AutoUni – Schriftenreihe



Michael König

Verlustmechanismen in einem halbhermetischen PKW-CO<sub>2</sub>-Axialkolbenverdichter

# AutoUni – Schriftenreihe

# Band 127

Reihe herausgegeben von/Edited by

Volkswagen Aktiengesellschaft AutoUni Die Volkswagen AutoUni bietet Wissenschaftlern und Promovierenden des Volkswagen Konzerns die Möglichkeit, ihre Forschungsergebnisse in Form von Monographien und Dissertationen im Rahmen der "AutoUni Schriftenreihe" kostenfrei zu veröffentlichen. Die AutoUni ist eine international tätige wissenschaftliche Einrichtung des Konzerns, die durch Forschung und Lehre aktuelles mobilitätsbezogenes Wissen auf Hochschulniveau erzeugt und vermittelt.

Die neun Institute der AutoUni decken das Fachwissen der unterschiedlichen Geschäftsbereiche ab, welches für den Erfolg des Volkswagen Konzerns unabdingbar ist. Im Fokus steht dabei die Schaffung und Verankerung von neuem Wissen und die Förderung des Wissensaustausches. Zusätzlich zu der fachlichen Weiterbildung und Vertiefung von Kompetenzen der Konzernangehörigen fördert und unterstützt die AutoUni als Partner die Doktorandinnen und Doktoranden von Volkswagen auf ihrem Weg zu einer erfolgreichen Promotion durch vielfältige Angebote – die Veröffentlichung der Dissertationen ist eines davon. Über die Veröffentlichung in der AutoUni Schriftenreihe werden die Resultate nicht nur für alle Konzernangehörigen, sondern auch für die Öffentlichkeit zugänglich.

The Volkswagen AutoUni offers scientists and PhD students of the Volkswagen Group the opportunity to publish their scientific results as monographs or doctor's theses within the "AutoUni Schriftenreihe" free of cost. The AutoUni is an international scientific educational institution of the Volkswagen Group Academy, which produces and disseminates current mobility-related knowledge through its research and tailor-made further education courses. The AutoUni's nine institutes cover the expertise of the different business units, which is indispensable for the success of the Volkswagen Group. The focus lies on the creation, anchorage and transfer of knew knowledge.

In addition to the professional expert training and the development of specialized skills and knowledge of the Volkswagen Group members, the AutoUni supports and accompanies the PhD students on their way to successful graduation through a variety of offerings. The publication of the doctor's theses is one of such offers. The publication within the AutoUni Schriftenreihe makes the results accessible to all Volkswagen Group members as well as to the public.

#### Reihe herausgegeben von/Edited by

Volkswagen Aktiengesellschaft AutoUni Brieffach 1231 D-38436 Wolfsburg http://www.autouni.de

Weitere Bände in der Reihe http://www.springer.com/series/15136

Michael König

# Verlustmechanismen in einem halbhermetischen PKW-CO<sub>2</sub>-Axialkolbenverdichter



Michael König Wolfsburg, Deutschland

Zugl.: Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig, 2018

Die Ergebnisse, Meinungen und Schlüsse der im Rahmen der AutoUni – Schriftenreihe veröffentlichten Doktorarbeiten sind allein die der Doktorandinnen und Doktoranden.

AutoUni – Schriftenreihe ISBN 978-3-658-23001-2 ISBN 978-3-658-23002-9 (eBook) https://doi.org/10.1007/978-3-658-23002-9

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag, noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Springer ist ein Imprint der eingetragenen Gesellschaft Springer Fachmedien Wiesbaden GmbH und ist ein Teil von Springer Nature

Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

# Verlustmechanismen in einem halbhermetischen Pkw-CO<sub>2</sub>-Axialkolbenverdichter

### Von der Fakultät für Maschinenbau der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung der Würde eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigte DISSERTATION

von: aus (Geburtsort): Michael König Wolfenbüttel

07. August 2017 07. Mai 2018

eingereicht am: mündliche Prüfung am:

Referenten: Vorsitzender: Prof. Dr.-Ing. Jürgen Köhler Prof. Dr.-Ing. Peter Eilts Prof. Dr.-Ing. Ferit Küçükay

#### Vorwort

Die vorliegende Arbeit entstand im Rahmen meiner Tätigkeit als Entwicklungsingenieur bei der Volkswagen AG am Standort Salzgitter im Bereich elektrifizierter Nebenaggregate.

Die wissenschaftliche Betreuung meiner Arbeit erfolgte durch Herrn Prof. Dr. Jürgen Köhler vom Institut für Thermodynamik der Technischen Universität Braunschweig. Meine besondere Hochachtung gilt Herrn Prof. Dr. Jürgen Köhler für die umfangreiche fachliche Auseinandersetzung mit den Inhalten der Arbeit. Die regelmäßig geführten Diskussionen zu den methodischen Ansätzen, Fortschritten und Ergebnissen der Arbeit stellen einen erheblichen Anteil zum Gelingen der Arbeit dar. Herrn Prof. Dr.-Ing. Eilts danke ich herzlich für die Erstellung des Zweitgutachtens. Bedanken möchte ich mich auch bei Herrn Prof. Dr. Ferit Küçükay für die Übernahme des Vorsitzes der Prüfungskommission.

Ohne die Unterstützung der Kolleginnen und Kollegen der Volkswagen AG in meiner Abteilung und auch über die Abteilung hinaus wäre die Anfertigung dieser Arbeit nicht möglich gewesen. Stefan Lieske, Dr. Julia Lemke, Michael Lüer und Mathias Möller haben mir die Anfertigung der vorliegenden Arbeit bei gleichzeitig spannender, lehr- und erkenntnisreicher Projektarbeit im Rahmen meiner Doktorandenzeit grundsätzlich ermöglicht. Eine weiterführende inhaltliche Bereicherung zur Verdichtersimulation konnte ich durch meinen sehr geschätzten Doktoranden-Kollegen Jakob Hennig sowie Christian Schneck, Florian Boseniuk, Dr. Andreas Gitt-Gehrke und Clément Scheuber erfahren. Für die Unterstützung bei der Konstruktion und dem Prototypenaufbau danke ich besonders Daniel Blasko, Felix Nowak, Oswald Gehl, Norman Welz, Anton Gugenheimer und Kevin Tauch.

Zum Gelingen der Arbeit haben weiterhin besonders die Kollegen der Fa. TLK-Thermo GmbH aus Braunschweig beigetragen. Für die Konzeption und den Betrieb eines wunderbaren Verdichterprüfstandes möchte ich besonders Mario Schlickhoff, Dr. Manuel Gräber, Sven Packheiser, Norbert Stulgies, Sergej Uhrich und André Stößel meinen Dank aussprechen. Die stets hilfreichen Anregungen und zahlreichen Diskussionen zu experimentellen Ansätzen und Untersuchungsergebnissen mit Dr. Nicholas Lemke haben einen inhaltlich großen Mehrwert für diese Arbeit geliefert. Auch haben die Diskussionen mit Dr. Nicholas Lemke im Hinblick auf die erzielten Simulationsergebnisse einen erheblichen Beitrag für eine interpretierende und gleichzeitig kritische Bewertung der erzielten Ergebnisse geleistet. Für eine umfangreiche fachkundige Unterstützung im Rahmen der Verdichtermodellerstellung danke ich besonders Dr. Sven Försterling und Dr. Christian Schulze.

Meiner lieben Familie bin ich abschließend dankbar für den dauerhaften Rückhalt, die Förderung meines Werdegangs und die fortwährende Unterstützung jeglicher Art. Für eine stetige Motivation, den liebevollen harmonischen Umgang und eine ausgewogene mentale Balance auch in schwierigen Zeiten danke ich von Herzen meiner Partnerin Nane Vollmer.

