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Preface

Artificial Intelligence (AI) is widely acknowledged as a new kind of science that will
bring about the next technological revolution. The vast majority of exciting reports that
come our way about the use of AI in applications, however, are concerned with a very
narrow technological capability: predicting future instances based on previously observed
data. But AI, as understood by both scientists and science fiction writers, is clearly much
broader.

This book is on the science of general-purpose, open-ended computational entities that
deliberate and learn. Although such an agenda raises numerous philosophical and techni-
cal concerns that have no easy answers, some ideas have emerged that are attempting to
tackle fundamental representational and reasoning problems for rational agents operating
in complex, uncertain environments. The book builds on two such major developments in
AI:

(a) the longstanding goal of integrating logic and probability for commonsense reasoning
over noisy data; and

(b) theories of actions, dynamic laws and planning to achieve objectives in a changing
world.

To that end, it presents the mathematical machinery for a logical language that integrates
quantifiers, probabilities, actions, plans and programs.

Indeed, the unification of logic and probability has enjoyed a lot of attention in math-
ematics, logic, computer science and game theory. In AI, for example, areas such as
statistical relational learning, neuro-symbolic systems, probabilistic databases, among oth-
ers, are motivated by the need to incorporate noise and probabilistic uncertainty with
logical knowledge and deductive machinery. Much of this work is limited to a static state
of affairs, and so reasoning about a changing world via actions and plans is the next fron-
tier. Many formalisms, moreover, limit the expressiveness for computational reasons, but
this leaves open what a general account of first-order logic, probability and actions looks
like. That is what this book seeks to address.
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vi Preface

Who is this book for? Graduate students and researchers in computer science, artificial
intelligence, philosophy, logic, robotics and statistics in the least would find the material
useful. For instance:

• In computer science, epistemic logic has provided a formal model to capture distributed
systems, multi-agent systems, privacy, cryptography and security. The integration of
probability demonstrates how uncertainty could be further captured.

• In philosophy, the unification of logic and probability has been of interest from the
point of epistemology and language. It will be useful to see a working proposal of
such a unification for problems in AI.

• In statistics, a great amount of effort goes into capturing appropriate assumptions as
well as exploiting tractable properties when modelling time and dynamics. The devel-
opment of a language where no effort is needed in understanding how the dependencies
between variables might change over actions is a fresh perspective on representational
matters. Tractable properties are also shown to emerge as a special case when the
appropriate limitations hold.

• In robotics, there is an increasing interest in autonomy and enabling commonsense
reasoning along with real-time behavior. The book’s focus on arbitrary actions and pro-
grammatic abstractions for partially specified behavior against a first-order knowledge
base might be indicative of what is possible with very expressive languages. Clearly,
that level of expressiveness does not entail real-time behavior, so a middle ground
needs to be sought. But a roboticist can now revisit the expressiveness-tractability
tradeoff by better articulating what is possible with representational richness.

A background in first-order logic is all that is needed to go through the contents of this
book. It might even be possible to grasp the thrust of chapters without any knowledge of
formal logic, but the reading of equations will require some understanding of logic. (We
provide a brief introduction to first-order logic in Chap. 3).

For general audiences, Chaps. 1 and 2 motivate the scientific program. For researchers
in statistical relational learning, these chapters also position the technical work in the
book against popular relational languages in the machine learning community.

For readers better acquainted with modal logic, Chap. 10 might be a more comfortable
read. For researchers in automated planning, Chap. 8 on belief-level regression might be
especially interesting. For researchers in agent programming, Chap. 9 on programmatic
abstractions for agent design under uncertainty might be worthwhile.

I hope this book motivates you to think about the many beautiful ways in which logic
and probability interact.

Edinburgh, UK
September 2022

Vaishak Belle
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1Introduction

They don’t have intelligence. They have what I call
“thintelligence”. They see the immediate situation. They think
narrowly and they call it being focused. They don’t see the
surround. They don’t see the consequences.

—Michael Crichton, Jurassic Park

Artificial Intelligence (AI) is widely acknowledged as a new kind of science that will bring
about (and is already enabling) the next technological revolution. Virtually every week,
exciting reports come our way about the use of AI for drug discovery, game playing, stock
trading and law enforcement. And virtually all of these are mostly concerned with a very
narrow technological capability, that of predicting future instances based on past instances.
Identifying statistical patterns, correlations, and associations are, without doubt, extremely
useful. In the first instance, they are needed in applications to inspect features and properties
of interest in observed data. But AI, as understood by both scientists and science fiction
writers, is clearly much broader. In fact, pattern recognition, machine learning and finding
associations by mining data are closely related subfields of AI. Put differently, from first
principles, what distinguishes big-data analysis fromAI is that the set of capabilities wewish
to enable with the latter. We are not interested in a “thintelligence”, but rather a general-
purpose, autonomous computational entity that, in the very least, has agency.

