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CHAPTER 1
HEEN

What Is Deep Learning?

1.1 Deep Learning

Deep learning is a subset of machine learning which is itself a subset of artificial intelligence
and statistics. Artificial intelligence research began shortly after World War II [24]. Early work
was based on the knowledge of the structure of the brain, propositional logic, and Turing’s
theory of computation. Warren McCulloch and Walter Pitts created a mathematical formulation
for neural networks based on threshold logic. This allowed neural network research to split
into two approaches: one centered on biological processes in the brain and the other on the
application of neural networks to artificial intelligence. It was demonstrated that any function
could be implemented through a set of such neurons and that a neural net could learn. In
1948, Norbert Wiener’s book, Cybernetics, was published which described concepts in control,
communications, and statistical signal processing. The next major step in neural networks was
Donald Hebb’s book in 1949, The Organization of Behavior, connecting connectivity with
learning in the brain. His book became a source of learning and adaptive systems. Marvin
Minsky and Dean Edmonds built the first neural computer at Harvard in 1950.

The first computer programs, and the vast majority now, have knowledge built into the
code by the programmer. The programmer may make use of vast databases. For example, a
model of an aircraft may use multidimensional tables of aerodynamic coefficients. The result-
ing software therefore knows a lot about aircraft, and running simulations of the models may
present surprises to the programmer and the users. Nonetheless, the programmatic relationships
between data and algorithms are predetermined by the code.

In machine learning, the relationships between the data are formed by the learning system.
Data is input along with the results related to the data. This is the system training. The machine
learning system relates the data to the results and comes up with rules that become part of the
system. When new data is introduced, it can come up with new results that were not part of the
training set.

Deep learning refers to neural networks with more than one layer of neurons. The name
““‘deep learning” implies something more profound, and in the popular literature, it is taken
to imply that the learning system is a ‘‘deep thinker.” Figure 1.1 shows a single-layer and
multilayer network. It turns out that multilayer networks can learn things that single-layer

© Michael Paluszek and Stephanie Thomas 2020 1
M. Paluszek and S. Thomas, Practical MATLAB Deep Learning,
https://doi.org/10.1007/978-1-4842-5124-9 1
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Figure 1.1: Two neural networks. The one on the right is a deep learning network.
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networks cannot. The elements of a network are nodes, where signals are combined, weights
and biases. Biases are added at nodes. In a single layer, the inputs are multiplied by weights,
then added together at the end, after passing through a threshold function. In a multilayer or
deep learning network, the inputs are combined in the second layer before being output. There
are more weights, and the added connections allow the network to learn and solve more complex
problems.

There are many types of machine learning. Any computer algorithm that can adapt based
on inputs from the environment is a learning system. Here is a partial list:

’
-

° w
&)
@,

1. Neural nets (deep learning or otherwise)
. Support vector machines

. Adaptive control

. Parameter identification (may be the same as the previous one)

2
3
4. System identification
5
6. Adaptive expert systems
7

. Control algorithms (a proportional integral derivative control stores information about
constant inputs in its integrator)

Some systems use a predefined algorithm and learn by fitting parameters of the algorithm.
Others create a model entirely from data. Deep learning systems are usually in the latter cate-
gory.

We’ll give a brief history of deep learning and then move on to two examples.

1.2 History of Deep Learning

Minsky wrote the book Perceptrons with Seymour Papert in 1969, which was an early analysis
of artificial neural networks. The book contributed to the movement toward symbolic process-
ing in Al The book noted that single neurons could not implement some logical functions such
as exclusive-or (XOR) and erroneously implied that multilayer networks would have the same
issue. It was later found that three-layer networks could implement such functions. We give
the XOR solution in this book.
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Multilayer neural networks were discovered in the 1960s but not really studied until the
1980s. In the 1970s, self-organizing maps using competitive learning were introduced [14]. A
resurgence in neural networks happened in the 1980’s. Knowledge-based, or ‘‘expert,”” systems
were also introduced in the 1980s. From Jackson [16],

An expert system is a computer program that represents and reasons with knowl-
edge of some specialized subject with a view to solving problems or giving advice.

—Peter Jackson, Introduction to Expert Systems

Back propagation for neural networks, a learning method using gradient descent, was rein-
vented in the 1980s, leading to renewed progress in this field. Studies began both of human
neural networks (i.e., the human brain) and the creation of algorithms for effective compu-
tational neural networks. This eventually led to deep learning networks in machine learning
applications.