Braunschweig

Michael König

## Inhaltsverzeichnis

| Vo<br>Ab<br>Tal<br>Syn<br>Ab<br>Ku<br>Ab | rwort<br>bildun<br>bellen<br>mbolw<br>kürzu<br>vrzfass<br>ostract | ngsverze<br>verzeich<br>rerzeich<br>ngsverz<br>ung | eichnis                                                           | VII<br>XIII<br>XVII<br>XIX<br>XXVII<br>XXIX<br>XXIX<br>XXXI |
|------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|
| 1                                        | Einle                                                             | eitung .                                           |                                                                   | 1                                                           |
|                                          | 1.1                                                               | Kohler                                             | ndioxid als Kältemittel                                           | 1                                                           |
|                                          | 1.2                                                               | Forsch                                             | ungsbedarfe für die Fahrzeugklimatisierung mit CO <sub>2</sub>    | 2                                                           |
|                                          | 1.3                                                               | Ziele d                                            | ler Arbeit                                                        | 4                                                           |
|                                          | 1.4                                                               | Aufbau                                             | u der Arbeit                                                      | 4                                                           |
| 2                                        | Gru                                                               | ıdlagen                                            | n zur Untersuchung von Verlustmechanismen im Verdichter           | 7                                                           |
|                                          | 2.1                                                               | Anlage                                             | enverschaltung für eine Pkw-CO <sub>2</sub> -Klimaanlage          | 7                                                           |
|                                          | 2.2                                                               | Verdic                                             | hterbauarten                                                      | 8                                                           |
|                                          |                                                                   | 2.2.1                                              | Scrollverdichter                                                  | 10                                                          |
|                                          |                                                                   | 2.2.2                                              | Hubkolbenverdichter                                               | 11                                                          |
|                                          | 2.3                                                               | Verdic                                             | htungsprozess eines einstufigen Kolbenverdichters                 | 14                                                          |
|                                          | 2.4                                                               | Identifi                                           | ikation von Verlustmechanismen                                    | 16                                                          |
|                                          |                                                                   | 2.4.1                                              | Strömungsverluste                                                 | 17                                                          |
|                                          |                                                                   | 2.4.2                                              | Druckpulsationen                                                  | 18                                                          |
|                                          |                                                                   | 2.4.3                                              | Aufheizungsverluste                                               | 19                                                          |
|                                          |                                                                   | 2.4.4                                              | Elektrische Verluste                                              | 19                                                          |
|                                          |                                                                   | 2.4.5                                              | Reibungsverluste                                                  | 21                                                          |
|                                          |                                                                   | 2.4.6                                              | Rückexpansionsverluste                                            | 23                                                          |
|                                          |                                                                   | 2.4.7                                              | Leckageverluste                                                   | 23                                                          |
|                                          |                                                                   | 2.4.8                                              | Rückströmungsverluste                                             | 24                                                          |
|                                          | 2.5                                                               | Bewert                                             | tungskenngrößen für elektrisch angetriebene Kältemittelverdichter | 25                                                          |
|                                          |                                                                   | 2.5.1                                              | Äußere Bewertungskenngrößen                                       | 25                                                          |
|                                          |                                                                   | 2.5.2                                              | Innere Bewertungskenngrößen                                       | 27                                                          |
| 3                                        | Mod                                                               | ellierur                                           | ng eines Taumelscheibenverdichters                                | 29                                                          |
|                                          | 3.1                                                               | Therm                                              | odynamische und strömungsmechanische Modellierung                 | 29                                                          |
|                                          |                                                                   | 3.1.1                                              | Bilanzgleichungen                                                 | 29                                                          |
|                                          |                                                                   | 3.1.2                                              | Wärmeübergangsbeziehungen                                         | 31                                                          |
|                                          |                                                                   | 3.1.3                                              | Düsen- und Ventilströmung                                         | 34                                                          |
|                                          | 3.2                                                               | Model                                              | lierung mechanischer Verdichter-Komponenten                       | 36                                                          |
|                                          |                                                                   | 3.2.1                                              | Kinematische Beziehungen am Kolben                                | 36                                                          |
|                                          |                                                                   | 3.2.2                                              | Gleitstein- und Kolbendynamik                                     | 38                                                          |

|    |        | 3.2.3 Kräftegleichgewicht am Kolben                              | 43  |
|----|--------|------------------------------------------------------------------|-----|
|    |        | 3.2.4 Kräftegleichgewicht an der Antriebswelle                   | 45  |
|    |        | 3.2.5 Lagerreibung                                               | 46  |
|    |        | 3.2.6 Ventilmodell                                               | 47  |
|    | 3.3    | Elektrischer Antrieb                                             | 51  |
| 4  | Exp    | erimentelle Methodik der Verdichter-Untersuchung                 | 53  |
|    | 4.1    | Anlagenkonfiguration                                             | 53  |
|    | 4.2    | Indiziermessungen                                                | 56  |
|    | 4.3    | Leistungsmessung am elektrischen Antriebsstrang                  | 60  |
| 5  | Exp    | erimentelle Untersuchung des Verdichters                         | 63  |
|    | 5.1    | Indiziermessungen                                                | 63  |
|    |        | 5.1.1 Synchronizität und Verdichtungscharakteristik der Zylinder | 64  |
|    |        | 5.1.2 Einfluss der Ölumlaufrate (OCR)                            | 68  |
|    |        | 5.1.3 Einfluss des Druckverhältnisses und der Drehzahl           | 70  |
|    |        | 5.1.4 Einfluss der Druckpulsationen                              | 72  |
|    | 5.2    | Charakterisierung von Leckageverlusten am Zylinder               | 75  |
|    |        | 5.2.1 Leckageverluste an den Kolbenringen                        | 76  |
|    |        | 5.2.2 Leckageverluste an den Ventilen                            | 77  |
|    | 5.3    | Charakterisierung des elektrischen Antriebsstranges              | 79  |
|    | 5.4    | Charakterisierung des Verdichters bei Betriebspunktvariation     | 81  |
|    |        | 5.4.1 Liefergradbetrachtung                                      | 82  |
|    |        | 5.4.2 Füllgradbetrachtung                                        | 85  |
|    |        | 5.4.3 Gütegradbetrachtung                                        | 87  |
| 6  | Vali   | dierung des Verdichtermodells                                    | 91  |
|    | 6.1    | Wärmeübertragungsmodell                                          | 91  |
|    | 6.2    | Reibungsmodell                                                   | 93  |
|    | 6.3    | Zylinder- und Ventilmodell                                       | 96  |
|    | 6.4    | Bewertungskenngrößen                                             | 100 |
| 7  | Bew    | rertung ausgewählter Verlustbeiträge des Verdichters             | 103 |
|    | 7.1    | Elektrische Verluste                                             | 103 |
|    | 7.2    | Reibungsverluste                                                 | 105 |
|    | 7.3    | Wärmeübertragungsverluste                                        | 107 |
|    | 7.4    | Leckageverluste                                                  | 108 |
|    | 7.5    | Ventilverluste                                                   | 109 |
|    | 7.6    | Gegenüberstellung ausgewählter relativer Verlustanteile          | 111 |
| 8  | Zus    | ammenfassung und Ausblick                                        | 113 |
| Li | teratı | ırverzeichnis                                                    | 117 |

| А | Mes                                                                  | sunsicherheiten der experimentellen Untersuchungen                                                                                                                                                                                                                                                                                                                                                                                                                         | 131                                                         |
|---|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|   | A.1                                                                  | Bestimmung der erweiterten Standardmessunsicherheit an Komponenten                                                                                                                                                                                                                                                                                                                                                                                                         | 131                                                         |
|   |                                                                      | A.1.1 Elektrische Leistung am Eingang der Leistungselektronik                                                                                                                                                                                                                                                                                                                                                                                                              | 131                                                         |
|   |                                                                      | A.1.2 Elektrische Leistung am Eingang des E-Motors                                                                                                                                                                                                                                                                                                                                                                                                                         | 132                                                         |
|   |                                                                      | A.1.3 Mechanische Leistung                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 133                                                         |
|   |                                                                      | A.1.4 Elektrische Wirkungsgradbewertung                                                                                                                                                                                                                                                                                                                                                                                                                                    | 135                                                         |
|   |                                                                      | A.1.5 Indizierte Leistung                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 135                                                         |
|   |                                                                      | A.1.6 Leckage am Zylinder                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 139                                                         |
|   | A.2                                                                  | Bestimmung der erweiterten Standardmessunsicherheit der Kenngrößen                                                                                                                                                                                                                                                                                                                                                                                                         | 140                                                         |
|   |                                                                      | A.2.1 Liefergrad                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140                                                         |
|   |                                                                      | A.2.2 Klemmengütegrad                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 142                                                         |
|   |                                                                      | A.2.3 Indizierter isentroper Gütegrad                                                                                                                                                                                                                                                                                                                                                                                                                                      | 143                                                         |
|   |                                                                      | A.2.4 Füllgrad                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 144                                                         |
|   | A.3                                                                  | Bestimmung der erweiterten Standardmessunsicherheit der Ölumlaufrate                                                                                                                                                                                                                                                                                                                                                                                                       | 145                                                         |
|   | A.4                                                                  | Bestimmung der erweiterten Standardmessunsicherheit des Druckes                                                                                                                                                                                                                                                                                                                                                                                                            | 146                                                         |
|   | A.5                                                                  | Bestimmung der erweiterten Standardmessunsicherheit bei Wiederholung                                                                                                                                                                                                                                                                                                                                                                                                       | 147                                                         |
|   | A.6                                                                  | Bestimmung der erweiterten Standardmessunsicherheit der Ventilmessung                                                                                                                                                                                                                                                                                                                                                                                                      | 148                                                         |
|   | A.7                                                                  | Verwendete Messinstrumente der experimentellen Untersuchungen                                                                                                                                                                                                                                                                                                                                                                                                              | 149                                                         |
| В | Ergi                                                                 | anzende Daten zur Verdichter-Modellierung                                                                                                                                                                                                                                                                                                                                                                                                                                  | 151                                                         |
|   | <b>B.1</b>                                                           | Wärmeübertragung im Zylinder                                                                                                                                                                                                                                                                                                                                                                                                                                               | 151                                                         |
|   | B.2                                                                  | Kolbenringdynamik                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 152                                                         |
|   | B.3                                                                  | Stoffeigenschaften von CO <sub>2</sub> -Öl-Gemischen                                                                                                                                                                                                                                                                                                                                                                                                                       | 154                                                         |
|   | <b>B.</b> 4                                                          | Ersatzparameter des Ventilmodells                                                                                                                                                                                                                                                                                                                                                                                                                                          | 157                                                         |
| С | Ergi                                                                 | inzende Daten zur experimentellen Methodik                                                                                                                                                                                                                                                                                                                                                                                                                                 | 161                                                         |
|   | C.1                                                                  | Prüfstandskonfiguration der Leckagemessung an den Kolbenringen                                                                                                                                                                                                                                                                                                                                                                                                             | 161                                                         |
|   | C.2                                                                  | Prüfstandskonfiguration der Ventil-Leckagemessung am                                                                                                                                                                                                                                                                                                                                                                                                                       | 162                                                         |
| D |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |
| ~ | Ergi                                                                 | inzende Daten zur experimentellen Untersuchung des Verdichters                                                                                                                                                                                                                                                                                                                                                                                                             | 163                                                         |
| ν | Ergá<br>D.1                                                          | inzende Daten zur experimentellen Untersuchung des Verdichters<br>Parametrisierung des elektrischen Antriebsstrang-Modells                                                                                                                                                                                                                                                                                                                                                 | <b>163</b><br>163                                           |
| D | <b>Ergi</b><br>D.1<br>D.2                                            | <b>inzende Daten zur experimentellen Untersuchung des Verdichters</b><br>Parametrisierung des elektrischen Antriebsstrang-Modells<br>Verdichtungscharakteristik bei Drehzahl- und Druckverhältnisvariation .                                                                                                                                                                                                                                                               | <b>163</b><br>163<br>164                                    |
| E | Ergá<br>D.1<br>D.2<br>Ergá                                           | inzende Daten zur experimentellen Untersuchung des Verdichters<br>Parametrisierung des elektrischen Antriebsstrang-Modells<br>Verdichtungscharakteristik bei Drehzahl- und Druckverhältnisvariation .                                                                                                                                                                                                                                                                      | <b>163</b><br>163<br>164<br><b>165</b>                      |
| E | Ergá<br>D.1<br>D.2<br>Ergá<br>E.1                                    | inzende Daten zur experimentellen Untersuchung des Verdichters<br>Parametrisierung des elektrischen Antriebsstrang-Modells<br>Verdichtungscharakteristik bei Drehzahl- und Druckverhältnisvariation .<br>inzende Daten zur Validierung des Verdichtermodells                                                                                                                                                                                                               | <b>163</b><br>163<br>164<br><b>165</b>                      |
| E | <b>Erg</b><br>D.1<br>D.2<br><b>Erg</b><br>E.1<br>E.2                 | inzende Daten zur experimentellen Untersuchung des Verdichters       .         Parametrisierung des elektrischen Antriebsstrang-Modells       .         Verdichtungscharakteristik bei Drehzahl- und Druckverhältnisvariation       .         inzende Daten zur Validierung des Verdichtermodells       .         Kolbenringmodell       .       .         Vertilmodell       .       .                                                                                    | <b>163</b><br>163<br>164<br><b>165</b><br>165<br>165        |
| E | <b>Ergi</b><br>D.1<br>D.2<br><b>Ergi</b><br>E.1<br>E.2<br>E.3        | inzende Daten zur experimentellen Untersuchung des Verdichters       .         Parametrisierung des elektrischen Antriebsstrang-Modells       .         Verdichtungscharakteristik bei Drehzahl- und Druckverhältnisvariation       .         inzende Daten zur Validierung des Verdichtermodells       .         Kolbenringmodell       .       .         Vertilmodell       .       .         Sauggasaufheizung       .       .                                          | <b>163</b><br>163<br>164<br><b>165</b><br>165<br>166<br>167 |
| E | <b>Ergi</b><br>D.1<br>D.2<br><b>Ergi</b><br>E.1<br>E.2<br>E.3<br>E.4 | inzende Daten zur experimentellen Untersuchung des Verdichters       .         Parametrisierung des elektrischen Antriebsstrang-Modells       .         Verdichtungscharakteristik bei Drehzahl- und Druckverhältnisvariation       .         inzende Daten zur Validierung des Verdichtermodells       .         Kolbenringmodell       .       .         Vertilmodell       .       .         Sauggasaufheizung       .       .         Bewertungsgrößen       .       . | <b>163</b><br>163<br>164<br><b>165</b><br>165<br>166<br>167 |

