Yvan Gauthier

Einspritzdruck bei modernen PKW-Dieselmotoren

VIEWEG+TEUBNER RESEARCH

Yvan Gauthier

Einspritzdruck bei modernen PKW-Dieselmotoren

Einfluss auf die Rußemission

VIEWEG+TEUBNER RESEARCH

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.d-nb.de> abrufbar.

Dissertation Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg, 2009

1. Auflage 2009

Alle Rechte vorbehalten © Vieweg+Teubner | GWV Fachverlage GmbH, Wiesbaden 2009

Lektorat: Dorothee Koch / Britta Göhrisch-Radmacher

Vieweg+Teubner ist Teil der Fachverlagsgruppe Springer Science+Business Media. www.viewegteubner.de

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlags unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Umschlaggestaltung: KünkelLopka Medienentwicklung, Heidelberg Druck und buchbinderische Verarbeitung: STRAUSS GMBH, Mörlenbach Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier. Printed in Germany

ISBN 978-3-8348-0936-0

Vorwort

"Ich glaube, man müsste – um wirklich vorwärts zu kommen – wieder ein allgemeines, der Natur abgelauschtes Prinzip finden."

Albert Einstein in einem Brief an Seinem Freund Weyl im Jahr 1922

Die vorliegende Arbeit entstand im Rahmen meiner Tätigkeit im Motorenprüffeld des Geschäftsbereichs Diesel Systems der Firma Robert Bosch GmbH in Stuttgart-Feuerbach. Betreut wurde sie durch den Fachbereich Maschinenbau der Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg.

Herrn Prof. Dr.-Ing. W. Thiemann gilt mein besonderer Dank für die Anregung zu dieser Arbeit, für die stetige und wohlwollende Unterstützung, sowie für die Durchsicht der schriftlichen Fassung. Herrn Prof. Dr.-Ing. F. Joos danke ich für die Übernahme des Korreferates und das Interesse an meiner Arbeit.

Mein Dank gilt ferner Herrn Dr.-Ing. F. Wirbeleit, Herrn Dipl. Ing. D. Naber und Herrn Dipl.-Ing. J.-O. Stein, die mich seitens der Robert Bosch GmbH betreut haben und bei der Durchführung dieser Arbeit unterstützten. Der Firma Robert Bosch GmbH danke ich für die Bereitstellung des Versuchsträgers, speziell möchte ich Herrn Dr.-Ing. M. Dürnholz für die Förderung dieser Arbeit danken.

Ganz herzlich danke ich den Herren Dipl.-Ing. (FH) S. Feuerstack, Dipl.-Ing. D. Nolz, Dipl.-Ing. C. Kluck, die durch ihre Diplomarbeiten zum Fortschritt der Untersuchungen beigetragen haben. Den Kollegen der Gruppe DS/EVL2 sowie allen anderen Mitarbeitern der Robert Bosch GmbH, die mir bei der Durchführung der Versuche zur Seite standen, entrichte ich meinen Dank für ihre entgegengebrachte Unterstützung, für ihre Ratschläge, für ihre wertvollen Diskussionsbeiträge zu dieser Arbeit sowie für das stets angenehme Arbeitsklima.

Ganz besonders bedanke ich mich bei meiner Frau für die geleistete Hilfe und die liebevolle Unterstützung.

Yvan Gauthier

Inhaltsverzeichnis

Verwendete Abkürzungen und Symbole IX
AbbildungsverzeichnisXIII
1 Einleitung1
2 Rußemission bei der dieselmotorischen Verbrennung7
2.1 Molekulare Rußbildung
2.2 Phänomenologische Rußmodelle
2.3 Erfassung der Rußemission im Abgas14
 3 Modelle der einspritzstrahlgeführten Gemischbildung
3.1 Preistramausorenung
3.2 Spray/wand-weenserwirkung
 4 Einfluß der externen Abgasrückführung auf die Rußemission
4.1.1 Herabsetzung der Verbrennungstemperatur durch den Abgasanteil
4.1.2 Luftverhältnis λ_G für das Gasgemisch aus Luft und rückgeführtem Abgas
4.2 Einfluss des Luftverhältnisses60
4.2.1 Luftverhältnisabsenkung durch Abgasrückführung und durch Lastanhebung61
4.2.2 Bestimmung des Luftverhältnisses an der Rußgrenze70

