Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart RESEARCH

Markus Auer

Ein Beitrag zur Erhöhung der Reichweite eines batterieelektrischen Fahrzeugs durch prädiktives Thermomanagement

Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart

Herausgegeben von

M. Bargende, Stuttgart, Deutschland H.-C. Reuss, Stuttgart, Deutschland J. Wiedemann, Stuttgart, Deutschland Das Institut für Verbrennungsmotoren und Kraftfahrwesen (IVK) an der Universität Stuttgart erforscht, entwickelt, appliziert und erprobt, in enger Zusammenarbeit mit der Industrie, Elemente bzw. Technologien aus dem Bereich moderner Fahrzeugkonzepte. Das Institut gliedert sich in die drei Bereiche Kraftfahrwesen, Fahrzeugantriebe und Kraftfahrzeug-Mechatronik. Aufgabe dieser Bereiche ist die Ausarbeitung des Themengebietes im Prüfstandsbetrieb, in Theorie und Simulation.

Schwerpunkte des Kraftfahrwesens sind hierbei die Aerodynamik, Akustik (NVH). Fahrdynamik und Fahrermodellierung, Leichtbau, Sicherheit, Kraftübertragung sowie Energie und Thermomanagement – auch in Verbindung mit hybriden und batterieelektrischen Fahrzeugkonzepten.

Der Bereich Fahrzeugantriebe widmet sich den Themen Brennverfahrensentwicklung einschließlich Regelungs- und Steuerungskonzeptionen bei zugleich minimierten Emissionen, komplexe Abgasnachbehandlung, Aufladesysteme und -strategien, Hybridsysteme und Betriebsstrategien sowie mechanisch-akustischen Fragestellungen.

Themen der Kraftfahrzeug-Mechatronik sind die Antriebsstrangregelung/Hybride, Elektromobilität, Bordnetz und Energiemanagement, Funktions- und Softwareentwicklung sowie Test und Diagnose.

Die Erfüllung dieser Aufgaben wird prüfstandsseitig neben vielem anderen unterstützt durch 19 Motorenprüfstände, zwei Rollenprüfstände, einen 1:1-Fahrsimulator, einen Antriebsstrangprüfstand, einen Thermowindkanal sowie einen 1:1-Aeroakustikwindkanal.

Die wissenschaftliche Reihe "Fahrzeugtechnik Universität Stuttgart" präsentiert über die am Institut entstandenen Promotionen die hervorragenden Arbeitsergebnisse der Forschungstätigkeiten am IVK.

Herausgegeben von

Prof. Dr.-Ing. Michael Bargende Lehrstuhl Fahrzeugantriebe, Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland

Prof. Dr.-Ing. Hans-Christian Reuss Lehrstuhl Kraftfahrzeugmechatronik, Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland Prof. Dr.-Ing. Jochen Wiedemann Lehrstuhl Kraftfahrwesen, Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart Stuttgart, Deutschland Markus Auer

Ein Beitrag zur Erhöhung der Reichweite eines batterieelektrischen Fahrzeugs durch prädiktives Thermomanagement

Markus Auer Stuttgart, Deutschland

Zugl.: Dissertation Universität Stuttgart, 2015

D93

Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart ISBN 978-3-658-13208-8 ISBN 978-3-658-13209-5 (eBook) DOI 10.1007/978-3-658-13209-5

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden 2016

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Vieweg ist Teil von Springer Nature

Die eingetragene Gesellschaft ist Springer Fachmedien Wiesbaden GmbH

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Institut für Verbrennungsmotoren und Kraftfahrwesen (IVK) der Universität Stuttgart. Als Grundlage dienten ein aus Mitteln der Landesstiftung Baden-Württemberg gefördertes Projekt sowie ein Projekt, das von der Forschungs-vereinigung Verbrennungskraftmaschinen e.V. gefördert wurde. Dem Obmann des FVV Projekts Dr.-Ing. Ernst Peter Weidmann möchte ich für die Unterstützung und die interessanten Diskussionen danken.

Ganz besonders möchte ich Herrn Prof. Dr.-Ing. Jochen Wiedemann für die Übernahme des Erstberichts und für den allzeit anregenden und motivierenden Gedankenaustausch danken.