# Abbildungsverzeichnis

| 2.1  | Verschaltungsschema und Prozessverlauf einer PKW-CO <sub>2</sub> -Klimaanlage | 8  |
|------|-------------------------------------------------------------------------------|----|
| 2.2  | Kältemittelverdichter-Bauarten nach Kaiser [76] und Süß [74]                  | 9  |
| 2.3  | Schema und Leckagepfade eines Scrollverdichters                               | 10 |
| 2.4  | Schema eines Pkw-CO <sub>2</sub> -Taumelscheibenverdichters                   | 13 |
| 2.5  | Idealer einstufiger Verdichtungsprozess eines Kolbenverdichters               | 14 |
| 2.6  | Realer einstufiger Verdichtungsprozess eines Kolbenverdichters                | 15 |
| 2.7  | Schema eines elektrischen drehzahlgeregelten Antriebsstranges                 | 20 |
| 2.8  | Strickbeck-Kurve für verschiedene Reibungszustände                            | 22 |
| 3.1  | Fluid- und Wärmeströme für ein Kontrollvolumen des Simulationsmodells .       | 29 |
| 3.2  | Strukturdiagramm des 0D-/1D-Simulationsmodells                                | 30 |
| 3.3  | Schema der Wärmeübergangsbedingungen am Ventildeckel                          | 33 |
| 3.4  | Schema des Saug- und Druckventils                                             | 34 |
| 3.5  | Geometrische Parametrisierung der Triebwerkskonfiguration                     | 37 |
| 3.6  | Gleitsteinverkippung an der Taumelscheibe                                     | 40 |
| 3.7  | Kräftegleichgewicht am verkippten Kolben                                      | 41 |
| 3.8  | Kräftegleichgewicht an der Antriebswelle                                      | 45 |
| 3.9  | Plattennormales Abheben im flüssigkeitsgefüllten Spalt                        | 51 |
| 4.1  | Anlagenverschaltung des Verdichterprüfstandes mit Kreislaufzuständen          | 54 |
| 4.2  | Prozessschema des Verdichterpüfstandes                                        | 55 |
| 4.3  | Positionierung der Hall-Schalter im Stator des E-Motors                       | 56 |
| 4.4  | Kolbenhub-Drehwinkel-Kalibrierung des Hall-Schalters U                        | 57 |
| 4.5  | Drehungleichförmigkeit eines elektrisch angetriebenen Verdichters             | 58 |
| 4.6  | Referenzpunkte der Flankenerkennung mit Abgleich der Kolben-OT-Lage .         | 58 |
| 4.7  | Wheatston'sche Vollbrücke zur Druckmessung mit Temperaturmessung              | 59 |
| 4.8  | Druck- und Temperatureinfluss auf die Drucksensorkennline                     | 60 |
| 4.9  | Anlagenverschaltung der Wirkungsgradmessung                                   | 61 |
| 5.1  | Indikatordiagramme für fünf Zylinder bei Drehzahlvariation                    | 65 |
| 5.2  | Indikatordiagramme für Zylinder 3 bei OCR-Variation                           | 69 |
| 5.3  | Winkelversatz des Schließzeitpunktes des Saug- und Druckventils               | 70 |
| 5.4  | Indikatordiagramme für Zylinder 3 bei Betriebspunktvariation                  | 71 |
| 5.5  | Winkelversatz für das Ventilschließen aufgrund von Ventilspätschlüssen        | 72 |
| 5.6  | Zylinder- und Kammerdruckverläufe für Betriebspunkt B                         | 73 |
| 5.7  | Detailansichten Zylinder- und Kammerdruckverläufe für Betriebspunkt B .       | 74 |
| 5.8  | Blowby-Massenstrom für die Betriebspunkte B und D                             | 76 |
| 5.9  | Experimentell ermittelte Leckagemassenströme für die Ventile                  | 78 |
| 5.10 | Wirkungsgrad-Charakterisierung der Leistungselektronik                        | 79 |
| 5.11 | Wirkungsgrad-Charakterisierung des E-Motors                                   | 80 |
| 5.12 | Wirkungsgrad-Charakterisierung des Antriebsstranges                           | 81 |

| 5.13        | Stutzen- und Kammerliefergrad bei Betriebspunktvariation                        | 82  |
|-------------|---------------------------------------------------------------------------------|-----|
| 5.14        | Sauggasaufheizung bei Betriebspunktvariation                                    | 83  |
| 5.15        | Teilliefergrad durch Sauggasaufheizung bei Betriebspunktvariation               | 84  |
| 5.16        | Zylinderfüllgrad bei Betriebspunktvariation                                     | 85  |
| 5.17        | Details der Indikatordiagramme für Zylinder 3 bei Drehzahlvariation             | 86  |
| 5.18        | Indizierter isentroper Gütegrad bei Betriebspunktvariation                      | 87  |
| 5.19        | Klemmengütegrad bei Betriebspunktvariation                                      | 89  |
| 6.1         | Vergleich unterschiedlicher Simulationsansätze übertragener Wärmestrom .        | 92  |
| 6.2         | Relative Reibleistungsabweichung unterschiedlicher Simulationsansätze           | 95  |
| 6.3         | Reibleistungsanteile anhand des 0D-/1D-Simulationsmodells                       | 96  |
| 6.4         | Vergleich der Indikatordiagramme Simulation/Experiment                          | 97  |
| 6.5         | Vergleich des Ventilspätschlussverhaltens Simulation/Experiment                 | 98  |
| 6.6         | Vergleich des Stutzen-Liefergrades Simulation/Experiment                        | 100 |
| 6.7         | Vergleich des indizierten isentropen Gütegrades Simulation/Experiment           | 101 |
| 6.8         | Vergleich des Klemmengütegrades Simulation/Experiment                           | 102 |
| 7.1         | Verlustanteil des Klemmengütegrades aufgrund von elektrischen Verlusten .       | 104 |
| 7.2         | Verlustanteil des Klemmengütegrades aufgrund von Reibungsverlusten              | 106 |
| 7.3         | Verlustanteil des Klemmengütegrades aufgrund von Wärmeübertragung               | 107 |
| 7.4         | Verlustanteil des Klemmengütegrades aufgrund von Leckageverlusten               | 108 |
| 7.5         | Verlustanteil des Klemmengütegrades aufgrund von Ventilverlusten                | 110 |
| 7.6         | Relative Verlustanteile des Klemmengütegrades anhand der Simulation             | 112 |
| A.1         | Relativer Versatz zwischen idealem und realem Kolben-OT                         | 137 |
| A.2         | Standardmessunsicherheit der indizierten Arbeit bei Betriebspunktvariation      | 138 |
| A.3         | Standardmessunsicherheit des Füllgrades bei Betriebspunktvariation              | 145 |
| <b>B</b> .1 | Leckagemassenstrom am Kolbenring-Stoßspiel und an der Kolbenringnut             | 152 |
| B.2         | Kolbenring-Geometrie im gespannten und ungespannten Zustand                     | 153 |
| B.3         | Dampfdruck in Abhängigkeit von der Temperatur für CO <sub>2</sub> -Öl-Gemische  | 155 |
| B.4         | Viskosität in Abhängigkeit von der Temperatur für CO <sub>2</sub> -Öl-Gemische  | 155 |
| B.5         | Stoffdichte in Abhängigkeit von der Temperatur für CO <sub>2</sub> -Öl-Gemische | 156 |
| B.6         | Ersatzparameter des Saugventils                                                 | 157 |
| <b>B.</b> 7 | Ersatzparameter des Saugventils                                                 | 158 |
| B.8         | Ersatzparameter des Druckventils                                                | 159 |
| B.9         | Ersatzparameter des Druckventils                                                | 160 |
| C 1         | Anlagenverschaltung zur Leckageuntersuchung an den Kolbenringen                 | 161 |
| $C_{2}$     | Verschiedener Messnrinzinien der Leckagemessung an den Kolbenringen             | 162 |
| C.3         | Anlagenverschaltung zur Leckageuntersuchung an den Ventilen                     | 162 |
| D.1         | Indizierter isentroper Gütegrad bei Betriebspunktvariation                      | 164 |
| D.2         | Klemmengütegrad Gütegrad bei Betriebspunktvariation                             | 164 |
|             | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                           |     |
| E.1         | Vergleich des Kolbenring-Leckagemassenstromes Simulation/Experiment             | 165 |