5	Einfluss des Einspritzdrucks auf die Rußemission	75
5.	1 Bestimmung des mittleren Einspritzdrucks der Haupteinspritzung	75
	5.1.1 Methode mit gemessenem Raildruck für CRI3.0	77
	5.1.2 Methode mit gemessenem Düsenraumdruck für HADI	81
5.	2 Gesetzmäßigkeit des Rußverhaltens bei Steigerung des Einspritzdrucks	.87
	5.2.1 Empirische Formulierung des Rußverhaltens beim Motorbetrieb ohne Abgasrückführung	87
	5.2.2 Empirische Formulierung des Rußverhaltens beim	
	Motorbetrieb mit Abgasrückführung	105
6	Modell für das Zweiphasengebiet innerhalb des Kraftstoffstrahls	111
6.	1 Mittlere Geschwindigkeit des Einspritzstrahls	111
6.	2 Mittlere Dichte der Gasphase des Einspritzstrahls	121
7	Validierung des Modells durch motorische Untersuchungen	133
7.	1 Variation der Düsenparameter hydr. Durchfluss und Lochanzahl	133
7.	2 Variation der Motorparameter Düsenüberstand und Drallströmung	149
8	Zusammenfassung	169
9	Anhang	173
10	Literaturverzeichnis	199

Verwendete Abkürzungen und Symbole

Bezeichnung	Einheit	Bedeutung
ABHE	°KW	Ansteuerheginn der Haupteinspritzung
ABVE	okw	Absteuerbeginn der Voreinspritzung
ADHE	115	Ansteuerdauer der Haupteinspritzung
ADVE	μs	Ansteuerdauer der Voreinspritzung
AMESim	μs	Simulationstool für Hydraulikkomponente
AVI	-	Firma dia dia Pröfstandsmassgaröta harstallt
CAD	-	Pinna, die die Fluislandsmessgerate herstent
CAD	-	Recincigestutzies Zeichnungsheistenung
CRI3.0	-	Bosch Common Pail System mit may 2000har
DI DI	-	Direktoinenriteune
	-	Directemspritzung
DPF	-	Diesei-Partikeiniter
EIH	-	Eldgenossische Technische Hochschule in Zurich
EU	-	Europaische Union
EURO V	-	Richtlinie der EU-Emissionsgrenzwert ab 2009
FSN	-	Filter Smoke Number
GSU	-	Geometrischer Strahlursprung
HADI	-	High-pressure Amplified Diesel Injector
JANAF	-	Joint Army Navy Air Force
MI	-	Main Injection (Haupteinspritzung)
MNEFZ	-	Europäischer Fahrzyklus für Abgastest
MTS	-	Massenträgheitsschwerpunkt
NASA	-	National Aeronautics and Space Administration
NKW	-	Nutzlast Kraft Wagen
OT	-	Oberer Totpunkt (zOT: OT mit Zündung)
PAK	-	Polyzyklischer Aromatischer Kohlenwasserstoffe
PI	-	Pilot Injection (Voreinspritzung)
PKW	-	Personen Kraft Wagen
PM	-	Particulate Matter
SMD	-	mittlerer Sauterdurchmesser
UT	-	Unterer Totpunkt
VdW	-	Van der Waals'scher Ansatz für Realgasgleichung
C	-	Kohlenstoff
C_2H_2	-	Acethylen
CO	-	Kohlenmonoxid
CO ₂	-	Kohlendioxidmolekül
Н	-	Wasserstoff
HC	-	Kohlenwasserstoff
H ₂ O	-	Wassermolekül
N_2	-	Stickstoff
NO	-	Stickstoffmonoxid
NO ₂	-	Stickstoffdioxid
NO.	-	Stickoxide
0,	-	Sauerstoffmolekül
OH	-	Hydroxylradikal