Frau Prof. Dr.-Ing. Nejila Parspour möchte ich für den Mitbericht der vorliegenden Arbeit danken.

Dr.-Ing. Timo Kuthada und Dipl.-Ing. Nils Widdecke danke ich herzlichst für die fruchtbaren Meinungsaustausch und die sehr gute Zusammenarbeit während meiner Zeit am IVK. Darüber hinaus möchte ich mich bei meinem Lektor Martin Romer für die gute Zusammenarbeit danken.

Abschließend gilt mein Dank allen Kollegen des IVK und des FKFS, die mich während dieser Arbeit unterstützt haben und jederzeit für interessante Diskussionen bereit waren. Ein besonderer Dank gilt dem Hilfswissenschaftler Joachim Zanker für seine wertvolle Unterstützung.

Markus Auer

Inhaltsverzeichnis

Voi	wort	•••••		V
Abl	oildur	ngsverz	eichnis	XI
Tab	ellen	verzeic	hnis	XIX
Abl	kürzu	ngsverz	zeichnis	XXI
Zus	amm	enfassi	ing	XXIX
Abs	stract		X	XXIII
1	Ein	ıleitu	ng und Ziel	1
2	Sta	nd de	er Technik	
	2.1	Komp 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Energ 2.2.1 2.2.2 2.2.3 2.2.4	bonenten eines batterieelektrischen Fahrzeugs Entstehungsgeschichte des batterieelektrischen Fahrzeugs Aufbau Elektrische Maschinen Leistungselektronik Chemische Energiespeicher Batteriemodellierung ie- und Thermomanagement Thermomanagement am batterieelektrischen Fahrzeug Prädiktives Thermomanagement Prädiktives Energiemanagement Numerische Methoden im Thermomanagement auf Systemebene	3 4 4 5 5 7 12 12 12 12 17 17
3	Mo	dellie	erung und Validierung	21
	3.1	Unter	suchtes Fahrzeug	21
		3.1.1	Konfigurationen	22
		3.1.2	Lastfälle	24
	3.2	Mode	llierung des Fahrzeugs	24
		3.2.1	Gekoppeltes Simulationsmodell	24
		3.2.2	Fahrermodell	26
		3.2.3	Batteriemodell	27

		3.2.4	Motormodell	. 34
		3.2.5	Leistungselektronikmodell	. 38
		3.2.6	Regelung und Steuerung	. 38
		3.2.7	Für Optimierungen nötige Erweiterungen	. 39
		3.2.8	Schnell rechnendes Simulationsmodell	. 46
	3.3	Validi	erung der Simulationsmodelle	. 47
		3.3.1	Messumgebung	. 48
		3.3.2	Messtechnik	. 48
		3.3.3	Aufbau	. 52
		3.3.4	Wärmepumpe	. 55
		3.3.5	Motor und Leistungselektronik	. 62
		3.3.6	Batterie	. 63
		3.3.7	Innenraum	65
		3.3.8	Schnell rechnendes Fahrzeugmodell	. 66
	3.4	Entwi	cklung einer Geschwindigkeits-Kennzahl	. 67
4	On	timier	ung des Energie- und Thermomanagements	73
	4 1	Einflu	ss verschiedener Zyklen	73
	1.1	4 1 1	Reichweite im Ausgangszustand	73
		4.1.2	Bestimmung des Reichweitenpotenzials	75
		413	Reichweite bei End of Life" der Batterie	76
	4.2	Reichy	weitenerhöhung durch Energiebedarfssenkung	. 77
		4.2.1	Verwendung von Umluft	. 78
		4.2.2	Anpassung der Solltemperatur im Innenraum	. 79
		4.2.3	Isolation der Kabine	. 81
		4.2.4	Heizung des Innenraums	. 82
		4.2.5	Entfall der Klimaanlage (AC)	. 84
		4.2.6	Motortemperaturregelung	85
		4.2.7	Isolation von Motor und Inverter	. 87
		4.2.8	Abwärmenutzung zur Batterieheizung	. 90
		4.2.9	Isolation der Batterie	. 91
		4.2.10	Maximale Verzögerung bei der Rekuperation	. 93
		4.2.11	Abgestimmte Pumpen- und Lüfterregelung	. 94
		4.2.12	Entfall des Chillers	. 96
		4.2.13	Kombination von Maßnahmen	. 97
	4.3	Vorko	nditionierung und Laden	. 99
		4.3.1	Bedarfsgerechtes Laden der Batterie	100
		4.3.2	Thermische Vorkonditionierung der Batterie	102
		4.3.3	Thermische Vorkonditionierung des Innenraums	104

