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To our predecessors and allies who saw the
danger and raised the warning.
And to the invisible hand of the market, which
voted against the commercialization of
plutonium.



Foreword by Mohamed ElBaradei

Plutonium, atomic number 94, was first separated in 1941 in Berkeley, California,
in a quantity so small that it was difficult to see with the naked eye. By 2019, there
are more than 500 metric tons of plutonium in civilian and military stocks in more
than 10 countries around the world.

Named after the dark planet Pluto, plutonium has been characterized by some as
the world’s most dangerous nuclear material; Pu-239 has a half-life of 24,000 years
and less than 8 kilograms is sufficient for a nuclear explosive device.

Plutonium use in the civilian nuclear fuel cycle has been passionately debated,
with proponents sometimes uncharitably referred to as “plutonium eaters” and
opponents on occasions derisively called “passive-aggressive.” Those who advo-
cated the use of plutonium emphasized its energy value (“one gram of recycled
plutonium in a MOX fuel assembly generates the same quantity of electricity as
burning 1–2 tons of oil”) and promoted it as a valuable resource that should not be
wasted. Those who opposed its use, on the other hand, stressed its toxicity and its
long half-life, and highlighted its role as one of the key materials that can enable the
acquisition of a nuclear-weapon capability, and hence advocated that its civilian use
be stopped and it be disposed of as nuclear waste.

In the 1960s and 1970s, there were serious concerns that the global stocks of
commercially recoverable uranium were limited. Uranium prices soared in the
mid-1970s due to the effects of the 1973 OPEC oil embargo and a short-lived price
cartel by some of the then-leading uranium-producing countries. At a time of high
uranium prices, a plutonium fuel cycle was estimated to be competitively cost
effective. Its proponents regarded plutonium as a “wonder fuel” that could generate
a practically infinite amount of energy if produced in a closed fuel cycle, that is,
uranium irradiated and discharged as spent fuel would be reprocessed to separate
plutonium for fuels to be used in breeder reactors to create yet more plutonium.
Over time, however, these optimistic expectations gave way to the realities of new
sources of recoverable uranium at low prices, costly engineering challenges, and the
complexities of safeguarding reprocessing and the related proliferation concerns.
Reprocessing is one of the two most sensitive nuclear technologies from a prolif-
eration perspective, along with uranium enrichment.
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In October 2003, as the then-director general of the International Atomic Energy
Agency (IAEA), in an op-ed titled “Towards a safer world” in The Economist, I
proposed the multilateralization of all uranium-enrichment and plutonium-
reprocessing facilities in view of the related proliferation concerns. I suggested
that this should happen in three phases. First, any new uranium-enrichment and
plutonium-reprocessing facilities should be set up exclusively on a multinational
basis; second, over time convert all existing facilities to be operated under multi-
national auspices; and, third, negotiate a treaty on the prohibition of production of
fissile material for nuclear weapons and place all existing stocks of military nuclear
material under international monitoring. Unfortunately, not much has happened on
this score, and much more work clearly needs to be done to curb the proliferation
potential of these two most sensitive technologies. This includes the need to safely
and securely dispose of plutonium and highly enriched uranium released from
dismantled nuclear warheads under international monitoring. In this context, the
Trilateral Initiative, and the Plutonium Management and Disposition Agreement, to
place plutonium from dismantled Russian and US nuclear warheads under IAEA
monitoring, need to be revived and implemented.

In light of the serious security and safety concerns surrounding the separation,
use, and disposition of all isotopic mixes of plutonium, policy-makers, the media,
and the public need to be better informed. Frank von Hippel, Jungmin Kang, and
Masafumi Takubo, three internationally renowned nuclear experts, have done a
valuable service to the global community in putting together this book, which both
historically and comprehensively covers the “plutonium age” as we know it today.
They articulate in a succinct and clear manner their views on the dangers of a
plutonium economy and advocate a ban on the separation of plutonium for use in
the civilian fuel cycle in view of the high proliferation and nuclear-security risks
and lack of economic justification. They advocate instead dry storage of spent fuel
after several years of pool cooling and its direct disposal in deep geological
repositories when they become available.

There exists, however, no international consensus, and some states continue to
pursue a commercial plutonium fuel cycle and forecast a sustainable future with
new technologies. A comprehensive and sober discussion on the civilian use of
plutonium needs to continue in the broader context of the role of nuclear energy in
meeting the United Nations’ sustainable development goals (SDGs), while reducing
its proliferation potential. This book is a valuable contribution to that discussion.

Vienna, Austria Mohamed ElBaradei
Director General, International

Atomic Energy Agency (1997–2009)
Nobel Peace Prize (2005)
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Chapter 1
Overview

One of the first tasks of the secret US World War II nuclear-weapon project was
to design reactors to produce plutonium for bombs. This part of the project was
headquartered at the University of Chicago, where, on 2 December 1942, a team led
by Enrico Fermi and Leo Szilard, two European refugee physicists, created the first
artificial steady fission chain reaction, which was sustained by neutrons traveling
between lumps of uranium inside a “pile” of graphite.

After the operation of the pile confirmed their understanding of how a chain reac-
tion could be achieved and controlled, the team worked with the DuPont company
to design and build three hulking high-power plutonium-production reactors at the
Hanford site on the Columbia River in remote eastern Washington state. These reac-
tors produced the plutonium for the first test nuclear explosion in the southern New
Mexico desert on 16 July 1945 and for the bomb that destroyedNagasaki on 9August
1945. After the war, 11 additional production reactors were built, and the 14 reactors
together produced plutonium for the tens of thousands of additional nuclear weapons
that the United States built during the Cold War.

In 1944, with the Hanford reactors about to go into operation, Fermi moved
to Los Alamos, New Mexico, to work on the design of the plutonium bomb. In
Chicago, Szilard and a few others in the reactor-design team started thinking about
how to use nuclear energy to generate electrical power. They worried, however, that
not enough high-grade uranium ore would be found to make fission energy into
a significant energy source.1 Chain-reacting uranium-235 constitutes only 0.7% of
natural uranium. Virtually all of the rest is non-chain-reacting U-238.

1.1 Dreams of Plutonium Breeder Reactors

In the Hanford reactors, for every 10 atoms of U-235 consumed, about seven atoms
of U-238 were being turned by neutron absorption into the artificial chain-reacting
isotope plutonium-239. Neutrons released by the fissioning of the Pu-239 atoms
could in turn convert more U-238 into Pu-239.
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