Abkürzungen

Formelzeichen

Bezeichnung	Einheit	Bedeutung
a	kg·m ⁵ /kmol ² /s ²	Kohäsionsdruck für Luft als VdW-Realgas
$A_{a}(x)$	m ²	Strahlguerschnittsanteil mit Luft, Abstand x
ABildung	-	Koeffizient für die Rußbildung
Acyletion	-	Koeffizient für die Rußoxidation
ap	kg·m ⁵ /kmol ² /s ²	Kohäsionsdruck für n-Tridekan als VdW-Realgas
A(0)	m ²	Strahlquerschnittsanteil mit Kraftstoff, Lochaustritt
Ada	m ²	Strahlouerschnittsanteil mit Kraftstoff, Abstand x
b.	m ³ /kg	Kovolumen für Luft als VdW-Realgas
ba ba	m ³ /kg	Kovolumen für n-Tridekan als VdW-Realgas
$b_{\rm D}$	g/kWh	indizierter Kraftstoffverbrauch
	m/s	aviale Strömungsgeschwindigkeit Drallmessung nach
Ca	11/5	Thion
	mala	mittlene Kellenesselennin dielveit im Zulinden
C _m	H/S	initiere Koldengeschwindigkeit im Zynnder
C_p	J/(Kg·K)	spezifische warmekapazität bei konstantem Druck
C_{SL}	-	Flachenkontraktionsbeiwert durch die Spritzlochgeometrie
Cu	m/s	Umfangsgeschwindigkeit der Drallströmung nach Thien
C_{V}	-	Geschwindigkeitsbeiwert durch die Spritzlochgeometrie
C_W	-	Strömungswiderstandsbeiwert in Newton 'scher Gleichung
c_{α}	-	Geometriebeiwert für die Spritzlochgeometrie nach Siebers
$dp_{\rm Zylinder}/d\alpha$	bar/°KW	Gradient des Zylinderdruckes über Grad Kurbelwinkel
d_{SL}	μm	geometrischer Spritzlochaustrittsdurchmesser
dt	S	infinitesimal kleines Zeitintervall
d_T	μm	Tropfendurchmesser
d32	μm	Sauterdurchmesser der Tropfen in Gleichung 3.5
da	Grad	infinitesimal kleines Kurbelwinkelintervall
F_{ν}	N	Kohäsionskraft der Flüssigkeitströpfchen
F _w	N	aerodynamische Strömungswiderstandskraft
$F_{\rm w}(0 \text{ bis } r)$	N	kumulierte Strömungswiderstandskraft zwischen 0 und x
$\overrightarrow{\alpha}$	$k\sigma/(m^2 \cdot s)$	Vektor der Impulsdichte
B h	I I I	Enthalpie des im Strahl gesaugten Gases aus der Umgebung
H/C	,	molares Verhältnis von Wasser und Kohlenstoff
	- am ³ /20c/100hor	hydraulischer Durchfluss der Einspritzdüse bei An= 100 bar
	I I I I I I I I I I I I I I I I I I I	Enthalnie des flüssigen Kraftstoffs im Einspritzstrahl
$n_{\rm K}$	5	Massanträgheitsmoment hei der Kurhelwinkelstellung o
$\int (\alpha)$	mm	Kanstanta im Strahlgasahwindigkaitamadall
ĸ	-	Konstante in Strangesenwindigkensmoden Konisität dan Samitalaahaaamatria, ataämun saantimiart
KS	-	movimala Eindringtiafa dar Eläggigkait im Eingenitert
l _{F1}	mm	maximale Emoninguere der Flussigkeit im Einspritzstrahl
L_{st}	-	stochiometrischer Luitbedarf
$m_{a}(x)$	kg/s	Massenstrom an eingesaugten Gas im Einspritzstrahl bei x
$\dot{m}_{\rm A}, \dot{m}_{\rm Abgas}$	kg/s	Abgasmassenstrom
mAGe	mg/AS	extern ruckgerührte Abgasmasse pro Arbeitspiel
m _B	mg/AS	eingespritzte Kraftstoffmasse pro Arbeitspiel
m _D	kg/s	Massenstrom von Kraftstoffdampf
m FI	kg/s	Massenstrom von flüssigem Kraftstoff
mg	mg/AS	gesamte angesaugte Gasmasse im Zylinder pro Arbeitspiel
m _i	kg/s	angesaugter Gasmassenstrom, Ventilhubstellung i
$\dot{m}_{\rm K}(x)$	kg/s	Massenstrom von flüssigem Kraftstoff bei x
$m_{\rm L}, m_{\rm Luft}$	mg/AS	angesaugte Luftmasse pro Arbeitspiel