| E.3 | Vergleich des Saugventil-Spätschlussverhaltens Simulation/Experiment | 166 |
|-----|----------------------------------------------------------------------|-----|
| E.4 | Vergleich der Sauggasaufheizung Simulation/Experiment                | 167 |
| E.5 | Vergleich des kammerbezogenen Liefergrades Simulation/Experiment     | 168 |
| E.6 | Vergleich des Zylinderfüllgrades Simulation/Experiment               | 168 |
| E.7 | Vergleich des Fördermassenstromes Simulation/Experiment              | 169 |
| E.8 | Vergleich der indizierten Leistung Simulation/Experiment             | 169 |
| E.9 | Vergleich der elektrischen Leistung Simulation/Experiment            | 170 |

## Tabellenverzeichnis

| 2.1         | Übersicht verschiedener Bauweisen von Axialkolbenverdichtern nach [101]                       | 12  |
|-------------|-----------------------------------------------------------------------------------------------|-----|
| 2.2         | Komponenten des Schadraumes am Zylinder mit Beitragsanteilen                                  | 18  |
| 5.1         | Betriebspunktmatrix für die Vermessung eines Taumelscheibenverdichters .                      | 63  |
| 5.2         | Erweiterte Standardmessunsicherheit der Kolben-OT-Bestimmung                                  | 64  |
| A.1         | Szenarien der OT-Abweichung zwischen dem realen und idealen Kolben-OT                         | 137 |
| A.2         | Korrekturfaktoren Drehzahl und Druckverhältnis                                                | 139 |
| A.3         | Korrekturfaktoren Drehzahl und Druckverhältnis                                                | 145 |
| A.4         | Korrekturfaktoren Drehzahl und Druckverhältnis                                                | 147 |
| A.5         | Erweiterungsfaktoren für die erweitere Standardmessunsicherheit                               | 148 |
| A.6         | Verwendete Messinstrumente mit Angabe der Messunsicherheit                                    | 149 |
| <b>B</b> .1 | Wärmeübergangsbeziehungen am Zylinder nach Disconzi et al. [29]                               | 151 |
| B.2         | Parameter für ein Öl-CO <sub>2</sub> -Gemisch mit dem Öl Zerol <sup>®</sup> RFL 68-EP [124] . | 156 |
| D.1         | Koeffizienten zur Charakterisierung des elektrischen Antriebsstranges                         | 163 |