5	Pra	ädikti	ves Thermomanagement	
	5.1	Volls	tändig bekanntes Lastprofil	107
		5.1.1	Vorgehensweise bei der Simulation	
		5.1.2	Vorgaben und Auswirkungen	108
		5.1.3	Validierung der Methode	109
		5.1.4	Minimiernung des Fahrzeugenergiebedarfs	
		5.1.5	Minimierung des Gesamtenergiebedarfs	
	5.2	Teilw	veise bekanntes Lastprofil	
		5.2.1	Vorgehensweise bei der Simulation	
		5.2.2	Vorgaben und Auswirkungen	
		5.2.3	Voruntersuchung	
		5.2.4	Ergebnisse	119
	5.3	Erhöh	nung der Reichweite durch weitere	
		Energ	giemanagementmaßnahmen	123
6	Scl	hlussf	olgerung und Ausblick	127
Li	terat	turvei	rzeichnis	129
Ar	han	g		139

Abbildungsverzeichnis

Abbildung 1:	Spannungsantwort einer 20 Ah Lithium-Eisen-Phosphat-	
-	Batterie bei einem Strompuls von -2,5 C (-50 A)	11
Abbildung 2:	Wohlfühltemperatur im Fahrzeuginnenraum als Funktion der	
C	Außentemperatur, Daten aus [69]	15
Abbildung 3:	Relative Reichweite für ein Mittelklassefahrzeug in	
-	Abhängigkeit der Geschwindigkeit bei Konstantfahrt und der	
	Antriebsform	22
Abbildung 4:	Thermomanagementsystem des Fahrzeuges bei der	
-	Konfiguration mit Wärmepumpe (Standardkonfiguration)	23
Abbildung 5:	Aufbau des gekoppelten Simulationsmodells	26
Abbildung 6:	Ersatzschaltbild des Modells R3RC	27
Abbildung 7:	Verlauf der Zeitkonstanten $\tau 1$ und $\tau 2$ über der verwendeten	
	Wartezeit bei der Parameterfindung	30
Abbildung 8:	Restkapazität über der Zykluszahl für eine LiFePO ₄ Zelle	
	(Messdaten aus [95])	32
Abbildung 9:	Kapazitätsverlust über der Zeit und Vorgehensweise zur	
	Bestimmung des kalendarischen Kapazitätsverlusts bei	
	mehreren Temperaturen	33
Abbildung 10:	Relative Kapazitätsänderung über Kapazitätsänderung für	
	eine 18650-Zelle (aus [97] berechnet)	33
Abbildung 11:	Wirkungsgradkennfeld des verwendeten Asynchronmotors	34
Abbildung 12:	Temperaturabhängiges Wirkungsgradverhalten des Motors	
	bei 500 min ⁻¹ und 70% Volllast (links) sowie 4000 min ⁻¹	
	und 40% Volllast (rechts)	35
Abbildung 13:	Temperaturabhängiges Wirkungsgradverhalten des Motors	
	im Kennfeld	35
Abbildung 14:	Vergleich zwischen Näherungsfunktion und Messung für	
	temperaturabhängiges Wirkungsgradverhalten des Motors	37
Abbildung 15:	Wirkungsgradkennfeld der verwendeten Leistungselektronik	
	für U=100 V	38
Abbildung 16:	Kühlmitteltemperatur als Funktion der Leistungsaufnahmen	
	von Kühlmittelpumpe und Lüfter, angelehnt an [106]	41
Abbildung 17:	Ubertragener Wärmestrom eines exemplarischen Kühlers in	
	Abhängigkeit von Luft- und Kühlmittelvolumenstrom	41
Abbildung 18:	Optimale Lüfterdrehzahl über der Pumpendrehzahl in	
	Abhängigkeit der Fahrtgeschwindigkeit	42