mo	mg/AS	angesaugte Sauerstoffmasse pro Arbeitspiel
M	kg/kmol	Molmasse
n	U/min	Motordrehzahl
nsi	-	Anzahl Düsenlöcher
$n(d_T)$	-	Anzahl der Tropfen mit dem Durch- messer d_T
$p_{\rm a}$	bar	Druck des in den Strahl gesaugten Gases aus der Umgebung
$p_{\rm D}$	bar	Druck des Kraftstoffdampfes im Strahl
<i>p</i> _{Ini}	bar	Einspritzdruck
<i>p</i> _{Kammer}	bar	Brennkammerdruck
pme	bar	effektiver Mitteldruck
pmi	bar	indizierter Mitteldruck
<i>p</i> _{Norm}	bar	Druckniveau im Normzustand
p_{Rail}	bar	Druck im Common Rail
$p_{\rm s}$	bar	Sättigungsdruck des Kraftstoffdampfes im Strahl
<i>p</i> Sackloch	bar	Druck im Düsensackloch
PStrahl	bar	Gesamtdruck im Gasstrahl
pz	bar	Zylinderdruck
Qhyd	cm ³ /30s/100bar	hydraulischer Durchfluss der Düse bei ∆p= 100 bar
<i>r</i> _{Verdampfung}	kJ/kg	Verdampfungsenthalpie pro Kilogramm
R_{a}	J/(kg·K)	spezifische Gaskonstante der Luft
R _D	J/(kg·K)	spezifische Gaskonstante des dampf-förmigen n-Tridekans
Ruß	g Ruß/kg Fuel	emittierte Rußmasse im Abgas pro Kilogramm Kraftstoff
$s(\alpha)$	mm	Kolbenhub an der Kurbelwinkelstellung a
SZ	FSN	Schwärzungszahl nach dem Filtermeßprinzip von Bosch
t	S	Zeit
$T_{\rm a}$	K	Temperatur der im Einspritzstrahl eingesaugte Luft
$T_{\rm aus}$	K	Temperatur des Kraftstoffs im Strahl am Spritzlochaustritt
$T_{\rm D}$	K	Temperatur des Kraftstoffdampfes im Einspritzstrahl
T _{Kammer}	K	Temperatur des vom Einspritzstrahl umgebenden Gases
T_{\min}	K	minimale Bildungstemperatur des Rußes
$T_{\rm Norm}$	K	Temperatur des Gases im Normzustand
T_{Strahl}	K	Temperatur im Gasstrahl
$T_{\rm S}$	K	Sättigungstemperatur des Kraftstoffdampfes im Strahl
$T_{\rm V}$	K,	Verdampfungstemperatur
$U_{\rm aus}$	m/s	Geschwindigkeit des Strahls am Spritzlochaustritt
U(x)	m/s	Geschwindigkeit des ausgebildeten Einspritzstrahls bei x
U(x/2)	m/s	Geschwindigkeit des ausgebildeten Einspritzstranis bei x/2
Umfang(x)	m m/s	Omfang des Einspritzstranis quer zur Mittenachse bei x
	m/s	Geschwindigkeit des Tropfens
V _c		A Statistican Magazaharan hai dam Eiltarmaganingin yan
Veff	III	Bosch
$V_{\text{Gasamt}}(\alpha)$	cm ³	Volumen des Brennraums bei Kurbelwinkelstellung a
Vh	cm ³	Hubraum
Ŵ	m ³ /s	Volumenstrom des Ansauggases bei Ventilhubstellung i
Vs	m ³	angesaugte Gasvolumen des Filtermeßprinzips von Bosch
VStrahl	m/s	Geschwindigkeit des Einspritzstrahls
V_{T}	m ³	Totvolumen bei dem Filtermeßprinzip von Bosch
We	-	Weberzahl
x	mm	Position auf der Mittenachse des Einspritzstrahls