# Symbolverzeichnis

#### Lateinische Formelzeichen

| aKoeffizient/Grenzabweichung/Parameter-BMagnetische FlussdichteTbKoeffizient/Parameter-bBreitembDämpfungskonstantekg s <sup>-1</sup> CKorrekturfaktor-cBeiwert/Parameter-cFedersteifigkeitNm <sup>-1</sup> cSpezifische WärmekapazitätJkg <sup>-1</sup> K <sup>-1</sup> dDurchmessermEEnergieJFKraftN $\vec{F}$ KraftvektorNfFunktion-f(Dreh-)FrequenzHz $\vec{f}$ Frequenzänderung $1/s^2$ $\vec{f}$ Richtungsvektor-HAnzahl-hHöhemhSpezifische EnthalpieJkg <sup>-1</sup> I(Phasen-)stromA $\hat{i}$ Azgenblickswert des StromesA $i$ Augenblickswert des StromesA $i$ Augenblickswert des StromesA $i$ Massekg $m$ Massekg $m$ Massenstromkg s <sup>-1</sup> $n$ NuNufleit-Zahl- $n$ NuNufleit-Zahl- $n$ Polytropenexponent/Anzahl- $n$ Polytropenexponent/Anzahl- $n$ Polytropenexponent/Anzahl- $n$ Discentration- $p$ LeistungWit $p$ Decisiton- $p$ LeistungWit <th>Α</th> <th>Fläche</th> <th>m<sup>2</sup></th> | Α         | Fläche                                | m <sup>2</sup>              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------|-----------------------------|
| BMagnetische FlussdichteTbKoeffizient/Parameter-bBreitembDämpfungskonstantekg s <sup>-1</sup> CKorrekturfaktor-cBeiwert/Parameter-cSpezifische WärmekapazitätJkg <sup>-1</sup> K <sup>-1</sup> dDurchmessermEEnergieJFKraftNfFunktion-f(Dreh-)FrequenzHzjFrequenzänderung1/s²fRichtungsvektor-HAnzahl-hHöhemhSpezifische EnthalpieJkg <sup>-1</sup> I(Phasen-)stromAiAnzahl-iAugenblickswert des StromesAiAnzahl-iMugneblickswert des StromesAiAnzahl-iMugneblickswert des StromesAiMugneblickswert d                                                                                     | а         | Koeffizient/Grenzabweichung/Parameter | _                           |
| bKoeffizient/Parameter-bBreitembDämpfungskonstantekg s <sup>-1</sup> CKorrekturfaktor-cBeiwert/Parameter-cFedersteifigkeitNm <sup>-1</sup> cSpezifische WärmekapazitätJkg <sup>-1</sup> K <sup>-1</sup> dDurchmessermEEnergieJFKraftN $\vec{F}$ KraftvektorNfFunktion-f(Dreh-)FrequenzHz $\vec{f}$ Richtungsvektor-HAnzahl-hHöhemhSpezifische EnthalpieJkg <sup>-1</sup> I(Phasen-)stromA $\hat{f}$ Scheitelwert des StromesA $i$ Augenblickswert des StromesA $i$ Augenblickswert des StromesA $k$ Erfahrungswett/Erweiterungsfaktor- $l$ (Charakteristische) LängemMDrehmomentNmmModulationsgrad/Parameter-nPolytropenexponent/Anzahl-NuNußelt-Zahl- $P$ LeistungW $\vec{p}$ Desitingenel/tere-                                                                                                                                                                                                                        | В         | Magnetische Flussdichte               | Т                           |
| bBreitembDämpfungskonstantekg s^{-1}CKorrekturfaktor-cBeiwert/Parameter-cFedersteifigkeitNm <sup>-1</sup> cSpezifische WärmekapazitätJkg^{-1}K^{-1}dDurchmessermEEnergieJFKraftN $\vec{F}$ KraftvektorNfFunktion-f(Dreh-)FrequenzHzjFrequenzänderung1/s² $\vec{f}$ Richtungsvektor-HAnzahl-hHöhemhSpezifische EnthalpieJkg <sup>-1</sup> I(Phasen-)stromA $\hat{i}$ Scheitelwert des StromesA $i$ Augenblickswert des StromesA $k$ Erfahrungswett/Erweiterungsfaktor-l(Charakteristische) LängemMDrehmomentNmmModulationsgrad/Parameter-nPolytropenexponent/Anzahl-NuNußelt-Zahl- $P$ LeistungW                                                                                                                                                                                                                                                                                                                          | b         | Koeffizient/Parameter                 | _                           |
| bDämpfungskonstantekg s <sup>-1</sup> CKorrekturfaktor-cBeiwert/Parameter-cFedersteifigkeitNm <sup>-1</sup> cSpezifische WärmekapazitätJkg <sup>-1</sup> K <sup>-1</sup> dDurchmessermEEnergieJFKraftNfFunktion-f(Dreh-)FrequenzHzjFrequenzänderung $1/s^2$ fRichtungsvektor-HAnzahl-hHöhemhSpezifische EnthalpieJkg <sup>-1</sup> I(Phasen-)stromAiAugenblickswert des StromesAiAugenblickswert des StromesAkErfahrungswet/Erweiterungsfaktor-l(Charakteristische) LängemmMassekgmMassenstromkg s <sup>-1</sup> nPolytropenexponent/Anzahl-nPolytropenexponent/Anzahl-nPolytropenexponent/Anzahl-PLeistungWäPolytropenexponent/Anzahl-PLeistungW                                                                                                                                                                                                                                                                        | b         | Breite                                | m                           |
| CKorekturfaktor-cBeiwert/Parameter-cFedersteifigkeitNm <sup>-1</sup> cSpezifische WärmekapazitätJkg <sup>-1</sup> K <sup>-1</sup> dDurchmessermEEnergieJFKraftN $\vec{F}$ KraftvektorNfFunktion-f(Dreh-)FrequenzHzjFrequenzänderung1/s² $\vec{f}$ Richtungsvektor-HAnzahl-hHöhemhSpezifische EnthalpieJkg <sup>-1</sup> I(Phasen-)stromA $\hat{i}$ Scheitelwert des StromesA $i$ Augenblickswert des StromesA $i$ Augenblickswert des StromesA $k$ Erfahrungswert/Erweiterungsfaktor- $l$ (Charakteristische) LängemMDrehmomentNmmMassekg $\dot{m}$ Massenstromkgs <sup>-1</sup> $n$ Polytropenexponent/Anzahl- $Nu$ Nußelt-Zahl- $OCR$ Ölzirkulationsrate- $P$ LeistungW- $\vec{p}$ Desitionguelter-                                                                                                                                                                                                                    | b         | Dämpfungskonstante                    | $kgs^{-1}$                  |
| $c$ Beiwert/Parameter $ c$ FedersteifigkeitNm <sup>-1</sup> $c$ Spezifische WärmekapazitätJkg <sup>-1</sup> K <sup>-1</sup> $d$ Durchmesserm $d$ Durchmesserm $E$ EnergieJ $F$ KraftN $\vec{F}$ KraftvektorN $f$ Funktion $ f$ (Dreh-)FrequenzHz $j$ Frequenzänderung $1/s^2$ $\vec{f}$ Richtungsvektor $ H$ Anzahl $ h$ Höhem $h$ Spezifische EnthalpieJkg <sup>-1</sup> $I$ (Phasen-)stromA $i$ Augenblickswert des StromesA $i$ Augenblickswert des StromesA $i$ Augenblickswert des StromesA $k$ Erfahrungswett/Erweiterungsfaktor $ l$ (Charakteristische) Längem $M$ DrehmomentNm $m$ Massekg $m$ Massenstromkgs <sup>-1</sup> $n$ Polytropenexponent/Anzahl $ Nu$ Nußelt-Zahl $ OCR$ Ölzirkulationsrate $ P$ Leistung $W$                                                                                                                                                                                         | С         | Korrekturfaktor                       | _                           |
| $c$ Federsteifigkeit $Nm^{-1}$ $c$ Spezifische Wärmekapazität $Jkg^{-1}K^{-1}$ $d$ Durchmesserm $E$ EnergieJ $F$ KraftN $\vec{F}$ KraftvektorN $f$ Funktion- $f$ (Dreh-)FrequenzHz $\dot{f}$ Frequenzänderung $1/s^2$ $\vec{f}$ Richtungsvektor- $H$ Anzahl- $h$ Höhem $h$ Spezifische Enthalpie $Jkg^{-1}$ $I$ (Phasen-)stromA $\hat{i}$ Anzahl- $i$ Augenblickswert des StromesA $i$ Augenblickswert des StromesA $k$ Erfahrungswert/Erweiterungsfaktor- $l$ (Charakteristische) Längem $M$ DrehmomentNm $m$ Massekg $m$ Massenstromkgs^{-1} $n$ Polytropenexponent/Anzahl- $n$ Polytropenexponent/Anzahl- $n$ Polytropenexponent/Anzahl- $p$ LeistungW                                                                                                                                                                                                                                                                | с         | Beiwert/Parameter                     | _                           |
| $c$ Spezifische Wärmekapazität $Jkg^{-1}K^{-1}$ $d$ Durchmesserm $E$ EnergieJ $F$ KraftN $\vec{F}$ KraftvektorN $f$ Funktion- $f$ (Dreh-)FrequenzHz $\dot{f}$ Frequenzänderung $1/s^2$ $\vec{f}$ Richtungsvektor- $H$ Anzahl- $h$ Höhem $h$ Spezifische Enthalpie $Jkg^{-1}$ $I$ (Phasen-)stromA $\hat{i}$ Scheitelwert des StromesA $i$ Augenblickswert des StromesA $i$ Augenblickswert/Erweiterungsfaktor- $l$ (Charakteristische) Längem $M$ DrehmomentNm $m$ Massekg $m$ Massenstromkgs^{-1} $n$ Polytropenexponent/Anzahl- $n$ Polytropenexponent/Anzahl- $n$ Polytropenexponent/Anzahl- $p$ LeistungW $p$ LeistungW                                                                                                                                                                                                                                                                                               | с         | Federsteifigkeit                      | $\mathrm{N}\mathrm{m}^{-1}$ |
| dDurchmessermEEnergieJFKraftN $\vec{F}$ KraftvektorNfFunktion-f(Dreh-)FrequenzHz $\dot{f}$ Frequenzänderung $1/s^2$ $\vec{f}$ Richtungsvektor-HAnzahl-hHöhemhSpezifische EnthalpieJkg <sup>-1</sup> I(Phasen-)stromA $\hat{l}$ Scheitelwert des StromesA $i$ Augenblickswert des StromesA $k$ Erfahrungswert/Erweiterungsfaktor-l(Charakteristische) LängemMDrehmomentNmmMassekg $\dot{m}$ Massenstromkgs <sup>-1</sup> nPolytropenexponent/Anzahl-NuNußelt-Zahl- $QCR$ Ölzirkulationsrate- $P$ LeistungW                                                                                                                                                                                                                                                                                                                                                                                                                | с         | Spezifische Wärmekapazität            | $J k g^{-1} K^{-1}$         |
| $E$ EnergieJ $F$ KraftN $\vec{F}$ KraftvektorN $f$ Funktion $ f$ (Dreh-)FrequenzHz $\dot{f}$ Frequenzänderung $1/s^2$ $\vec{f}$ Richtungsvektor $ H$ Anzahl $ h$ Höhem $h$ Spezifische EnthalpieJkg <sup>-1</sup> $I$ (Phasen-)stromA $\hat{l}$ Scheitelwert des StromesA $i$ Augenblickswert des StromesA $i$ Augenblickswert des StromesA $k$ Erfahrungswert/Erweiterungsfaktor $ l$ (Charakteristische) Längem $M$ DrehmomentNm $m$ Massekg $\dot{m}$ Massenstromkgs <sup>-1</sup> $n$ Polytropenexponent/Anzahl $ Nu$ Nußelt-Zahl $ OCR$ Ölzirkulationsrate $ P$ LeistungW                                                                                                                                                                                                                                                                                                                                           | d         | Durchmesser                           | m                           |
| $F$ KraftN $\vec{F}$ KraftvektorN $f$ Funktion $ f$ (Dreh-)FrequenzHz $\hat{f}$ Frequenzänderung $1/s^2$ $\hat{f}$ Richtungsvektor $ H$ Anzahl $ h$ Höhem $h$ Spezifische EnthalpieJkg <sup>-1</sup> $I$ (Phasen-)stromA $\hat{I}$ Scheitelwert des StromesA $i$ Augenblickswert des StromesA $i$ Augenblickswert des StromesA $k$ Erfahrungswert/Erweiterungsfaktor $ l$ (Charakteristische) Längem $M$ DrehmomentNm $m$ Modulationsgrad/Parameter $ m$ Massekg $\dot{m}$ Muselt-Zahl $ Nu$ Nußelt-Zahl $ OCR$ Ölzirkulationsrate $ P$ LeistungW                                                                                                                                                                                                                                                                                                                                                                        | Ε         | Energie                               | J                           |