1.1 A Science of Agency,Deliberation and Learning

To develop a science of agency with deliberation and learning, we need to address several
critical philosophical concerns, including:

• Which capabilities are of interest?
• What sort of framework allows us to capture those capabilities?
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2 1 Introduction

• How are we to reason about the system’s uncertainty about the world, and the laws that
govern it?

• Which of those capabilities and laws can be codified, using mathematical language, and
how is that language defined?

It should not comeas a surprise that there is no consensus yet onhowsuchquestions should
be answered. To wit, consider the simple capability of reasoning about and manipulating
ordinary things, as might be expected of a robotic caretaker servicing an office, for example.
It might be tasked with cleaning up rooms, delivering coffee to individuals issuing such
requests, and so on. For one thing, uncertainty could range from disjunctive (e.g., either-or)
to existential (e.g., there is someone with a certain property) to probabilistic (e.g., one event
is more likely than the other), in addition to other notions. For another, if the functionality is
to be addressed in a general way, a wide range of technical concerns arise. In the very least,
consider:

• Should the system’s behavior be learnt entirely from data, or only partially?
• If the latter, what knowledge does a system need to have in advance (e.g., provided by a

modeler) versus what can be acquired by observations?
• What kind of semantics governs the updating of a priori knowledge given new and

possibly conflicting observations?
• How does the system generalize from low-level observations to high-level structured

knowledge?

Technical solutions to such concerns need to be further embedded in a society, where com-
pliance with cultural and social norms is surely demanded. To reiterate our point above
more bluntly, we are yet to identify any single framework or language that is shown to be
appropriate for AI systems, understood so broadly.

Be that as it may, some ideas have emerged that are attempting to tackle fundamental
representational and reasoning problems for rational agents operating in complex, uncertain
environments. This book builds on two such major developments in AI:

• The longstanding goal of integrating logic and probability for commonsense reasoning
over noisy data.

• And, models of actions and planning to achieve objectives in a changing world.

We believe that what is needed as a key driver towards general-purpose AI, such as
autonomous open-ended robots, is a framework that unifies:

(logic + probability) + actions.

However, as is clear from our many open-ended questions above, a precise understanding
of what level of expressiveness is needed for commonsensical rational agents is lacking.
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This means we should strive for an application-independent, general-purpose language. A
language that combines abstract, logical reasoning with probabilistic data. A language for
reasoning about objects and their properties. A language that allows for reasoning about
past events and hypothetical futures. A language that can express recursive plans of action.
A language for refining knowledge with new but imprecise and noisy observations.

We motivate a proposal for such a unification in this book. We will begin by positioning
historical developments, and then turn to the issues of big data and knowledge acquisition,
which are important but orthogonal concerns for this book.

1.2 Logic Meets Probability

In the early days of AI, John McCarthy put forward a profound idea to realize artificial
intelligence (AI) systems: he posited thatwhat the systemneeds to knowcould be represented
in a formal language, and a general-purpose algorithm would then conclude the necessary
actions needed to solve the problem at hand. The main advantage is that the representation
can be scrutinized and understood by external observers, and the system’s behavior could
be improved by making statements to it. Numerous such languages emerged in the years
to follow, but first-order logic remained at the forefront as a general and powerful option.
Propositional and first-order logic continue to serve as the underlying language for several
areas in AI, including constraint satisfaction, automated planning, database theory, ontology
specification, verification, and knowledge representation.

One of themain arguments against a logical approach is that in practice, there is pervasive
uncertainty in almost every domain of interest: these can be in the form of measurement
errors (e.g. readings froma thermometer), the absence of categorical assertions (e.g. smoking
may be a factor for cancer, but cancer is not an absolute consequence for smokers), and the
presence of numerous “latent” factors, including causes that themodelermay simply not have
taken into account, all ofwhich question the legitimacy of themodel. The upshot is that on the
one hand, logic was seen as an inappropriate tool, as it is “rigid” (sentences always evaluate
to true or false), “brittle” (sentences in the knowledge base must be true in all possible
worlds) and discrete (as opposed to the continuous error profiles for thermometers). On the
other, the knowledge of the system, as posited in the declarative approach, may not only be
incomplete but may be impossible to specify a priori (e.g., consider the many dimensions
to telling a system on what constitutes as a face in high-resolution photographs).

Modeling uncertain worlds needed a rigorous formulation, and this came in the form of
probabilistic models, including ones admitting a graphical representation, such as Bayesian
networks. Such models allow one to effectively factorize the joint distribution over random
variables. What makes such models particularly attractive is that both the probabilities
of the variables in a given model, as well as the dependencies themselves can be learnt
from data, thereby circumventing the requirement that the model needs to be provided by
some omniscient modeler. Probabilistic models, obtained either by explicit specification or
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implicitly induced by means of modern machine learning methods such as deep learning,
have supercharged the application of statistical methods in language understanding, vision
and data analysis more generally.