Abbildung 19:	Mittlerer Wirkungsgrad des Motors bei der Durchfahrt
	verschiedener Zyklen unter Annahme konstanter
	Motortemperaturen
Abbildung 20:	Aufbau des FKFS Multikonfigurationsprüfstands [109] 48
Abbildung 21:	Fehler im Wärmestrom in Abhängigkeit von ∆T52
Abbildung 22:	Prüfstandsaufbau der untersuchten Wärmepumpe54
Abbildung 23:	Vergleich der Kompressoraustrittstemperatur zwischen
	Messung und Simulation im AC-Modus
Abbildung 24:	Vergleich der Kompressoreintrittstemperatur zwischen
	Messung und Simulation im AC-Modus 57
Abbildung 25:	Vergleich der Verdampferaustrittstemperatur zwischen
-	Messung und Simulation im AC-Modus
Abbildung 26:	Vergleich der Chilleraustrittstemperatur zwischen Messung
-	und Simulation im AC-Modus
Abbildung 27:	Vergleich der AWT-Austrittstemperatur zwischen Messung
-	und Simulation im AC-Modus
Abbildung 28:	Vergleich der Verdichterleistung zwischen Messung und
-	Simulation im AC-Modus
Abbildung 29:	Vergleich der Verdichterleistung zwischen Messung und
-	Simulation im WP-Modus
Abbildung 30:	Vergleich des Druckverlaufs nach Kompressor (links) und
	vor Kompressor (rechts) zwischen Messung und Simulation
	bei einem Zu- und Abschaltvorgang des Chillers 60
Abbildung 31:	Vergleich des Temperaturverlaufs nach Kompressor (links)
-	und vor Kompressor (rechts) zwischen Messung und
	Simulation bei einem Zu- und Abschaltvorgang des Chillers 61
Abbildung 32:	Vergleich des Temperaturverlaufs nach Verdampfer
-	zwischen Messung und Simulation bei einem Zu- und
	Abschaltvorgang des Chillers
Abbildung 33:	Vergleich des Wärmestromverlaufs des Chillers (links) und
-	der Kompressorleistung (rechts) zwischen Messung und
	Simulation bei einem Zu- und Abschaltvorgang des Chillers 62
Abbildung 34:	Vergleich von Messung und Simulation des Aufheiz-
-	verhaltens von Motor (oben) und Leistungselektronik
	(unten) im NEFZ
Abbildung 35:	Vergleich der Spannung (links) und der prozentualen
-	Abweichung (links) zwischen den Modellen R, RRC,
	R2RC und R3RC und der Messung
Abbildung 36:	Gemessene und simulierte Temperaturverläufe in NEFZ
e	(links) und bei einer Entladung mit 4C (rechts)

Abbildung 37:	Vergleich von Messung und Simulation des Aufheiz- verhaltens des Fahrzeuginnenraums 66
Abbildung 38:	Vergleich der Batterietemperatur (links) und der Motortemperatur (rechts) der Simulation mit gekoppeltem
	Modell und der Simulation mit dem schnell rechnenden
Abbildung 39:	Vergleich des Ladezustands der Simulation mit gekoppeltem
U	Modell und der Simulation mit dem schnell rechnenden
	Fahrzeugmodell
Abbildung 40:	Reichweite bei einer festen Klimatisierungsleistung von 1 kW über der Geschwindigkeits-Kennzahl für CADC,
	NEFZ und NYCC71
Abbildung 41:	Geschwindigkeits-Kennzahl bei konstanter Geschwindigkeit:
	Vergleich Vorhersage mit Simulation71
Abbildung 42:	Reichweite des untersuchten BEFs in den untersuchten
411:11 42	Zyklen für die Standardkonfiguration
Abbildung 43:	Geschwindigkeits-Kennzahl für das untersuchte BEF in den
Abbildung 14	Deichweitennetenziel für des untersuchte DEF in den
Abbildulig 44.	untersuchten Zuklen für die Standardkonfiguration 75
Abbildung 45.	Reduktion der Reichweite für das untersuchte BEF in den
roondung 45.	untersuchten Zyklen für die Standardkonfiguration für eine
	auf EoL gealterte Batterie
Abbildung 46:	Erhöhung der Reichweite des untersuchten BEFs in
6	verschiedenen Zyklen für die Standardkonfiguration mit 50%
	Umluftanteil
Abbildung 47:	Erhöhung der Reichweite des untersuchten BEFs in
	verschiedenen Zyklen für die Standardkonfiguration bei
	einer Absenkung der Innenraumsolltemperatur von 5 K und
	7 K mit Kompensation des Wärmedefizits
Abbildung 48:	Erhöhung der Reichweite des untersuchten BEFs in
	verschiedenen Zyklen für die Standardkonfiguration bei einer
	Absenkung der Innenraumsolltemperatur von 5 K
	(warmepumpenpunkt) bzw. / K (Kiruna) mit Kompensation
Abbildung 10.	Einfluss des Wärmewiderstands von Türen und Dach auf
Abbildung 49.	Reichweite hei der Randbedingung Kiruna für das
	untersuchte BEF mit Standardkonfiguration 81
	unterstente 221 mit Standarditentingarditenting