| $\vec{F}$ KraftvektorN $f$ Funktion $ f$ (Dreh-)FrequenzHz $\hat{f}$ Frequenzänderung $1/s^2$ $\hat{f}$ Richtungsvektor $ H$ Anzahl $ h$ Höhem $h$ Spezifische EnthalpieJkg <sup>-1</sup> $I$ (Phasen-)stromA $\hat{I}$ Scheitelwert des StromesA $i$ Augenblickswert des StromesA $i$ Augenblickswert des StromesA $k$ Erfahrungswert/Erweiterungsfaktor $ l$ (Charakteristische) Längem $M$ DrehmomentNm $m$ Massenstromkg s^{-1} $n$ Nussenstromkg s^{-1} $n$ Nuselt-Zahl $ Nu$ Nußelt-Zahl $ OCR$ Ölzirkulationsrate $ \vec{P}$ LeistungW                                                                                                                                                                                                                                                                                                                                                                            | F         | Kraft                                 | Ν                           |
| $f$ Funktion $ f$ (Dreh-)FrequenzHz $\dot{f}$ Frequenzänderung $1/s^2$ $\vec{f}$ Richtungsvektor $ H$ Anzahl $ h$ Höhem $h$ Spezifische EnthalpieJkg <sup>-1</sup> $I$ (Phasen-)stromA $\hat{l}$ Scheitelwert des StromesA $i$ Anzahl $ i$ Augenblickswert des StromesA $i$ Augenblickswert des StromesA $k$ Erfahrungswert/Erweiterungsfaktor $ l$ (Charakteristische) Längem $M$ DrehmomentNm $m$ Massekg $m$ Massekg $m$ Nußelt-Zahl $ OCR$ Ölzirkulationsrate $ P$ LeistungW                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\vec{F}$ | Kraftvektor                           | Ν                           |
| $f$ (Dreh-)FrequenzHz $\dot{f}$ Frequenzänderung $1/s^2$ $\vec{f}$ Richtungsvektor $ H$ Anzahl $ h$ Höhem $h$ Spezifische EnthalpieJkg <sup>-1</sup> $I$ (Phasen-)stromA $\hat{l}$ Scheitelwert des StromesA $i$ Anzahl $ i$ Augenblickswert des StromesA $i$ Augenblickswert des StromesA $i$ Augenblickswert des StromesA $k$ Erfahrungswert/Erweiterungsfaktor $ l$ (Charakteristische) Längem $M$ DrehmomentNm $m$ Massekg $\dot{m}$ Massenstromkg s^{-1} $n$ Polytropenexponent/Anzahl $ Nu$ Nußelt-Zahl $ OCR$ Ölzirkulationsrate $ P$ LeistungW                                                                                                                                                                                                                                                                                                                                                                   | f         | Funktion                              | _                           |
| $f$ Frequenzänderung $1/s^2$ $f$ Richtungsvektor $ H$ Anzahl $ h$ Höhem $h$ Spezifische EnthalpieJkg <sup>-1</sup> $I$ (Phasen-)stromA $\hat{I}$ Scheitelwert des StromesA $\hat{i}$ Anzahl $ i$ Augenblickswert des StromesA $i$ Augenblickswert des StromesA $k$ Erfahrungswert/Erweiterungsfaktor $ l$ (Charakteristische) Längem $M$ DrehmomentNm $m$ Modulationsgrad/Parameter $ m$ Massekgg s^{-1} $n$ Polytropenexponent/Anzahl $ Nu$ Nußelt-Zahl $ OCR$ Ölzirkulationsrate $ P$ LeistungW                                                                                                                                                                                                                                                                                                                                                                                                                        | f         | (Dreh-)Frequenz                       | Hz                          |
| $\vec{f}$ Richtungsvektor- $H$ Anzahl- $h$ Höhem $h$ Spezifische EnthalpieJkg <sup>-1</sup> $l$ (Phasen-)stromA $\hat{l}$ Scheitelwert des StromesA $\hat{i}$ Anzahl- $i$ Augenblickswert des StromesA $i$ Augenblickswert des StromesA $k$ Erfahrungswert/Erweiterungsfaktor- $l$ (Charakteristische) Längem $M$ DrehmomentNm $m$ Modulationsgrad/Parameter- $m$ Massekg $\dot{m}$ Massenstromkg s^{-1} $n$ Polytropenexponent/Anzahl- $Nu$ Nußelt-Zahl- $OCR$ Ölzirkulationsrate- $P$ LeistungW                                                                                                                                                                                                                                                                                                                                                                                                                        | ŕ         | Frequenzänderung                      | $1/s^2$                     |
| $H$ Anzahl $ h$ Höhem $h$ Spezifische EnthalpieJkg <sup>-1</sup> $l$ (Phasen-)stromA $\hat{l}$ Scheitelwert des StromesA $\hat{i}$ Anzahl $ i$ Augenblickswert des StromesA $k$ Erfahrungswert/Erweiterungsfaktor $ l$ (Charakteristische) Längem $M$ DrehmomentNm $m$ Modulationsgrad/Parameter $ m$ Massekg $m$ Massenstromkg s^{-1} $n$ Polytropenexponent/Anzahl $ Nu$ Nußelt-Zahl $ OCR$ Ölzirkulationsrate $ P$ LeistungW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\vec{f}$ | Richtungsvektor                       | _                           |
| hHöhemhHöhemhSpezifische EnthalpieJkg <sup>-1</sup> I(Phasen-)stromA $\hat{I}$ Scheitelwert des StromesA $i$ Anzahl-iAugenblickswert des StromesA $K_0$ Besselfunktion 2. Art (0-ter Ordnung)- $k$ Erfahrungswert/Erweiterungsfaktor- $l$ (Charakteristische) Längem $M$ DrehmomentNm $m$ Modulationsgrad/Parameter- $m$ Massekg $\dot{m}$ Massenstromkg s^{-1} $n$ Polytropenexponent/Anzahl- $Nu$ Nußelt-Zahl- $OCR$ Ölzirkulationsrate- $P$ LeistungW                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J<br>H    | Anzahl                                | _                           |
| hSpezifische Enthalpie $Jkg^{-1}$ $h$ Spezifische Enthalpie $Jkg^{-1}$ $I$ (Phasen-)strom $A$ $\hat{I}$ Scheitelwert des Stromes $A$ $i$ Anzahl $ i$ Augenblickswert des Stromes $A$ $k$ Erfahrungswert/Erweiterungsfaktor $ l$ (Charakteristische) Länge $m$ $M$ DrehmomentNm $m$ Modulationsgrad/Parameter $ m$ Massekg $m$ Massenstromkg s^{-1} $n$ Polytropenexponent/Anzahl $ Nu$ Nußelt-Zahl $ OCR$ Ölzirkulationsrate $ P$ LeistungW                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | h         | Höhe                                  | m                           |
| I(Phasen-)stromA $\hat{I}$ (Phasen-)stromA $\hat{I}$ Scheitelwert des StromesA $i$ Anzahl- $i$ Augenblickswert des StromesA $K_0$ Besselfunktion 2. Art (0-ter Ordnung)- $k$ Erfahrungswert/Erweiterungsfaktor- $l$ (Charakteristische) Längem $M$ DrehmomentNm $m$ Modulationsgrad/Parameter- $m$ Massekg $\dot{m}$ Massenstromkg s^{-1} $n$ Polytropenexponent/Anzahl- $Nu$ Nußelt-Zahl- $OCR$ Ölzirkulationsrate- $P$ LeistungW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | h         | Spezifische Enthalpie                 | $Jkg^{-1}$                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I         | (Phasen-)strom                        | A                           |
| iAnzahl-iAugenblickswert des StromesA $K_0$ Besselfunktion 2. Art (0-ter Ordnung)-kErfahrungswert/Erweiterungsfaktor-l(Charakteristische) LängemMDrehmomentNmmModulationsgrad/Parameter-mMassekg $\dot{m}$ Polytropenexponent/Anzahl-NuNußelt-Zahl-OCRÖlzirkulationsrate-PLeistungW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Î         | Scheitelwert des Stromes              | А                           |
| iAugenblickswert des StromesA $K_0$ Besselfunktion 2. Art (0-ter Ordnung)-kErfahrungswert/Erweiterungsfaktor-l(Charakteristische) LängemMDrehmomentNmmModulationsgrad/Parameter-mMassekg $\dot{m}$ Massenstromkg s^{-1}nPolytropenexponent/Anzahl-NuNußelt-Zahl-OCRÖlzirkulationsrate-PLeistungW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i         | Anzahl                                | _                           |
| $K_0$ Besselfunktion 2. Art (0-ter Ordnung) $ k$ Erfahrungswert/Erweiterungsfaktor $ l$ (Charakteristische) Längem $M$ DrehmomentNm $m$ Modulationsgrad/Parameter $ m$ Massekg $\dot{m}$ Massenstromkg s^{-1} $n$ Polytropenexponent/Anzahl $ Nu$ Nußelt-Zahl $ OCR$ Ölzirkulationsrate $ P$ LeistungW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | i         | Augenblickswert des Stromes           | А                           |
| kErfahrungswert/Erweiterungsfaktor-l(Charakteristische) LängemMDrehmomentNmmModulationsgrad/Parameter-mMassekg $\dot{m}$ Massenstromkg s^{-1}nPolytropenexponent/Anzahl-NuNußelt-Zahl-OCRÖlzirkulationsrate-PLeistungW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $K_0$     | Besselfunktion 2. Art (0-ter Ordnung) | _                           |
| l(Charakteristische) LängemMDrehmomentNmmModulationsgrad/Parameter-mMassekg $\dot{m}$ Massenstromkg s^{-1}nPolytropenexponent/Anzahl-NuNußelt-Zahl-OCRÖlzirkulationsrate-PLeistungW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ĸ         | Erfahrungswert/Erweiterungsfaktor     | _                           |
| $M$ DrehmomentN m $m$ Modulationsgrad/Parameter $ m$ Massekg $m$ Massenstromkg s^{-1} $n$ Polytropenexponent/Anzahl $ Nu$ Nußelt-Zahl $ OCR$ Ölzirkulationsrate $ P$ LeistungW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l         | (Charakteristische) Länge             | m                           |
| $m$ Modulationsgrad/Parameter $ m$ Massekg $m$ Massenstromkg s^{-1} $n$ Polytropenexponent/Anzahl $ Nu$ Nußelt-Zahl $ OCR$ Ölzirkulationsrate $ P$ LeistungW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | М         | Drehmoment                            | Nm                          |
| $m$ Massekg $\dot{m}$ Massenstromkg s^{-1} $n$ Polytropenexponent/Anzahl $ Nu$ Nußelt-Zahl $ OCR$ Ölzirkulationsrate $ P$ LeistungW $\ddot{B}$ Bositionsuplator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | т         | Modulationsgrad/Parameter             | _                           |
| $\dot{m}$ Massenstromkg s^{-1} $n$ Polytropenexponent/Anzahl $ Nu$ Nußelt-Zahl $ OCR$ Ölzirkulationsrate $ P$ LeistungW $\ddot{P}$ Bositionsvalter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | т         | Masse                                 | kg                          |
| nPolytropenexponent/Anzahl-NuNuBelt-Zahl-OCRÖlzirkulationsrate-PLeistungWPBositionsupletor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ṁ         | Massenstrom                           | $kgs^{-1}$                  |
| NuNuBelt-Zahl-OCRÖlzirkulationsrate-PLeistungWPBositionsulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n         | Polytropenexponent/Anzahl             | -                           |
| OCRÖlzirkulationsrate–PLeistungWPBositionsulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nu        | Nußelt-Zahl                           | _                           |
| P Leistung W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OCR       | Ölzirkulationsrate                    | _                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Р         | Leistung                              | W                           |
| r rositionsvektor –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\vec{P}$ | Positionsvektor                       | _                           |