Advances were made in the 1980s as Al researchers began to apply rigorous mathematical
and statistical analysis to develop algorithms. Hidden Markov Models were applied to speech.
A Hidden Markov Model is a model with unobserved (i.e., hidden) states. Combined with
massive databases, they have resulted in vastly more robust speech recognition. Machine trans-
lation has also improved. Data mining, the first form of machine learning as it is known today,
was developed.

In the early 1990s, Vladimir Vapnik and coworkers invented a computationally power-
ful class of supervised learning networks known as Support Vector Machines (SVM). These
networks could solve problems of pattern recognition, regression, and other machine learning
problems.

There has been an explosion in deep learning in the past few years. New tools have been
developed that make deep learning easier to implement. TensorFlow is available from Amazon
AWS. It makes it easy to deploy deep learning on the cloud. It includes powerful visualization
tools. TensorFlow allows you to deploy deep learning on machines that are only intermittently
connected to the Web. IBM Watson is another. It allows you to use TensorFlow, Keras, Py-
Torch, Caffe, and other frameworks. Keras is a popular deep learning framework that can be
used in Python. All of these frameworks have allowed deep learning to be deployed just about
everywhere.

In this book, we will present MATLAB-based deep learning tools. These powerful tools let
you create deep learning systems to solve many different problems. In our book, we will apply
MATLAB deep learning to a wide range of problems ranging from nuclear fusion to classical
ballet.

Before getting into our examples, we will give some fundamentals on neural nets. We will
first give backgrounds on neurons and how an artificial neuron represents a real neuron. We
will then design a daylight detector. We will follow this with the famous XOR problem that
stopped neural net development for some time. Finally, we will discuss the examples in this
book.
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1.3 Neural Nets

Neural networks, or neural nets, are a popular way of implementing machine ‘‘intelligence.’
The idea is that they behave like the neurons in a brain. In this section, we will explore how
neural nets work, starting with the most fundamental idea with a single neuron and working our
way up to a multilayer neural net. Our example for this will be a pendulum. We will show how
a neural net can be used to solve the prediction problem. This is one of the two uses of a neural
net, prediction and classification. We’ll start with a simple classification example.

Let’s first look at a single neuron with two inputs. This is shown in Figure 1.2. This neuron
has inputs 1 and x5, a bias b, weights w; and we, and a single output z. The activation function
o takes the weighted input and produces the output. In this diagram, we explicitly add icons for
the multiplication and addition steps within the neuron, but in typical neural net diagrams such
as Figure 1.1, they are omitted.

’

z=o0(y) = o(wix] + waxs + b) (1.1

Let’s compare this with a real neuron as shown in Figure 1.3. A real neuron has multiple
inputs via the dendrites. Some of these branch which means that multiple inputs can connect
to the cell body through the same dendrite. The output is via the axon. Each neuron has one
output. The axon connects to a dendrite through the synapse. Signals pass from the axon to the
dendrite via a synapse.

There are numerous commonly used activation functions. We show three:

o(y) = tanh(y) (1.2)
2

oly) = 1—6—9_1 (1.3)

oly) =y (1.4)

The exponential one is normalized and offset from zero so it ranges from -1 to 1. The last
one, which simply passes through the value of y, is called the linear activation function. The

Figure 1.2: A two-input neuron.
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Figure 1.3: A neuron connected to a second neuron. A real neuron can have 10,000 inputs!
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Figure 1.4: The three activation functions from OneNeuron.
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following code in the script OneNeuron . mcomputes and plots these three activation functions
for an input g. Figure 1.4 shows the three activation functions on one plot.
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OneNeuron.m

Single neuron demonstration.

oo o\
oo o\

1

2 Look at the activation functions

3y = linspace(-4,4);

4zl = tanh(y);

5 z2 = 2./(l+exp(-y)) - 1;

6

7 PlotSet (y, [zl;z2;y],’'x label’,’'Input’, 'y label’, ...

8 ‘Output’, ‘figure title’,’Activation Functions’,’plot title’, '
Activation Functions’, ...

9 'plot set’,{[1 2 31},’legend’, {{’Tanh’,’Exp’, 'Linear’}});

Activation functions that saturate, or reach a value of input after which the output is constant
or changes very slowly, model a biological neuron that has a maximum firing rate. These
particular functions also have good numerical properties that are helpful in learning.

Let’s look at a single input neural net shown in Figure 1.5. This neuron is

z=o0(2x +3) (1.5)

where the weight w on the single input x is 2 and the bias b is 3. If the activation function is
linear, the neuron is just a linear function of x,

z=y=2x+3 (1.6)

Neural nets do make use of linear activation functions, often in the output layer. It is the
nonlinear activation functions that give neural nets their unique capabilities.

