neural networks based on threshold logic. This allowed neural network research to split
into two approaches: one centered on biological processes in the brain and the other on the
application of neural networks to artificial intelligence. It was demonstrated that any function
could be implemented through a set of such neurons and that a neural net could learn. In
1948, Norbert Wiener’s book, Cybernetics, was published which described concepts in control,
communications, and statistical signal processing. The next major step in neural networks was
Donald Hebb’s book in 1949, The Organization of Behavior, connecting connectivity with
learning in the brain. His book became a source of learning and adaptive systems. Marvin
Minsky and Dean Edmonds built the first neural computer at Harvard in 1950.

The first computer programs, and the vast majority now, have knowledge built into the
code by the programmer. The programmer may make use of vast databases. For example, a
model of an aircraft may use multidimensional tables of aerodynamic coefficients. The result-
ing software therefore knows a lot about aircraft, and running simulations of the models may
present surprises to the programmer and the users. Nonetheless, the programmatic relationships
between data and algorithms are predetermined by the code.

In machine learning, the relationships between the data are formed by the learning system.
Data is input along with the results related to the data. This is the system training. The machine
learning system relates the data to the results and comes up with rules that become part of the
system. When new data is introduced, it can come up with new results that were not part of the
training set.

Deep learning refers to neural networks with more than one layer of neurons. The name
““‘deep learning” implies something more profound, and in the popular literature, it is taken
to imply that the learning system is a ‘‘deep thinker.” Figure 1.1 shows a single-layer and
multilayer network. It turns out that multilayer networks can learn things that single-layer

© Michael Paluszek and Stephanie Thomas 2020 1
M. Paluszek and S. Thomas, Practical MATLAB Deep Learning,
https://doi.org/10.1007/978-1-4842-5124-9 1

https://doi.org/10.1007/978-1-4842-5124-9_1

CHAPTER 1 ® WHAT IS DEEP LEARNING?

Figure 1.1: Two neural networks. The one on the right is a deep learning network.

.
.
p / //

wo1,” - Pid

s, - ///’
@ o -

networks cannot. The elements of a network are nodes, where signals are combined, weights
and biases. Biases are added at nodes. In a single layer, the inputs are multiplied by weights,
then added together at the end, after passing through a threshold function. In a multilayer or
deep learning network, the inputs are combined in the second layer before being output. There
are more weights, and the added connections allow the network to learn and solve more complex
problems.

There are many types of machine learning. Any computer algorithm that can adapt based
on inputs from the environment is a learning system. Here is a partial list:

’
-

° w
&)
@,

1. Neural nets (deep learning or otherwise)
. Support vector machines

. Adaptive control

. Parameter identification (may be the same as the previous one)

2
3
4. System identification
5
6. Adaptive expert systems
7

. Control algorithms (a proportional integral derivative control stores information about
constant inputs in its integrator)

Some systems use a predefined algorithm and learn by fitting parameters of the algorithm.
Others create a model entirely from data. Deep learning systems are usually in the latter cate-
gory.

We’ll give a brief history of deep learning and then move on to two examples.

1.2 History of Deep Learning

Minsky wrote the book Perceptrons with Seymour Papert in 1969, which was an early analysis
of artificial neural networks. The book contributed to the movement toward symbolic process-
ing in Al The book noted that single neurons could not implement some logical functions such
as exclusive-or (XOR) and erroneously implied that multilayer networks would have the same
issue. It was later found that three-layer networks could implement such functions. We give
the XOR solution in this book.

CHAPTER 1 @ WHAT IS DEEP LEARNING?

Multilayer neural networks were discovered in the 1960s but not really studied until the
1980s. In the 1970s, self-organizing maps using competitive learning were introduced [14]. A
resurgence in neural networks happened in the 1980’s. Knowledge-based, or ‘‘expert,”” systems
were also introduced in the 1980s. From Jackson [16],

An expert system is a computer program that represents and reasons with knowl-
edge of some specialized subject with a view to solving problems or giving advice.

—Peter Jackson, Introduction to Expert Systems

Back propagation for neural networks, a learning method using gradient descent, was rein-
vented in the 1980s, leading to renewed progress in this field. Studies began both of human
neural networks (i.e., the human brain) and the creation of algorithms for effective compu-
tational neural networks. This eventually led to deep learning networks in machine learning
applications.

Advances were made in the 1980s as Al researchers began to apply rigorous mathematical
and statistical analysis to develop algorithms. Hidden Markov Models were applied to speech.
A Hidden Markov Model is a model with unobserved (i.e., hidden) states. Combined with
massive databases, they have resulted in vastly more robust speech recognition. Machine trans-
lation has also improved. Data mining, the first form of machine learning as it is known today,
was developed.