| pDruckPapPolpaaranzahl-PrPrandtl-Zahl- $\dot{Q}$ WärmestromWRWiderstand $\Omega$ RWärmeleitwiderstandKW <sup>-1</sup> rRadiusmrDifferenzieller WiderstandVA <sup>-1</sup> $r^*$ Radius der neutralen Faserm $Re$ Reynolds-Zahl-sSpezifische EntropieJK <sup>-1</sup> kg <sup>-1</sup> sDickemTTemperaturK $\tilde{T}$ Mittlere TemperaturK $\tilde{T}$ Phase/Erweiterte Standardmessunsicherheit-UPhase/Erweiterte Standardmessunsicherheit-UInnere EnergieJuLängemuAugenblickswert der SpannungVVPhase-      | $\dot{\vec{P}}$ | Geschwindigkeitsvektor                    | 1/s                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------|--------------------|
| $p$ Polpaaranzahl $ Pr$ Prandtl-Zahl $ \dot{Q}$ WärmestromW $R$ Widerstand $\Omega$ $R$ Wärmeleitwiderstand $KW^{-1}$ $r$ Radiusm $r$ Differenzieller Widerstand $VA^{-1}$ $r^*$ Radius der neutralen Faserm $Re$ Reynolds-Zahl $ s$ Spezifische Entropie $JK^{-1}kg^{-1}$ $s$ Dickem $T$ TemperaturK $\tilde{T}$ Mittlere TemperaturK $\tilde{T}$ Mittlere TemperaturV $U$ Phase/Erweiterte Standardmessunsicherheit $ U$ Längem $u$ Längem $u$ Augenblickswert der SpannungV $V$ Phase $-$                  | р               | Druck                                     | Pa                 |
| $Pr$ Prandtl-Zahl $ \dot{Q}$ WärmestromW $R$ Widerstand $\Omega$ $R$ WärmeleitwiderstandKW <sup>-1</sup> $r$ Radiusm $r$ Differenzieller WiderstandVA <sup>-1</sup> $r^*$ Radius der neutralen Faserm $Re$ Reynolds-Zahl- $s$ Spezifische EntropieJK <sup>-1</sup> kg <sup>-1</sup> $s$ Dickem $T$ TemperaturK $\tilde{T}$ Mittlere TemperaturK $\tilde{T}$ Ohase/Erweiterte Standardmessunsicherheit- $U$ Phase/Erweiterte Standardmessunsicherheit- $U$ Längem $u$ Augenblickswert der SpannungV $V$ Phase- | p               | Polpaaranzahl                             | _                  |
| $\dot{Q}$ WärmestromW $R$ Widerstand $\Omega$ $R$ Wärmeleitwiderstand $KW^{-1}$ $r$ Radiusm $r$ Differenzieller Widerstand $VA^{-1}$ $r^*$ Radius der neutralen Faserm $Re$ Reynolds-Zahl- $s$ Spezifische Entropie $JK^{-1}kg^{-1}$ $s$ Dickem $T$ TemperaturK $\tilde{T}$ Mittlere TemperaturK $t$ Zeits $U$ Phase/Erweiterte Standardmessunsicherheit- $U$ Innere EnergieJ $u$ Längem $u$ Standardmessunsicherheit- $u$ Augenblickswert der SpannungV $V$ Phase-                                           | Pr              | Prandtl-Zahl                              | _                  |
| $\tilde{R}$ Widerstand $\Omega$ $R$ Wärmeleitwiderstand $KW^{-1}$ $r$ Radiusm $r$ Differenzieller Widerstand $VA^{-1}$ $r^*$ Radius der neutralen Faserm $Re$ Reynolds-Zahl- $s$ Spezifische Entropie $JK^{-1}kg^{-1}$ $s$ Dickem $T$ TemperaturK $\tilde{T}$ Mittlere TemperaturK $\tilde{T}$ Mittlere TemperaturV $U$ Phase/Erweiterte Standardmessunsicherheit- $U$ Innere EnergieJ $u$ Längem $u$ Standardmessunsicherheit- $u$ Augenblickswert der SpannungV $V$ Phase-                                  | Ò               | Wärmestrom                                | W                  |
| $R$ Wärmeleitwiderstand $KW^{-1}$ $r$ Radiusm $r$ Differenzieller Widerstand $VA^{-1}$ $r^*$ Radius der neutralen Faserm $Re$ Reynolds-Zahl $ s$ Spezifische Entropie $JK^{-1}kg^{-1}$ $s$ Dickem $T$ TemperaturK $\tilde{T}$ Mittlere TemperaturK $t$ Zeits $U$ Phase/Erweiterte Standardmessunsicherheit $ U$ Innere EnergieJ $u$ Standardmessunsicherheit $ u$ Augenblickswert der SpannungV $V$ Phase $-$                                                                                                 | $\tilde{R}$     | Widerstand                                | Ω                  |
| $r$ Radiusm $r$ Differenzieller Widerstand $VA^{-1}$ $r^*$ Radius der neutralen Faserm $Re$ Reynolds-Zahl $ s$ Spezifische Entropie $JK^{-1}kg^{-1}$ $s$ Dickem $T$ TemperaturK $\tilde{T}$ Mittlere TemperaturK $t$ Zeits $U$ Phase/Erweiterte Standardmessunsicherheit $ U$ Innere EnergieJ $u$ Längem $u$ Standardmessunsicherheit $ u$ Augenblickswert der SpannungV $V$ Phase $-$                                                                                                                        | R               | Wärmeleitwiderstand                       | $KW^{-1}$          |
| $r$ Differenzieller Widerstand $VA^{-1}$ $r^*$ Radius der neutralen Faserm $Re$ Reynolds-Zahl- $s$ Spezifische Entropie $JK^{-1}kg^{-1}$ $s$ Dickem $T$ TemperaturK $\tilde{T}$ Mittlere TemperaturK $t$ Zeits $U$ Phase/Erweiterte Standardmessunsicherheit- $U$ Innere EnergieJ $u$ Längem $u$ Standardmessunsicherheit- $u$ Augenblickswert der SpannungV $V$ Phase-                                                                                                                                       | r               | Radius                                    | m                  |
| $r^*$ Radius der neutralen Faserm $Re$ Reynolds-Zahl $ s$ Spezifische Entropie $JK^{-1}kg^{-1}$ $s$ Dickem $T$ TemperaturK $\tilde{T}$ Mittlere TemperaturK $t$ Zeits $U$ Phase/Erweiterte Standardmessunsicherheit $ U$ Innere EnergieJ $u$ Längem $u$ Standardmessunsicherheit $ u$ Augenblickswert der SpannungV $V$ Phase $-$                                                                                                                                                                             | r               | Differenzieller Widerstand                | $VA^{-1}$          |
| $Re$ Reynolds-Zahl- $s$ Spezifische Entropie $JK^{-1}kg^{-1}$ $s$ Dickem $T$ TemperaturK $\tilde{T}$ Mittlere TemperaturK $\tilde{T}$ Zeits $U$ Phase/Erweiterte Standardmessunsicherheit- $U$ (Phasen-)spannungV $U$ Innere EnergieJ $u$ Längem $u$ Standardmessunsicherheit- $u$ Augenblickswert der SpannungV $V$ Phase-                                                                                                                                                                                   | $r^*$           | Radius der neutralen Faser                | m                  |
| sSpezifische Entropie $JK^{-1}kg^{-1}$ sDickemTTemperaturKTMittlere TemperaturKtZeitsUPhase/Erweiterte Standardmessunsicherheit-U(Phasen-)spannungVUInnere EnergieJuLängemuStandardmessunsicherheit-uAugenblickswert der SpannungVVPhase-                                                                                                                                                                                                                                                                     | Re              | Reynolds-Zahl                             | _                  |
| sDickemTTemperaturK $\tilde{T}$ Mittlere TemperaturK $\tilde{T}$ Mittlere TemperaturKtZeitsUPhase/Erweiterte Standardmessunsicherheit-U(Phasen-)spannungVUInnere EnergieJuLängemuStandardmessunsicherheit-uAugenblickswert der SpannungVVPhase-                                                                                                                                                                                                                                                               | S               | Spezifische Entropie                      | $JK^{-1}kg^{-1}$   |
| $T$ TemperaturK $\tilde{T}$ Mittlere TemperaturK $t$ Zeits $t$ Zeits $U$ Phase/Erweiterte Standardmessunsicherheit- $U$ (Phasen-)spannungV $U$ Innere EnergieJ $u$ Längem $u$ Standardmessunsicherheit- $u$ Augenblickswert der SpannungV $V$ Phase-                                                                                                                                                                                                                                                          | S               | Dicke                                     | m                  |
| $\tilde{T}$ Mittlere TemperaturK $t$ Zeits $U$ Phase/Erweiterte Standardmessunsicherheit- $U$ (Phasen-)spannungV $U$ Innere EnergieJ $u$ Längem $u$ Standardmessunsicherheit- $u$ Augenblickswert der SpannungV $V$ Phase-                                                                                                                                                                                                                                                                                    | Т               | Temperatur                                | K                  |
| tZeitsUPhase/Erweiterte Standardmessunsicherheit-U(Phasen-)spannungVUInnere EnergieJuLängemuStandardmessunsicherheit-uAugenblickswert der SpannungVVPhase-                                                                                                                                                                                                                                                                                                                                                    | $\tilde{T}$     | Mittlere Temperatur                       | K                  |
| UPhase/Erweiterte Standardmessunsicherheit-U(Phasen-)spannungVUInnere EnergieJuLängemuStandardmessunsicherheit-uAugenblickswert der SpannungVVPhase-                                                                                                                                                                                                                                                                                                                                                          | t               | Zeit                                      | s                  |
| U(Phasen-)spannungVUInnere EnergieJuLängemuStandardmessunsicherheit-uAugenblickswert der SpannungVVPhase-                                                                                                                                                                                                                                                                                                                                                                                                     | U               | Phase/Erweiterte Standardmessunsicherheit | _                  |
| UInnere EnergieJuLängemuStandardmessunsicherheit-uAugenblickswert der SpannungVVPhase-                                                                                                                                                                                                                                                                                                                                                                                                                        | U               | (Phasen-)spannung                         | V                  |
| uLängemuStandardmessunsicherheit-uAugenblickswert der SpannungVVPhase-                                                                                                                                                                                                                                                                                                                                                                                                                                        | U               | Innere Energie                            | J                  |
| uStandardmessunsicherheit-uAugenblickswert der SpannungVVPhase-                                                                                                                                                                                                                                                                                                                                                                                                                                               | и               | Länge                                     | m                  |
| uAugenblickswert der SpannungVVPhase-                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | и               | Standardmessunsicherheit                  | _                  |
| V Phase –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | и               | Augenblickswert der Spannung              | V                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V               | Phase                                     | _                  |
| V Volumen m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V               | Volumen                                   | m <sup>3</sup>     |
| $\dot{V}$ Volumenstrom $m^3/s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\dot{V}$       | Volumenstrom                              | $m^3/s$            |
| v Faktor –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | v               | Faktor                                    | _ ′                |
| v Geschwindigkeit ms <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | v               | Geschwindigkeit                           | $\mathrm{ms^{-1}}$ |
| W Phase –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W               | Phase                                     | _                  |
| W Arbeit J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W               | Arbeit                                    | J                  |
| w Relative Standardmessunsicherheit –                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | w               | Relative Standardmessunsicherheit         | _                  |
| w Strömungsgeschwindigkeit ms <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | w               | Strömungsgeschwindigkeit                  | $\mathrm{ms^{-1}}$ |
| w Dicke m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | w               | Dicke                                     | m                  |
| x Länge/Koordinate/Dicke m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | x               | Länge/Koordinate/Dicke                    | m                  |
| $\dot{x}$ Geschwindigkeit ms <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ż               | Geschwindigkeit                           | $\mathrm{ms^{-1}}$ |
| $\bar{x}$ Mittlere Geschwindigkeit ms <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x               | Mittlere Geschwindigkeit                  | $\mathrm{ms^{-1}}$ |
| $\ddot{x}$ Beschleunigung ms <sup>-2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ÿ               | Beschleunigung                            | $\mathrm{ms^{-2}}$ |
| y Länge/Koordinate m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y               | Länge/Koordinate                          | m                  |
| y Ergebnisgröße –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | v               | Ergebnisgröße                             | _                  |
| z Zylinderanzahl –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | z               | Zylinderanzahl                            | _                  |
| z Länge/Koordinate m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | z               | Länge/Koordinate                          | m                  |