Let’s look at the output with the preceding activation functions plus the threshold function
from the script LinearNeuron.m. The results are in Figure 1.6.

Figure 1.5: A one-input neural net. The weight w is 2 and the bias b is 3.
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Figure 1.6: The ‘‘linear” neuron compared to other activation functions from LinearNeuron.

Linear Neuron
T
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Tanh
Exp
Threshold
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Linear

LinearNeuron.m

%% Linear neuron demo

x = linspace(-4,2,1000) ;
Y = 2xX + 3;
z1 = tanh(y) ;

2./ (l+exp(-y)) - 1;
z3 = zeros(1l,length(x)) ;

% Apply a threshold
k =y >=0;
10 z3(k) = 1;

o - N S R SR
N
N
Il

12 PlotSet (x, [z1;z2;23;y],’'x label’,’'x’, 'y label’, ...
13 'y’, 'figure title’,’'Linear Neuron’, 'plot title’, ’'Linear Neuron’, ..
14 'plot set’,{[1 2 3 4]},’legend’, {{’'Tanh’, 'Exp’,’Threshold’, 'Linear’}});

The tanh and exp are very similar. They put bounds on the output. Within the range
—3 < x < 1, they return the function of the input. Outside those bounds, they return the sign of
the input, that is, they saturate. The threshold function returns zero if the value is less than 0 and
1 if it is greater than -1.5. The threshold is saying the output is only important, thus activated,
if the input exceeds a given value. The other nonlinear activation functions are saying that we
care about the value of the linear equation only within the bounds. The nonlinear functions (but
not step) make it easier for the learning algorithms since the functions have derivatives. The
binary step has a discontinuity at an input of zero so that its derivative is infinite at that point.
Aside from the linear function (which is usually used on output neurons), the neurons are just

7
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telling us that the sign of the linear equation is all we care about. The activation function is
what makes a neuron a neuron.

We now show two brief examples of neural nets: first, a daylight detector, and second, the
exclusive-or problem.

1.3.1 Daylight Detector

Problem

We want to use a simple neural net to detect daylight. This will provide an example of using a
neural net for classification.

Solution

Historically, the first neuron was the perceptron. This is a neuron with an activation function
that is a threshold. Its output is either O or 1. This is not really useful for man real-world
problems. However, it is well suited for simple classification problems. We will use a single
perceptron in this example.

How It Works

Suppose our input is a light level measured by a photo cell. If you weight the input so that 1 is
the value defining the brightness level at twilight, you get a sunny day detector.

This is shown in the following script, SunnyDay. The script is named after the famous
neural net that was supposed to detect tanks but instead detected sunny days; this was due to
all the training photos of tanks being taken, unknowingly, on a sunny day, while all the photos
without tanks were taken on a cloudy day. The solar flux is modeled using a cosine and scaled
so that it is 1 at noon. Any value greater than 0 is daylight.

SunnyDay.m

1 %% The data

2 t = linspace(0,24); ¢ time, 1in hours

3 d = zeros(l,length(t));

4 s = cos((2+pi/24)*(t-12)); % solar flux model
5

6 %% The activation function

7 % The nonlinear activation function which is a threshold detector
8 3 =s < 0;

9 s(j) = 0;

10 J =s > 0;

1 d(j) = 1;

13 %% Plot the results

14 PlotSet (t, [s;d],’'x label’,'Hour’, 'y label’, ...

15 {"Solar Flux’, ’'Day/Night’}, ’‘figure title’, 'Daylight Detector’, ...

16 'plot title’, {’Flux Model’,’Perceptron Output’});

17 set([subplot(2,1,1) subplot(2,1,2)],’'x1lim’, [0 24],’'xtick’, [0 6 12 18 24]);
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Figure 1.7: The daylight detector. The top plot shows the input data, and the bottom plot shows
the perceptron output detecting daylight.
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Figure 1.7 shows the detector results. The set (gca, .. .) code sets the x-axis ticks to

end at exactly 24 hours. This is a really trivial example but does show how classification works.
If we had multiple neurons with thresholds set to detect sunlight levels within bands of solar
flux, we would have a neural net sun clock.

1.3.2 XOR Neural Net

Problem

We want to implement the exclusive-or (XOR) problem with a neural network.