V	1.00	Pata an autorn rijekgaführtas Abgas im Saugrahr
AGe	- 01/2 1 1 1 1 1	Rate an extern ruckgerunnes Aogas in Saugion
α	Kurbelwinkel	Position der Kurbelweile bezogen auf dem oberen Totpunkt
α_K	-	Durchflusszahl nach Thien Messverfahren
Δp	bar	Druckdifferenz Zwischen Düsensacklochraum und Brenn-
100		raum
$\Delta \tau$	-	Offset zwischen den Mischungsverhältnissen τ_{her} und τ_{soll}
Δt	S	Zeitintervall
£	-	Verdichtungsverhältnis des Motors
2	N-s/m ²	dynamicaha Viskosität dar Luft
η _a	Nic/m ²	dynamische Viskosität des flüssigen Kreftstoffs
7/FI	19/5/111	
ĸ	-	Isentropenexponent
λ	-	Luftverhältnis
λα	-	Luftaufwand
$\lambda_{ m E}$	-	Einlassluftverhältnis
λ_{G}	-	Luftverhältnis des Gases aus Luft und rückgeführtem Abgas
\mathcal{O}_{2}	kg/m ³	Dichte des im Einspritzstrahl eingesaugten Gases
ⁿ a	kg/m ³	Dichte des Kraftstoffdampfes im Strahl
	kg/m^3	Dichte des flüssigen Kraftstoffes im Strahl
$ ho_{ m Fl}$	kg/m	Dichte des hussigen Klanstones im Strah
$ ho_{ ext{OT}}$	kg/m ^s	Dichte des komprimierten Gases im 201
$ ho_{ m Strahl}$	kg/m ³	Dichte des gasförmigen Einspritzstrahls
$\sigma_{ m Fl}$	N/m	Oberflächenspannung des flüssigen Kraftstoffs
τ	-	Verhältnis von Kraftstoffdampf- und Luftmasse im Strahl
ψ_i	% Vol.	Volumenanteil des Gases i
tiefgestellt		
A		Abgas
a		durch Gasentrainment im Strahl angesaugtes Umgebungsgas
AGe		extern rückgeführtes Abgas
ber		berechnet
Dampf		dampfförmig
Elüssia		als Flüssigkeit
Gasentrainment		Der Finspritzstrahl saugt radial Gas aus der Umgebung an
G		Gasgemisch aus Luft und rückgeführtes Abgas
Gasamt		Gasgernisen aus Euri und ruckgerunnes Abgas
Gesam		
L		
max		maximaler Wert
Messung		gemessener Wert
mitAGe		das Gasgemisch enthält extern rückgeführtes Abgas
min		minimaler Wert
ohneAGe		Das Gasgemisch enthält keine extern rückgeführtes Abgas
pInj		Einspritzdruck
Rußgrenze		Definierte max. Wert für die Rußkonzentration im Abgas
soll		Sollwert
Start		Anfangswert
st		stöchiometrisch
Zvl		Motorzylinder
2 yr		Diahta das von Motorkolhan komministen Gasas im -OT
ρΟΙ		En Shung des Deremeters Sin eine Helkierung der
1/2		Ernonung des Parameters für eine Halbierung der gemesse-
		nen Rußkonzentration im Abgas