#### Griechische Formelzeichen

| α                | Neigungswinkel                                    | rad                            |
|------------------|---------------------------------------------------|--------------------------------|
| α                | Wärmeübergangskoeffizient                         | ${ m W}{ m m}^{-2}{ m K}^{-1}$ |
| α                | Durchflusskennzahl                                | _                              |
| ά                | Winkelgeschwindigkeit                             | $rad s^{-1}$                   |
| ä                | Winkelbeschleunigung                              | $rad s^{-2}$                   |
| β                | Korrekturfaktor                                   | _                              |
| β                | Winkel                                            | rad                            |
| γ                | (Kipp-)Winkel                                     | rad                            |
| δ                | Relativer Druckverlust(-beiwert)                  | _                              |
| $\Delta$         | Differenz                                         | _                              |
| ε                | Leistungszahl/Schadraumanteil/Kompressibilität/   | _                              |
|                  | Dehnung                                           |                                |
| ζ                | (Druckverlust-)beiwert                            | _                              |
| η                | Wirkungsgrad/Gütegrad                             | _                              |
| η                | Dynamische Viskosität                             | Pas                            |
| κ                | Isentropenexponent                                | _                              |
| λ                | Liefergrad(-anteil)                               | _                              |
| λ                | Wärmeleitfähigkeit                                | ${ m W}{ m m}^{-1}{ m K}^{-1}$ |
| μ                | Zylinderfüllgrad/Reibungszahl/Leckagekoeffizient/ | _                              |
|                  | Schätzwert                                        |                                |
| $\mu'$           | Erweiterter Zylinderfüllgrad                      | _                              |
| v                | Kinematische Viskosität                           | $m^{2}s^{-1}$                  |
| ξ                | Empirischer Faktor                                | _                              |
| П                | Verdichtungsdruckverhältnis                       | _                              |
| ρ                | Stoffdichte                                       | kg/m <sup>3</sup>              |
| ρ                | Mittlere Stoffdichte                              | kg/m <sup>3</sup>              |
| σ                | Standardabweichung                                | _                              |
| $\varphi$        | Konstante                                         | _                              |
| $\varphi$        | (Phasen-)Winkel                                   | rad                            |
| $\dot{\phi}$     | Winkelgeschwindigkeit                             | $rad s^{-1}$                   |
| $\ddot{\varphi}$ | Winkelbeschleunigung                              | $rad s^{-2}$                   |
| Χ                | Hubspaltverhältnis                                | _                              |
| Ψ                | Realgasfaktor                                     | _                              |
| ω                | Massenanteil                                      | _                              |

#### Indizes

| 0    | Referenz/drehzahlabhängig                                               |
|------|-------------------------------------------------------------------------|
| 1    | Lastabhängig                                                            |
| a    | Position/außen                                                          |
| А    | Antrieb(-swelle)                                                        |
| AC   | Wechselspannung                                                         |
| aus  | Austrittszustand                                                        |
| В    | Brücke                                                                  |
| b    | Position/Dämpfung                                                       |
| c    | Position                                                                |
| char | Charakteristisch                                                        |
| D    | Durchlass/Düse                                                          |
| DB   | Druckbereich                                                            |
| DC   | Gleichspannung                                                          |
| DC,r | Gleichspannung unter Berücksichtigung geringfügiger Wechselspannungs-   |
|      | anteile                                                                 |
| Diss | Dissipation                                                             |
| DK   | Druckkammer                                                             |
| DSt  | Druckstutzen                                                            |
| DV   | Druckventil                                                             |
| e    | Position                                                                |
| eff  | Effektiv                                                                |
| EF   | Einführfase der Zylinderlaufbuchse                                      |
| ein  | Eintrittszustand                                                        |
| EM   | Elektromotor                                                            |
| en   | Energetisch                                                             |
| ers  | Ersatz-                                                                 |
| F    | Druck und Temperatur/Kraft                                              |
| f    | Reibung/Frequenz                                                        |
| Fl   | Flanke                                                                  |
| G    | Geschwindigkeit/Gleitstein                                              |
| g    | gespannt                                                                |
| ges  | gesamt                                                                  |
| GK   | Gleitstein-Kolben-Kontakt                                               |
| GT   | Gleitstein-Taumelscheibe-Kontakt                                        |
| GTW' | Gleitstein-Taumelscheibe-Kontakt unter Berücksichtigung der Gleitstein- |
|      | und Kolbenverkippung                                                    |
| GW   | Gleitstein-Taumelscheibe-Kontakt unter Berücksichtigung der Gleitstein- |
|      | verkippung                                                              |
| h    | Spezifische Enthalpie                                                   |
| Hall | Hall-Schalter                                                           |
| Hub  | Hubvolumen                                                              |
| Hys  | Hysterese                                                               |

| Ι    | (Phasen-)Strom                                  |
|------|-------------------------------------------------|
| i    | Innen/Anzahl/Strom                              |
| id   | Ideal                                           |
| ind  | Indiziert                                       |
| IGBT | Bipolartransistor mit isolierten Gate-Elektrode |
| isen | Isentrop                                        |
| Κ    | Kammer(-zustand)/Kolben(-seite)                 |
| Kal  | Kalibrierung                                    |
| KB   | Kolbenboden                                     |
| Kb   | Kleben                                          |
| KG   | Kolben-Gleitstein-Kontakt                       |
| Kl   | Klemme                                          |
| KM   | Kältemittel                                     |
| KR   | Kolbenring                                      |
| KV   | Kontrollvolumen                                 |
| L    | Leckage/Lager                                   |
| 1    | Lokal                                           |
| La   | Lamelle                                         |
| Lang | Langzeitstabilität                              |
| LB   | Zylinderlaufbuchse                              |
| LE   | Leistungselektronik(-seite)                     |
| Lin  | Linear                                          |
| LL   | Leerlauf                                        |
| Lu   | Luft                                            |
| М    | Mantelfläche/Messung/Drehmoment                 |
| m    | Schwerpunkt                                     |
| 'n   | Massenstrom                                     |
| max  | Maximal-/Grenzwert                              |
| mech | Mechanisch                                      |
| mess | Messwert                                        |
| n    | Normal/Anzahl                                   |
| Nenn | Nennwert                                        |
| NH   | Niederhalter                                    |
| norm | Normiert                                        |
| OA   | Ölabscheider                                    |
| OCR  | Ölzirkulationsrate                              |
| Oel  | Öl                                              |
| OT   | Oberer Totpunkt                                 |
| oV   | Ohne Verluste                                   |
| Puls | Pulsation                                       |
| р    | Druck-/isobar                                   |
| PTC  | Kaltleiter                                      |
| pv   | Druck- (erweitert)                              |
| Q    | Quetsch-                                        |
|      |                                                 |