Solution

The XOR problem impeded the development of neural networks for a long time before ‘‘deep
learning’” was developed. Look at Figure 1.8. The table on the left gives all possible inputs
A and B and the desired outputs C. ‘‘Exclusive-or’’ just means that if the inputs A and B are
different, the output C is 1. The figure shows a single-layer network and a multilayer network,
as in Figure 1.1, but with the weights labeled as they will be in the code. You can implement
this in MATLAB easily, in just seven lines:

7

>> 1
0;
a

a
>> b

>> 1f( == Db )
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Figure 1.8: Exclusive-or (XOR) truth table and possible solution networks.

C = XOR(A,B)

_A_Aoo>
“|lo|=|O |l
o|l=|=|10|0O
=
[
‘G
O

Truth Table Single-layer network Multilayer “deep” network

>> c =1
>> else
>> @ = 0
>> end

This type of logic was embodied in medium-scale integrated circuits in the early days of digital
systems and in tube-based computers even earlier than that. Try as you might, you cannot pick
two weights and a bias on the single-layer network to reproduce the XOR. Minsky created a
proof that it was impossible.

The second neural net, the deep neural net, can reproduce the XOR. We will implement and
train this network.

How It Works

What we will do is explicitly write out the back propagation algorithm that trains the neural net
from the four training sets given in Figure 1.8, that is, (0,0), (1,0), (0,1), (1,1). We’ll write it in
the script XORDemo. The point is to show you explicitly how back propagation works. We will
use the tanh as the activation function in this example. The XOR function is given in XOR . m
shown as follows.

XOR.m

o\

XOR Implement an ’‘Exclusive Or’ neural net
¢ = XOR(a,b,w)

o\e

Description
Implements an XOR function in a neural net. It accepts vector inputs.

a (1,:) Input 1
b (1,:) Input 2
w (9,1) Weights and biases

© ® N W R W N =

o\
o
S
T
e
S
=
)

c (1,:) Output

o oo o o o o o oe oe oe oo oo oo
o\e
5
s}
<
t
0]
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14 function [y3,yl,y2] = XOR(a,b,w)

16 1if( nargin < 1 )

17 Demo

18 return

19 end

20

20yl = tanh(w(l)*a + w(2)*b + w(7));
2 y2 = tanh(w(3)*a + w(4)xb + w(8));
23 y3 = w(5)*xyl + w(6)*xy2 + w(9);

24 Cc = VY3;

There are three neurons. The activation function for the hidden layer is the hyperbolic
tangent. The activation function for the output layer is linear.

y1 = tanh(wia + web 4+ wr) 1.7)
yo = tanh(wsa + wsb + wg) (1.8)
Y3 = wsy1 + wey2 + W (1.9)

Now we will derive the back propagation routine. The hyperbolic activation function is

f(z) = tanh(z) (1.10)
Its derivative is
df(z) _ g2
P 1—7%(») (L.11)

In this derivation, we are going to use the chain rule. Assume that F' is a function of y which is
a function of z. Then

dF(y(x)) _ dF dy

dx  dy dx

The error is the square of the difference between the desired output and the output. This is
known as a quadratic error. It is easy to use because the derivative is simple and the error is
always positive, making the lowest error the one closest to zero.

(1.12)

1
E=(c—ys)’ (1.13)

The derivative of the error for w; for the output node

OF 8y3
= (ya — 1.14
ow, (y3 —¢) o, (1.14)
For the hidden nodes, it is
OF 8n3
= 1.15
o, U3 o, (1.15)

11
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Expanding for all the weights

where

(01
(2
V3
ni
no

n3

gfl = ziha
552 = 3inb
gi = 3ihaa
gi = t3i2b
gfs = 3y
gfﬁ = Y3y
8857 = 3ih
8858 = 3ihy
8859 = 3

= 1-f*(m)

= 1-f*(n2)

= Yy —=cC

wia + web + wy
w3a + wab + wg

wWsY1 + WeY2 + Wy

(1.16)
(1.17)
(1.18)
(1.19)
(1.20)
(1.21)
(1.22)
(1.23)

(1.24)

(1.25)
(1.26)
(1.27)
(1.28)
(1.29)
(1.30)

You can see from the derivation how this could be made recursive and apply to any number of
outputs or layers. Our weight adjustment at each step will be

A

OF

wj - _778wj

(1.31)

where 7 is the update gain. It should be a small number. We only have four sets of inputs. We
will apply them multiple times to get the XOR weights.
Our back propagation trainer needs to find the nine elements of w. The training function

XORTraining.mis shown as follows.
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