Despite the success of probabilistic models, we observe that they are essentially propo-
sitional, but are nonetheless deployed in an inherently relational world. That is, they easily
make sense of “flat” data, where atomic events are treated as independent random variables.
But the environment that a robot operates has things in it: some objectsmay be inside another,
others on top, some fragile and some heavy. We would need to reason about the properties
of these things to manipulate and transport them successfully. Likewise, in medical records,
it makes little sense to treat individual entries on patient symptoms as independent, since it
ignores relationships between co-occurring symptoms, and family history. This encouraged
the design of probabilistic concept languages, culminating in the area of statistical relational
learning, neuro-symbolic AI and many other hybrid formalisms integrating probabilistic
observations and high-level reasoning and/or planning. These formalisms borrow syntactic
devices from finite-domain first-order logic to define complex interactions between random
variables in large-scale models over classes and hierarchies.

With so many formalisms to choose from, which language shall we work with? The
main thing to note is that, in often distinct ways, these languages are carefully designed
to balance expressiveness versus computational efficiency for the application context at
hand. However, as a result, we are left with limited languages that offer some benefits over
propositional approaches but are overly restrictive for other concerns.A central problemwith
such probabilistic concept languages is their very controlled engagement with first-order
logic: by almost exclusively considering finite-domain relational logic, succinct modelling
may be admitted, but it is ultimately no more powerful than propositional logic from an
expressiveness viewpoint. In some programmatic approaches, moreover, logical connectives
such as disjunctions are also disallowed.

Interestingly, such probabilistic concept languages are drawn from earlier, more general,
studies on unifying first-order logic and probability, such as the works of Nilsson, Bacchus
and Halpern. McCarthy and Hayes, in fact, were the first to suggest the following:

(i) It is not clear how to attach probabilities to statements containing quantifiers in a way
that corresponds to the amount of conviction people have.

(ii) The information necessary to assign numerical probabilities is not ordinarily available.
Therefore, a formalism that required numerical probabilities would be epistemologi-
cally inadequate.

Translating such sentiments to a desiderata of sorts, one might say a general-purpose
language should support full first-order logic, but also allow probabilistic assertions. In
other words, it should allow a purely probabilistic specification, if the application demands
it and the information available allows it. Analogously, such a language should allow a purely
logical specification, if no probabilistic information is available. And, of course, everything
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in between: for example, it should be possible to have an initial database consisting of only
first-order formulas, then gradually add purely probabilistic formulas, and obtain appropriate
conclusions from that resulting database. Moreover, from such a general language, one may
then determine which fragment is sufficient for the application at hand, and constrain the
language accordingly. This is an important advantage with rich languages.

Naturally, the downside of working with such a powerful language is that we will not be
able to say verymuch about efficient computation is every instance.With a specific fragment
in mind, that is possible. But not in general. Since the game here is to really understand the
principles and theory behind integrating logic and probability, we will accept the matter,
and consider concrete computational strategies at a later stage.

Not surprisingly, we will be in a very similar position with regards to reasoning about
world dynamics. We will aim for a general language, on the one hand, and focus on com-
putation only with appropriate fragments.

1.3 Actions

Reasoning about events, actions, plans and programs has a long history in computer science
and AI. Similar to the many proposals in the literature for commonsense reasoning, we have
plenty of formalisms to choose from for capturing actions. Formalisms such as temporal
logics allow us to reason about time, including the positioning of properties in the current
and future states (e.g., the variable will never go above the value of 100). Markov process
allows the stochastic modelling of sequential events. When coupled with a reward function,
they can be used to compute the sequence of actions to be taken by an agent to maximize the
overall reward. Planning languages such as STRIPS describe the current state of the system
as a database, and by means of a synthesis algorithm, a sequence of actions can be produced
that changes the state to a desired database.

Similar to the observation we just made about probabilistic logical representation lan-
guages, there are very many models of actions, with some limitation on what kinds of
things can be expressed. As scientists consider more challenging applications, a new feature
would be considered desirable to add, and inevitably a new modelling language would be
introduced, with a corresponding semantics. Of course, there is no way we can completely
future-proof a language against all possible desirable features. But at least we can consider
a language that is powerful enough to reason about features such as:

• Causal laws relating actions and effects.
• Internal actions that can be performed by the robot to the change the world state, sensing

actions that do not change the world state but only what the robot knows, and exogenous
actions that affect the world but are performed without the robot’s control (and possibly
without its knowledge).

