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LN-ANHA Series Preface

The Lecture Notes in Applied and Numerical Harmonic Analysis (LN-ANHA) book
series is a subseries of the widely known Applied and Numerical Harmonic Analysis
(ANHA) series. The Lecture Notes series publishes paperback volumes, ranging
from 80 to 200 pages in harmonic analysis as well as in engineering and scientific
subjects having a significant harmonic analysis component. LN-ANHA provides a
means of distributing brief-yet-rigorous works on similar subjects as the ANHA
series in a timely fashion, reflecting the most current research in this rapidly
evolving field.

The ANHA book series aims to provide the engineering, mathematical, and
scientific communities with significant developments in harmonic analysis, ranging
from abstract harmonic analysis to basic applications. The title of the series
reflects the importance of applications and numerical implementation, but richness
and relevance of applications and implementation depend fundamentally on the
structure and depth of theoretical underpinnings. Thus, from our point of view,
the interleaving of theory and applications and their creative symbiotic evolution
is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental rela-
tionship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modem harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, bio-medical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
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theory depends not only on classical Fourier analysis but also on ideas from abstract
harmonic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems and of the
metaplectic group for a meaningful interaction of signal decomposition methods.

The unifying influence of wavelet theory in the aforementioned topics illustrates
the justification for providing a means for centralizing and disseminating informa-
tion from the broader, but still focused, area of harmonic analysis. This will be a key
role of ANHA. We intend to publish with the scope and interaction that such a host
of issues demands.

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in applicable topics such as the following, where harmonic analysis
plays a substantial role:

Bio-mathematics, bio-engineering, Image processing and super-resolution;
and bio-medical signal processing; Machine learning;

Communications and RADAR; Phaseless reconstruction;
Compressive sensing (sampling) Quantum informatics;

and sparse representations; Remote sensing;
Data science, data mining Sampling theory;

and dimension reduction; Spectral estimation;
Fast algorithms; Time-frequency and time-scale analysis
Frame theory and noise reduction; – Gabor theory and wavelet theory.

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and
scientific phenomena, and on the solution of some of the most important problems
in mathematics and the sciences. Historically, Fourier series were developed in the
analysis of some of the classical PDEs of mathematical physics; these series were
used to solve such equations. In order to understand Fourier series and the kinds
of solutions they could represent, some of the most basic notions of analysis were
defined, for example, the concept of “function.” Since the coefficients of Fourier
series are integrals, it is no surprise that Riemann integrals were conceived to deal
with uniqueness properties of trigonometric series. Cantor’s set theory was also
developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
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Fourier analysis not only characterizes the behavior of the prime numbers but also
provides the proper notion of spectrum for phenomena such as white light; this
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems, and these problems, in turn, deal naturally with
Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.

The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’être of the ANHA series!

University of Maryland John J. Benedetto
College Park, MD, USA Series Editor
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Chapter 1
Introduction

The history of wavelets is a story that demonstrates the power of collaboration
between different specialties within mathematics, physics, engineering, and com-
puter science. Many parallel beginnings of wavelets emerged during the twentieth
century, as researchers in all of these fields applied and modified Fourier’s 1807
decomposition of functions into canonical pieces. (See [21] or [42] for details.)
Applications in signal and image processing drove innovation, while theory from
harmonic analysis and theoretical physics broadened and deepened the ideas. One
early example of the fruitfulness of this interaction between application and theory
coincided with the naming of wavelets in the early 1980s. Geophysical engineer
J. Morlet and theoretical physicist A. Grossman collaborated to adapt windowed
Fourier transform functions into a tool they called a wavelet [27]. Their paper
already incorporated abstract harmonic analysis, a theme of this book, in the
form of representations of the ax + b group. A second important example of
collaboration between application and theory happened in the mid-1980s. Stéphane
Mallat brought his knowledge of pyramidal algorithms in image processing to a
collaboration with Yves Meyer, who brought insights from harmonic analysis dating
back to the work of Littlewood-Paley and Calderon. The result was a formulation
of the concept of multiresolution analyses, the ancestor of this book’s topic, and the
basis of a construction method for wavelets [34, 41].

Since these beginnings, tools from classical harmonic analysis involving the
standard Fourier transform have been an essential part of the theoretical side of the
interactions that built and refined wavelets. Abstract harmonic analysis, while not
quite so constant a presence in wavelet theory, has reappeared regularly, after being
introduced into the beginnings of the subject by Grossman and Morlet. For example,
in 1988 Feichtinger and Gröchenig [24] used group representations to unify Gabor
and wavelet transforms into a single theory [28], and later Hartmut Führ extended
their work to more general settings [25].

In 1995, Baggett, Carey, Moran, and Ohring [3] introduced a representation
theoretic approach to the study of multiresolution structures. This volume will

© Springer Nature Switzerland AG 2018
K. D. Merrill, Generalized Multiresolution Analyses, Applied and Numerical
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2 1 Introduction

describe the resulting strand of research, which is centered around the concept of
a generalized multiresolution analysis. The use of abstract harmonic analysis to
further develop this concept has been carried out by several groups during the late
1990s and into the first two decades of 2000. This work has led to more powerful and
more general methods to build new wavelets, and also to an ability to use wavelets
in broader contexts.