Abbildung 50:	Reduktion der Reichweite (links bei -18°C; rechts bei 10°C) des untersuchten BEFs in verschiedenen Zyklen bei Entfall des Innenraumheizers und der Wärmepumpe (Heizung nur durch den PTC)	82
Abbildung 51:	Reduktion der Reichweite (links bei -18°C; rechts bei 10°C) des untersuchten BEFs in verschiedenen Zyklen bei Entfall des Innenraumheizers (Heizung durch Wärmepumpe und PTC).	83
Abbildung 52:	Reduktion der Reichweite des untersuchten BEFs im Wärmepumpenpunkt in verschiedenen Zyklen bei Entfall der Wärmepumpe (Heizung nur durch den Innenraumheizer und den PTC)	84
Abbildung 53:	Erhöhung der Reichweite des untersuchten BEFs in den untersuchten Zyklen für die Standardkonfiguration bei Entfall der Klimaanlage	85
Abbildung 54:	Summe aus den Verlusten des Motor plus der Antriebs- energie der Pumpe im Zyklus NYCC bei der Umwelt-	07
Abbildung 55:	Motortemperaturverlauf mit und ohne beschleunigtem Aufheizen des Motors im NEFZ bei der Umweltbedingung Málaga	80
Abbildung 56:	Ergebnisse der Voruntersuchung zur Variation von Kapselung und thermischen Massen für das untersuchte BEF für die Standardkonfiguration im NEFZ	88
Abbildung 57:	Einfluss auf die Reichweite des untersuchten BEFs in verschiedenen Zyklen für die Standardkonfiguration bei 70% Motormasse	89
Abbildung 58:	Erhöhung der Reichweite des untersuchten BEFs in verschiedenen Zyklen für die Standardkonfiguration mit Abwärmenutzung zur Heizung der Batterie	90
Abbildung 59:	Betrag der Wärme, die von der Batterie an die Umgebung übertragen wird bezogen auf die in der Batterie entstehende Wärme bei einer Durchfahrt des NEEZ	01
Abbildung 60:	Reduktion der Reichweite des untersuchten BEFs in verschiedenen Zyklen für die Standardkonfiguration bei einem Wärmeübertragungskoeffizienten von 10 W/m ² K an der Außenseite der Batterie	02
Abbildung 61:	Abkühlverhalten der Batterie von 30°C bei einer Umgebungstemperatur von 10°C in Abhängigkeit des Wärmeübertragungskoeffizienten	92 93