In the early 1990s, Vladimir Vapnik and coworkers invented a computationally power-
ful class of supervised learning networks known as Support Vector Machines (SVM). These
networks could solve problems of pattern recognition, regression, and other machine learning
problems.

There has been an explosion in deep learning in the past few years. New tools have been
developed that make deep learning easier to implement. TensorFlow is available from Amazon
AWS. It makes it easy to deploy deep learning on the cloud. It includes powerful visualization
tools. TensorFlow allows you to deploy deep learning on machines that are only intermittently
connected to the Web. IBM Watson is another. It allows you to use TensorFlow, Keras, Py-
Torch, Caffe, and other frameworks. Keras is a popular deep learning framework that can be
used in Python. All of these frameworks have allowed deep learning to be deployed just about
everywhere.

In this book, we will present MATLAB-based deep learning tools. These powerful tools let
you create deep learning systems to solve many different problems. In our book, we will apply
MATLAB deep learning to a wide range of problems ranging from nuclear fusion to classical
ballet.

Before getting into our examples, we will give some fundamentals on neural nets. We will
first give backgrounds on neurons and how an artificial neuron represents a real neuron. We
will then design a daylight detector. We will follow this with the famous XOR problem that
stopped neural net development for some time. Finally, we will discuss the examples in this
book.

CHAPTER 1 ® WHAT IS DEEP LEARNING?

1.3 Neural Nets

Neural networks, or neural nets, are a popular way of implementing machine ‘‘intelligence.’
The idea is that they behave like the neurons in a brain. In this section, we will explore how
neural nets work, starting with the most fundamental idea with a single neuron and working our
way up to a multilayer neural net. Our example for this will be a pendulum. We will show how
a neural net can be used to solve the prediction problem. This is one of the two uses of a neural
net, prediction and classification. We’ll start with a simple classification example.

Let’s first look at a single neuron with two inputs. This is shown in Figure 1.2. This neuron
has inputs 1 and x5, a bias b, weights w; and we, and a single output z. The activation function
o takes the weighted input and produces the output. In this diagram, we explicitly add icons for
the multiplication and addition steps within the neuron, but in typical neural net diagrams such
as Figure 1.1, they are omitted.

’

z=o0(y) = o(wix] + waxs + b) (1.1

Let’s compare this with a real neuron as shown in Figure 1.3. A real neuron has multiple
inputs via the dendrites. Some of these branch which means that multiple inputs can connect
to the cell body through the same dendrite. The output is via the axon. Each neuron has one
output. The axon connects to a dendrite through the synapse. Signals pass from the axon to the
dendrite via a synapse.

There are numerous commonly used activation functions. We show three:

o(y) = tanh(y) (1.2)
2

oly) = 1—6—9_1 (1.3)

oly) =y (1.4)

The exponential one is normalized and offset from zero so it ranges from -1 to 1. The last
one, which simply passes through the value of y, is called the linear activation function. The

Figure 1.2: A two-input neuron.

4 N

. Ny
- FO T

Neuron

(=)

4

CHAPTER 1 @ WHAT IS DEEP LEARNING?

Figure 1.3: A neuron connected to a second neuron. A real neuron can have 10,000 inputs!

Neuron 2

Neuron 1

Synapse

/

\Jendrite

Figure 1.4: The three activation functions from OneNeuron.

Activation Functions

4 T
Tanh

3r Exp J
Linear

2 |- -

Output
o

_4 1 1 Il Il Il Il Il
-4 -3 -2 -1 0 1 2 3 4

Input

following code in the script OneNeuron . mcomputes and plots these three activation functions
for an input g. Figure 1.4 shows the three activation functions on one plot.

CHAPTER 1 ® WHAT IS DEEP LEARNING?

OneNeuron.m

Single neuron demonstration.

oo o\
oo o\

1

2 Look at the activation functions

3y = linspace(-4,4);

4zl = tanh(y);

5 z2 = 2./(l+exp(-y)) - 1;

6

7 PlotSet (y, [zl;z2;y],’'x label’,’'Input’, 'y label’, ...

8 ‘Output’, ‘figure title’,’Activation Functions’,’plot title’, '
Activation Functions’, ...

9 'plot set’,{[1 2 31},’legend’, {{’Tanh’,’Exp’, 'Linear’}});

Activation functions that saturate, or reach a value of input after which the output is constant
or changes very slowly, model a biological neuron that has a maximum firing rate. These
particular functions also have good numerical properties that are helpful in learning.

Let’s look at a single input neural net shown in Figure 1.5. This neuron is

z=o0(2x +3) (1.5)

where the weight w on the single input x is 2 and the bias b is 3. If the activation function is
linear, the neuron is just a linear function of x,

z=y=2x+3 (1.6)

Neural nets do make use of linear activation functions, often in the output layer. It is the
nonlinear activation functions that give neural nets their unique capabilities.