Abbildungsverzeichnis

Abb. 1.1:	Überblick über die Emissionsgrenzwerte für dieselgetriebene Pkw in der EU	1
Abb. 1.2:	Innermotorische Maßnahmen zur Senkung der NO _x - Emissionen	3
Abb. 1.3:	Lastkollektive MNEFZ, 1500kg Fahrzeug mit 2.0L Vier- zylinder Dieselmotor	6
Abb. 2.1:	Rußbildungsphasen nach Bockhorn [5]	9
Abb. 2.2:	Rußertrag in Abhängigkeit von λ und der Temperatur [9].	10
Abb. 2.3:	Diskretisierungsbeispiel eines Einspritzstrahles in Pakete nach Hiroyasu [18]	12
Abb. 2.4:	Filtermessprinzip	14
Abb. 3.1:	Ablenkung der Einspritzstrahlen in der Mulde [35]	17
Abb. 3.2:	Vier Zerfallsbereiche von Flüssigkeitsstrahlen [38]	19
Abb. 3.3:	Verteilung in Abhängigkeit vom mittleren Sauterdurch- messer	22
Abb. 3.4:	Sauterdurchmesser in Abhängigkeit vom Einspritzdruck [56]	23
Abb. 3.5:	Die von einem Hochdruckspray induzierte Luftströmung [50]	25
Abb. 3.6:	Maximale Eindringtiefe der Flüssigphase bei Variation des Einspritzdrucks und des Lochdurchmessers für ver-	•
	schiedene Ersatzkraftstoffe [47]	26
Abb. 3.7:	Spray-Modell nach Naber und Siebers [44]	28
Abb.3.8:	Brennkammeraufnahme von Pauer [17]	32
Abb. 3.9:	Skizze eines ausgebildeten Einspritzstrahls in einer Pkw Kolbenmulde mit Omega-Form positioniert im Oberen	26
Abb 11.	Dandhadingungan dar Abgasröckföhretenvariationan	30 41
Abb. 4.1.	Indigical ungen der Ladedruck von internationen	41
ADD. 4.2:	führung	43
Abb. 4.3:	Verlauf der Russemissionswerte bei Veränderung der Sauerstoffkonzentration im angesaugten Gasgemisch	45

Abb. 4.4:	NO _X -Reduzierungsrate bei Absenkung der Sauerstoff konzentration im Ansauggemisch	
Abb. 4.5 :	Änderungen der Konzentration von Stoff <i>i</i> im Ansaug- trakt	
Abb. 4.6:	Vergleich der gemessenen und gerechneten Werte	
	des Sauerstoffgehalts im Abgas	
Abb. 4.7:	Verlauf der Stoffkonzentration im Ansauggemisch über den Abgasanteil	
Abb. 4.8:	Einfluss der Konzentration der Moleküle CO2 und H2O	
	im Ansauggemisch auf die adiabate Verbrennungs- temperatur	
Abb. 4.9:	Verlauf der Sauerstoffkonzentration im Ansaugtrakt	
Abb. 4.10:	Verläufe von Luftverhältnis und Einlassluftverhältnis bei Veränderung der Abgasrückführrate	
Abb. 4.11:	Schwarzrauchwerte über dem Luftverhältnis	
	und dem Einlassluftverhältnis dargestellt	
Abb. 4.12:	Vergleich zwischen dem Luft- und dem Gasgemischver- hältnis	
Abb. 4.13:	Schwarzrauchwerte über dem Gasgemischverhältnis λ_G	
	Aufgetragen	
Abb. 4.14:	Indizierkurven der Luftverhältnisabsenkungen durch	
	Abgasrückführung	
Abb. 4.15:	Russemissionsergebnisse der Luftverhältnisabsenkungen	
Abb. 4.16:	Verläufe des Luftverhältniswerts über Abgasrückführrate für die Luftverhältnisabsenkungen durch Rückführung von Abgas im Saugrohr	
Abb. 4.17:	Unterschiede in der zugeführten Brennstoffmasse zwi- schen den zwei durchgeführten Luftverhältnisab- senkungen	
Abb. 4.18:	Verhältniswerte der zugeführten Brennstoffmassen an der Rußgrenze der Luftverhältnisabsenkungen mit und ohne Abgasrückführung über dem Einflussfaktor des Abgasan-	
	tells aufgetragen	
Abb. 4.19:	Veränderung der angesaugten Gasmassen über λ_{Start}	