Abbildung 62:	Erhöhung der Reichweite im NEFZ als Funktion des
	Motormoments bei der Rekuperation94
Abbildung 63:	Reduktion des Pumpen- und Lüfterenergiebedarfs für die
	Fahrt des untersuchten BEFs mit Konfiguration ohne AC in
	verschiedenen Zyklen jeweils ca. 3600 s
Abbildung 64:	Änderung der mittleren Motortemperatur bei der Fahrt des
-	Fahrzeugs mit Konfiguration ohne AC in verschiedenen
	Zyklen, jeweils ca. 3600 s lang
Abbildung 65:	Erhöhung der Reichweite des untersuchten BEFs in
	verschiedenen Zyklen für die Standardkonfiguration bei
	Entfall des Chillers
Abbildung 66:	Erhöhung der Reichweite des untersuchten BEFs in
-	verschiedenen Zyklen für die Standardkonfiguration bei
	Verwendung aller positiven Maßnahmen, bezogen auf die
	Reichweite aus Kapitel 4.1.1
Abbildung 67:	Erhöhung der Reichweite des untersuchten BEFs in
	verschiedenen Zyklen für die Standardkonfiguration bei
	Verwendung aller positiven Maßnahmen, bezogen auf die
	Reichweite eines Fahrzeugs ohne HT-NT-Verbindung,
	Innenraumheizer und Wärmepumpe
Abbildung 68:	Reichweite des untersuchten BEFs in verschiedenen Zyklen
	für die Standardkonfiguration bei Verwendung aller
	positiven Maßnahmen
Abbildung 69:	Entladekapazität von Zelle 1 als Funktion von Temperatur
	und Entladestrom 100
Abbildung 70:	Batteriewirkungsgrad von Zelle 1 in Abhängigkeit von
	Temperatur und Ladezustand bei ca. 100 kW Belastung der
	Gesamtbatterie
Abbildung 71:	Widerstände R _i und R _c von Zelle 1 bei 20°C als Funktion
	des Ladezustands
Abbildung 72:	Leistungsgrenzen von Zelle 1 in Abhängigkeit der
	Temperatur bei 90% SoC 103
Abbildung 73:	Energiebedarf für die Durchfahrt des NEFZ bei den
	Umgebungsbedingungen Frankfurt (links) und Málaga
	(rechts) als Funktion von T _{Batterie,start} ohne und mit
	Berücksichtigung des Energiebedarfs für die
	Vorkonditionierung104
Abbildung 74:	Energiebedarf für Durchfahrt des NEFZ und Energiebedarf
	für Durchfahrt des NEFZ plus Energiebedarf für Vor-
	konditionierung in Abhängigkeit der Vorkonditionierungs-
	temperatur des Innenraums im Lastfall Kiruna 105

Abbildung 75:	Innenraumtemperatur bei einem Aufheizvorgang bei einer Umgebungstemperatur von -18°C	106
Abbildung 76:	Reduktion des Energiebedarfs des untersuchten BEFs in verschiedenen Zyklen für die Standardkonfiguration bei Vorkonditionierung des Innenraums auf Wohlfühl-	
Abbildung 77:	temperatur. Integration der Optimierung in das Gesamtmodell beim prädiktiven Wärmemanagement mit vollständig bekanntem	106
Abbildung 78:	Ergebnisse für die Überprüfung des durch das schnell rechnende Modell gefundenen Optimums bei FKFS, Málaga	110
Abbildung 79:	Vergleich der durch das schnell rechnende und das gekoppelte Modell gefundenen Parameter für das prädiktive Thermomanagement für "NEFZ Stau" bei der Pandhadingung Erznlefurt	111
Abbildung 80:	Senkung des Fahrzeugenergiebedarfs des untersuchten BEFs in verschiedenen Zyklen für die Standard- konfiguration mit prädiktivem Wärmemanagement bei vollständig bekanntem Lastprofil bei Minimierung des	111
Abbildung 81:	Fahrzeugenergiebedarfs Senkung des Gesamtenergiebedarfs für das untersuchte BEF in verschiedenen Zyklen für die Standardkonfiguration mit prädiktivem Wärmemanagement bei vollständig bekanntem Lastprofil bei Minimierung des Fahrzeugenergiebedarfs	113
Abbildung 82:	Senkung des Fahrzeugenergiebedarfs für das untersuchte BEF in verschiedenen Zyklen für die Standardkonfiguration mit prädiktivem Wärmemanagement bei vollständig bekanntem Lastprofil bei Minimierung des	114
Abbildung 83:	Senkung des Gesamtenergiebedarfs für das untersuchte BEF in verschiedenen Zyklen für die Standardkonfiguration mit prädiktivem Wärmemanagement bei vollständig bekanntem Lastprofil bei Minimierung des Gesamtenergiebedarfs	115
Abbildung 84:	Integration der Optimierung in das Gesamtmodell beim prädiktiven Wärmemanagement mit teilweise bekanntem Lastprofil	117
Abbildung 85:	Darstellung der Summe der Fehlerquadrate zwischen Motortemperatur und vorhergesagtem Grenzwert in Abhängigkeit von Kopplungsintervall und Vorausschauhorizont	119