1.1 Wavelets and Multiresolution Structures

Historically, wavelets have used the operations of dilation and translation to
decompose functions into canonical pieces, so that each piece has a prescribed
location and level of zoom. Ideally, the pieces decay rapidly outside of a narrow
focus, and thus overcome the Fourier system’s weakness of being non-localized.
Multiresolutions have been used to break the space up according to level of zoom,
with a subspace Vj containing elements zoomed in up to level j .

The development of multiresolution structures has roots in subband filtering in
signal processing and pyramid algorithms in image reconstruction [15], and such
structures occur naturally in these and other applied fields. For example, pattern
recognition requires the ability to examine an image at different resolutions, since
patterns of varying sizes are often being sought [35]. The use of multiresolutions
in computer vision applications is encouraged by evidence showing that the
human visual system itself uses multiresolution signal processing [1]. Further,
the decomposition of a signal into a coarser component together with a detail
component at each level enables a recursive method perfectly adapted to computer
reconstruction. Conversely, the recursive structure behind dynamical systems such
as iterated function systems can be naturally adapted to build multiresolution
structures in that context. (See, for example, Chapter 6, and for a different approach,
[36].)

Wavelets and multiresolution structures were originally developed in L2(R) with
translations by integers and dilation by 2, using the unitary operators τnf (x) =
f (x − n) and δf (x) = √

2f (2x). Later, they were extended to L2(RN) with
translations by the integer lattice and dilation δAf (x) = √| det A|f (Ax) by an
expansive (all eigenvalues have absolute value greater than 1) integer matrix A.
The work of Baggett, Carey, Moran, and Ohring [3] generalized these operations
to interrelated operators on an abstract Hilbert space. In particular, they replaced
standard translations by a countable, discrete, not necessarily abelian group Γ of
unitary operators on a separable Hilbert space H , and replaced dilation by another
unitary operator δ on H such that δ−1Γ δ ⊂ Γ. They called such a collection of
operators an Affine Structure. In this context, they defined a wavelet:

Definition 1.1 A (orthonormal) wavelet in a Hilbert space H is a finite set
{ψ1, ψ2, · · · , ψL} ⊂ H such that {δj (γ (ψi))} forms an orthonormal basis of H ,
with −∞ < j < ∞, γ ∈ Γ, and 1 ≤ i ≤ L.
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The authors in [3] then generalized the Mallat/Meyer definition of a multireso-
lution analysis not only to allow operators on an abstract Hilbert space, but also to
replace the requirement of an orthonormal basis of translates in the core subspace
by that of the core subspace being invariant under the action of Γ . They called
this structure simply a multiresolution; it was later given the name generalized
multiresolution analysis in [4], which is the name we will use in this book. We
will follow the convention of reserving the name multiresolution analysis for such a
structure that also has a scaling vector as defined below.

Definition 1.2 A generalized multiresolution analysis (GMRA) of a Hilbert space
H , relative to Γ and δ, is a collection {Vj }∞j=−∞ of closed subspaces of H that
satisfy:

1. Vj ⊆ Vj+1 for all j .
2. δ(Vj ) = Vj+1 for all j .
3. ∪Vj is dense in H and ∩Vj = {0}.
4. V0 (called the core subspace) is invariant under the action of Γ .

A multiresolution analysis (MRA) is a collection {Vj }∞j=−∞ of closed subspaces of
H that satisfy conditions 1–3 above, together with

4′. There exists a scaling vector φ ∈ V0 such that {γφ : γ ∈ Γ } gives an
orthonormal basis for V0.

Condition (4) allows the application of the theory of group representations to
prove theorems about the inter-relationship between wavelets and multiresolution
structures. In [3], the authors showed that all (orthonormal) wavelets have associated
GMRAs. This makes GMRAs a natural tool to pair with wavelets. While they found
an example of a GMRA that can have no associated orthonormal wavelet, they also
used an analysis of the representation of the group Γ on V0 to show that all abstract
MRAs for groups Γ where δ−1Γ δ is of finite index d in Γ do have associated
wavelets, and established that the number L of wavelet functions must equal d − 1.

A parallel line of research was begun in 1994 by de Boor, DeVore, and Ron [22],
with the study of shift invariant spaces, spaces invariant under integer translations.
They exploited the concept of a range function, introduced by Helson [29], to
determine conditions under which a finitely generated shift invariant space has a
generating set that is orthogonal or stable. Ron and Shen [44] later introduced
techniques involving Gramian fibers, functions on R

N whose values are nonnegative
Hermitian matrices with coefficients that are inner products that sum over translates
of L2 functions. They also used what they called quasi-affine systems to overcome
the fact that sets of positive dilates of wavelets are not shift invariant [45]. We will
point out connections to this parallel approach throughout the book.

In the late 1990s and early 2000s, other researchers proposed different gener-
alizations of Mallat and Meyer’s multiresolution analysis that were based on the
concept of a frame.

Definition 1.3 A frame for a Hilbert space H is a collection of vectors {v1, v2, · · · }
for which there exist positive frame bounds A and B with A‖v‖2 ≤∑i |〈v, vi〉|2 ≤
B‖v‖2 for all v ∈ H . A Parseval frame (or normalized tight frame) is a frame with
bounds A = B = 1.