• Reasoning about the past, hypothetical and counterfactual events.
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• Reasoning about the beliefs, desires and intentions of all the agents in the environment.
• Reasoning about discrete and continuous, noise-free and noisy actions and sensors.
• Expressing atomic actions, sequential plans, recursive plans, program-like plans, and

partial instructions for the robot to execute.

What are after, then, is a unifying “theory of dynamics”, and again,we turn to first-order logic
but now extended for actions. In other words, it would be ideal if first-order logic provided
the substrate that allows us to reason about both probabilities and actions, which would then
count as a general proposal in line with our aims. As we shall see, such a possibility does
exist, and is a fairly simple extension to the one of most popular knowledge representation
languages: the situation calculus. Originally postulated by McCarthy, and later revised by
Reiter, it has enjoyed considerable attention as an important knowledge representation lan-
guage with extensions for time, plans, programs, inductive definitions, abstraction, rewards
and high-level control. Basically, initial knowledge is a standard (unrestricted) first-order
theory, over which we define actions and effects. Actions result in some formulas in the
theory changing values, depending on which predicates are affected by an action. The key
feature, like temporal and dynamic logics, however, and unlike dynamic Bayesian networks
and planning formalisms, is that the underlying language allows us to reason about arbitrary
trajectories of actions. So, one can reason about the past and the future.

So, the situation calculus has all the expressiveness of standard first-order logic together
with a theory of actions. All of that is studied comprehensively in the introductory book by
Raymond Reiter. What this book is about is further extending that framework for reasoning
about probabilities in a general way.

1.4 Some Related Areas

Before going further, it might be useful to position some existing, well-established areas in
the context of our discussion on first-order probabilistic languages. They help motivate the
kind of generality we are aiming for.

• Classical databases.Databases are defined over a relational logical language and a finite
set of constants, the latter denoting the individuals and values in the database. A database
is equivalent to a finite and consistent set of atoms, with the understanding that all atoms
not mentioned in that set are false.
Transactional databases allow for the execution of commands, which amount of adding
new atoms to the set, and deleting others.
For example, a university database might consist of all of the enrolled students in the
current year, along with their phone numbers and details of the courses they are under-
taking. Matriculating a new student would mean the addition of this student to the set of
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enrolled students, and adding the relevant personal and course details. When a student
graduates, they would be removed from the set of enrolled students.

• Incomplete databases. Uncertainty about the truth of atoms might mean we entertain
disjunctive knowledge. For example, while scanning a handwritten text, we might be
unsure about the first name of a student with ID #243: it could either be Mary or May.
Each alternative together with the remaining facts correspond to a finite and consistent
set of atoms, so the representation is allowing for multiple possible worlds.

• Probabilistic databases. Perhaps the student with ID #243 had to submit multiple forms,
and although the handwritten text is problematic to scan in all of them, it might seem
more probable that it is Mary rather than May. Probabilistic databases allow probabilities
on atoms, and more generally on possible worlds.

• Probabilistic relational languages. To accord probabilities to both atoms and formu-
las, formalisms such as Markov logic networks and relational Bayesian networks have
emerged. These can be seen to extend standard probabilistic formalisms such as Markov
and Bayesian networks with a relational syntax allowing for an easier way to define
intricate probabilistic models involving entities and their relationships. Alternatively,
probabilistic logic programming allow modelers to decorate Horn rules with probabili-
ties, to similar effect.
For example, when examining electronic health records, it is useful to learn predictive
models that can natively understand the relationships between patients, diagnoses, pre-
scribed medications, family history and the progression of symptoms over months and
years. Here, a probabilistic relational model can be built to leverage such relationships.
Actions can be further defined for suchmodels: for example, given probabilistic variables
for the positions of objects, noisy actions that move these objects to other locations would
affect the distributions of those variables. The distribution would need to account for the
error profile of the actions to capture the probabilistic nature of the current position.

• Automated planning. Perhaps the simplest model for automated planning can be defined
using classical databases. Such a database could denote the initial state, and actions such
as moving from one location to another, picking up and dropping objects, and so on, can
be seen as transactions over such databases amounting to the addition and deletion of
facts.
A more involved planning language might allow for uncertainty over the initial state
(using multiple possible worlds), as well as involved actions that are context-dependent.
For example, if the floor is slippery, a move action may cause the robot to fall rather than
just move ahead. Probabilities can be further accorded to the possible worlds as well as
the unintended effects of actions, thereby necessitating the need for dynamic probabilistic
relational languages.
Usually a solution to an automated planning problem is simply a sequence of prescribed
actions that transform the initial state to a desired goal state. However, when there is
uncertainty about the initial state, or about the type of observations that the agent might
encounter, solutions can be iterative or even recursive, resembling a program with if-
then-else and while loops.