Let’s look at the output with the preceding activation functions plus the threshold function
from the script LinearNeuron.m. The results are in Figure 1.6.

Figure 1.5: A one-input neural net. The weight w is 2 and the bias b is 3.

CHAPTER 1 B WHAT IS DEEP LEARNING?

Figure 1.6: The ‘‘linear” neuron compared to other activation functions from LinearNeuron.

Linear Neuron
T

8 T T T T
Tanh
Exp
Threshold
6 . |
Linear

LinearNeuron.m

%% Linear neuron demo

x = linspace(-4,2,1000) ;
Y = 2xX + 3;
z1 = tanh(y) ;

2./ (l+exp(-y)) - 1;
z3 = zeros(1l,length(x)) ;

% Apply a threshold
k =y >=0;
10 z3(k) = 1;

o - N S R SR
N
N
Il

12 PlotSet (x, [z1;z2;23;y],’'x label’,’'x’, 'y label’, ...
13 'y’, 'figure title’,’'Linear Neuron’, 'plot title’, ’'Linear Neuron’, ..
14 'plot set’,{[1 2 3 4]},’legend’, {{’'Tanh’, 'Exp’,’Threshold’, 'Linear’}});

The tanh and exp are very similar. They put bounds on the output. Within the range
—3 < x < 1, they return the function of the input. Outside those bounds, they return the sign of
the input, that is, they saturate. The threshold function returns zero if the value is less than 0 and
1 if it is greater than -1.5. The threshold is saying the output is only important, thus activated,
if the input exceeds a given value. The other nonlinear activation functions are saying that we
care about the value of the linear equation only within the bounds. The nonlinear functions (but
not step) make it easier for the learning algorithms since the functions have derivatives. The
binary step has a discontinuity at an input of zero so that its derivative is infinite at that point.
Aside from the linear function (which is usually used on output neurons), the neurons are just

7

CHAPTER 1 ® WHAT IS DEEP LEARNING?

telling us that the sign of the linear equation is all we care about. The activation function is
what makes a neuron a neuron.

We now show two brief examples of neural nets: first, a daylight detector, and second, the
exclusive-or problem.

1.3.1 Daylight Detector

Problem

We want to use a simple neural net to detect daylight. This will provide an example of using a
neural net for classification.

Solution

Historically, the first neuron was the perceptron. This is a neuron with an activation function
that is a threshold. Its output is either O or 1. This is not really useful for man real-world
problems. However, it is well suited for simple classification problems. We will use a single
perceptron in this example.

How It Works

Suppose our input is a light level measured by a photo cell. If you weight the input so that 1 is
the value defining the brightness level at twilight, you get a sunny day detector.

This is shown in the following script, SunnyDay. The script is named after the famous
neural net that was supposed to detect tanks but instead detected sunny days; this was due to
all the training photos of tanks being taken, unknowingly, on a sunny day, while all the photos
without tanks were taken on a cloudy day. The solar flux is modeled using a cosine and scaled
so that it is 1 at noon. Any value greater than 0 is daylight.

SunnyDay.m

1 %% The data

2 t = linspace(0,24); ¢ time, 1in hours

3 d = zeros(l,length(t));

4 s = cos((2+pi/24)*(t-12)); % solar flux model
5

6 %% The activation function

7 % The nonlinear activation function which is a threshold detector
8 3 =s < 0;

9 s(j) = 0;

10 J =s > 0;

1 d(j) = 1;

13 %% Plot the results

14 PlotSet (t, [s;d],’'x label’,'Hour’, 'y label’, ...

15 {"Solar Flux’, ’'Day/Night’}, ’‘figure title’, 'Daylight Detector’, ...

16 'plot title’, {’Flux Model’,’Perceptron Output’});

17 set([subplot(2,1,1) subplot(2,1,2)],’'x1lim’, [0 24],’'xtick’, [0 6 12 18 24]);

CHAPTER 1 @ WHAT IS DEEP LEARNING?

Figure 1.7: The daylight detector. The top plot shows the input data, and the bottom plot shows
the perceptron output detecting daylight.

’ Flux Model
T T T
0.8 i
5
i 06 —
@
© 04r 8
7}
0.2 .
0 |
0 6 12 18 24
Perceptron Output
T T T
1 | -
_08F |
S
=06 .
5
D O 4 I~ 7
0.2 i
0 Il | L
0 6 12 18 24
Hour
Figure 1.7 shows the detector results. The set (gca, .. .) code sets the x-axis ticks to

end at exactly 24 hours. This is a really trivial example but does show how classification works.
If we had multiple neurons with thresholds set to detect sunlight levels within bands of solar
flux, we would have a neural net sun clock.

1.3.2 XOR Neural Net

Problem

We want to implement the exclusive-or (XOR) problem with a neural network.