Abbildung 86:	Reduktion des Energiebedarfs des untersuchten BEFs in
	Adhangigken des vorausschaunorizonts für die
	Standardkonliguration mit pradiktivem
	Warmemanagement bei teilweise bekanntem Lastprofil im
	FKFS Zyklus bei der Randbedingung Malaga 121
Abbildung 87:	Verlauf der Motortemperatur (links) und Verlauf der
	Batterietemperatur (rechts) beim untersuchten BEF in
	Abhängigkeit des Vorausschauhorizonts für die
	Standardkonfiguration mit prädiktivem Wärmemanagement
	bei teilweise bekanntem Lastprofil im FKFS Zyklus bei der
	Randbedingung Málaga 121
Abbildung 88:	Durchschnittliche Reduktion des Energiebedarfs des
	untersuchten BEFs für die Standardkonfiguration mit
	prädiktivem Wärmemanagement bei teilweise bekanntem
	Lastprofil für die untersuchten Zyklen in Abhängigkeit des
	Vorausschauhorizonts 122
Abbildung 89:	Reduktion des Energiebedarfs des untersuchten BEFs für
-	die Standardkonfiguration mit prädiktivem
	Wärmemanagement bei teilweise bekanntem Lastprofil in
	verschiedenen Zyklen bei einem Vorausschauhorizont
	von 300 s
Abbildung 90:	Ladezustand über der gefahrenen Strecke bei einer Fahrt
C	mit und ohne Reichweitenregler
Abbildung 91:	Verlauf der Nebenverbraucherleistung (links) und der
C C	Durchschnittsgeschwindigkeit (rechts) bei einer Fahrt mit
	und ohne Reichweitenregelung
Abbildung 92:	Verlauf der Klimakennzahl bei einer Fahrt mit und ohne
8	Reichweitenregelung
Abbildung 93:	Thermomanagementsystem des Fahrzeugs bei der
e	Konfiguration ohne AC
Abbildung 94:	Thermomanagementsystem des Fahrzeugs bei der
C C	Konfiguration ohne Chiller
Abbildung 95:	Thermomanagementsystem des Fahrzeugs bei der
e	Konfiguration mit Chiller
Abbildung 96:	Bestätigung des gefundenen Optimums des prädiktiven
U U	Wärmemanagements in der T _{Motor soll} -SoC _{start} -Ebene für den
	FKFS Zyklus
Abbildung 97:	Bestätigung des gefundenen Optimums des prädiktiven
e	Wärmemanagements in der T _{Motor.soll} -SoC _{start} -Ebene für den
	Zyklus "NEFZ Berg"
	· · · · · · · · · · · · · · · · · · ·

Abbildung 98:	Bestätigung des gefundenen Optimums des prädiktiven	
	Wärmemanagements in der T _{Motor,soll} -SoC _{start} -Ebene für den	
	Zyklus "NEFZ Stau"	143
Abbildung 99:	Bestätigung des gefundenen Optimums des prädiktiven	
	Wärmemanagements in der T _{Motor.soll} -SoC _{start} -Ebene für eine	
	dreifache Durchfahrt des NEFZ	144

Tabellenverzeichnis

Tabelle 1:	Verfügbare Batterietechnologien für Elektrofahrzeuge aus	
	[16], Daten für Einzelzellen	6
Tabelle 2:	Eignung verschiedener elektrischer Modelle für	
	unterschiedliche Anwendungen [32]	9
Tabelle 3:	Übersicht der Konfigurationen des Thermomanagement-	
	systems und deren Funktionen	23
Tabelle 4:	Übersicht der untersuchten Umweltbedingungen	24
Tabelle 5:	Untersuchte Zellen	28
Tabelle 6:	Optimierungsparameter für das vorausschauende	
	Wärmemanagement	47
Tabelle 7:	Messgenauigkeiten des WT3000 Messsystems	50
Tabelle 8:	Umgesetzte Optimierungen in Abhängigkeit des Lastfalls	98
Tabelle 9:	Konfigurationen für die Überprüfung des gefundenen	
	Optimums bei FKFS, Málaga	109
Tabelle 10:	Technische Daten des simulierten Fahrzeugs	139
Tabelle 11:	Schnittstellenvariablen für Co-Simulation	141
Tabelle 12:	Technische Daten des FKFS Multikonfigurations-	
	prüfstands [109]	142