Solution

The XOR problem impeded the development of neural networks for a long time before ‘‘deep
learning’” was developed. Look at Figure 1.8. The table on the left gives all possible inputs
A and B and the desired outputs C. ‘‘Exclusive-or’’ just means that if the inputs A and B are
different, the output C is 1. The figure shows a single-layer network and a multilayer network,
as in Figure 1.1, but with the weights labeled as they will be in the code. You can implement
this in MATLAB easily, in just seven lines:

7

>> 1
0;
a

a
>> b

>> 1f(== Db)

CHAPTER 1 ® WHAT IS DEEP LEARNING?

Figure 1.8: Exclusive-or (XOR) truth table and possible solution networks.

C = XOR(A,B)

_A_Aoo>
“|lo|=|O |l
o|l=|=|10|0O
=
[
‘G
O

Truth Table Single-layer network Multilayer “deep” network

>> c =1
>> else
>> @ = 0
>> end

This type of logic was embodied in medium-scale integrated circuits in the early days of digital
systems and in tube-based computers even earlier than that. Try as you might, you cannot pick
two weights and a bias on the single-layer network to reproduce the XOR. Minsky created a
proof that it was impossible.

The second neural net, the deep neural net, can reproduce the XOR. We will implement and
train this network.

How It Works

What we will do is explicitly write out the back propagation algorithm that trains the neural net
from the four training sets given in Figure 1.8, that is, (0,0), (1,0), (0,1), (1,1). We’ll write it in
the script XORDemo. The point is to show you explicitly how back propagation works. We will
use the tanh as the activation function in this example. The XOR function is given in XOR . m
shown as follows.

XOR.m

o\

XOR Implement an ’‘Exclusive Or’ neural net
¢ = XOR(a,b,w)

o\e

Description
Implements an XOR function in a neural net. It accepts vector inputs.

a (1,:) Input 1
b (1,:) Input 2
w (9,1) Weights and biases

© ® N W R W N =

o\
o
S
T
e
S
=
)

c (1,:) Output

o oo o o o o o oe oe oe oo oo oo
o\e
5
s}
<
t
0]

10

CHAPTER 1 B WHAT IS DEEP LEARNING?

14 function [y3,yl,y2] = XOR(a,b,w)

16 1if(nargin < 1)

17 Demo

18 return

19 end

20

20yl = tanh(w(l)*a + w(2)*b + w(7));
2 y2 = tanh(w(3)*a + w(4)xb + w(8));
23 y3 = w(5)*xyl + w(6)*xy2 + w(9);

24 Cc = VY3;

There are three neurons. The activation function for the hidden layer is the hyperbolic
tangent. The activation function for the output layer is linear.

y1 = tanh(wia + web 4+ wr) 1.7)
yo = tanh(wsa + wsb + wg) (1.8)
Y3 = wsy1 + wey2 + W (1.9)

Now we will derive the back propagation routine. The hyperbolic activation function is

f(z) = tanh(z) (1.10)
Its derivative is
df(z) _ g2
P 1—7%(») (L.11)

In this derivation, we are going to use the chain rule. Assume that F' is a function of y which is
a function of z. Then

dF(y(x)) _ dF dy

dx dy dx

The error is the square of the difference between the desired output and the output. This is
known as a quadratic error. It is easy to use because the derivative is simple and the error is
always positive, making the lowest error the one closest to zero.

(1.12)

1
E=(c—ys)’ (1.13)

The derivative of the error for w; for the output node

OF 8y3
= (ya — 1.14
ow, (y3 —¢) o, (1.14)
For the hidden nodes, it is
OF 8n3
= 1.15
o, U3 o, (1.15)

11

CHAPTER 1 ® WHAT IS DEEP LEARNING?

Expanding for all the weights

where

(01
(2
V3
ni
no

n3

gfl = ziha
552 = 3inb
gi = 3ihaa
gi = t3i2b
gfs = 3y
gfﬁ = Y3y
8857 = 3ih
8858 = 3ihy
8859 = 3

= 1-f*(m)

= 1-f*(n2)

= Yy —=cC

wia + web + wy
w3a + wab + wg

wWsY1 + WeY2 + Wy

(1.16)
(1.17)
(1.18)
(1.19)
(1.20)
(1.21)
(1.22)
(1.23)

(1.24)

(1.25)
(1.26)
(1.27)
(1.28)
(1.29)
(1.30)

You can see from the derivation how this could be made recursive and apply to any number of
outputs or layers. Our weight adjustment at each step will be

A

OF

wj - _778wj

(1.31)

where 7 is the update gain. It should be a small number. We only have four sets of inputs. We
will apply them multiple times to get the XOR weights.
Our back propagation trainer needs to find the nine elements of w. The training function

XORTraining.mis shown as follows.

12