Abb. 4.20:	Erreichte Abgasrückführrate an der definierten Rußgren- ze von 0.6g/kg fuel bei den untersuchten Luftverhältnisse	72
Abb. 4.21:	Erreichter Luftverhältniswert mit rückgeführtem Abgas an der definierten Russgrenze bei den untersuchten Aus- gangsluftverhältnisse λ_{Start}	73
Abb. 5.1:	Darstellung des Sacklochdruckplateaus bei höheren Ein- spritzmassen	78
Abb 5 2.	Approximation des Verlaufs des Formfaktors	70
Abb. 5.3:	Vergleich der mittels Gleichung 5.4 berechneten und der	15
100. 5.5.	mittels AMESim simulierten Werte	81
Abb. 5.4:	Schnittbild der Düsenkuppe	82
Abb. 5.5:	Approximation des Verlaufs von Formfaktor über maxi-	
	malem Sacklochdruck	83
Abb. 5.6:	Approximation des Verlaufs von mittlerem Sackloch-	
	druck	84
Abb. 5.7:	Vergleich der maximalen Druckwerte in der Düse	85
Abb. 5.8:	Darstellung des Druckverlustes über dem hydraulischen	
	Durchfluss	86
Abb. 5.9:	Zylinderdruckverläufe der Raildruckvariation bei kon-	0.0
	stantem λ	88
Abb. 5.10:	Gemessene Werte von zugeführter Brennstoffmasse und	
	kungen ohne Voreinspritzung	89
Abb 5.11:	Darstellung der berechneten Werte des mittleren <i>n</i> _{lni}	91
Abb 5.12:	Vergleich zwischen der Mess- und der berechneten Wer-	
1100.0.112.	te von Russemission	93
Abb. 5.13:	Darstellung der berechneten Werte von mittlerer <i>p</i> _{<i>lnj</i>}	94
Abb. 5.14:	λ-Werte über dem mittleren Sacklochdruck	94
Abb. 5.15:	Zylinderdruckverläufe der Raildruckvariation bei kon-	
	stantem Luftverhältnis	95
Abb. 5.16:	Gemessene Werte von zugeführter Brennstoffmasse und	
	von Rußemission im Abgas aus den Luftverhältnisabsen-	
	kungen mit Voreinspritzung	96
Abb. 5.17:	λ-Werte über dem mittleren Sacklochdruck	97

Zylinderdruckverläufe der Gasdichtevariation bei kon- stantem Luftverhältnis	99
Zugeführter Brennstoffmasse und Rußemission im Abgas aus den Luftverhältnisabsenkungen bei verschiedenen Ladedrücken	100
Darstellung der berechneten Werte der mittleren <i>plnj</i>	10
Luftverhältniswerte bei Steigerung der Gasdichte für zwei Raildruckniveaus	102
Luftverhältniswerte bei Steigerung des Einspritzdrucks	103
Luftverhältniswerte im Teillastbetrieb bei Änderung der Gasdichte und des Einspritzdrucks am Aggregat Nr.1 mit Basiszylinderkopf und "enge"-Mulde	104
Verlauf der Rußwerte aus der Raildruckvariation über dem Luftverhältnis	100
Verlauf der Rußwerte bei Raildrücken von 800 und 1600 bar über λg	107
Luftverhältniswerte an der Rußgrenze mit und ohne Abgasrückführung	108
maximale Eindringtiefe der Flüssigphase gemessen an der Hochtemperatur- / Hochdruckbrennkammer der Robert Bosch GmbH [61]	113
Modell zur Berechnung der mittleren Strahlgeschwindig- keit	115
Berechnete maximale Eindringtiefe der Flüssigphase bei Veränderung der Gasdichte, nach Siebers [47]	118
Berechnete Werte der mittleren Strahlgeschwindigkeit und der Eindringtiefe der Strahlspitze	120
Schematische Darstellung des Verdampfungsmodells	122
Siedekurve des in den Motorversuchen verwendeten Dieselkraftstoffes	123
Iterationsalgorithmus zur Berechnung von Tstrahl	125
Berechnete Werte für λ und für <i>Tstraht</i> bei einer Variation der Gasdichte	125
Berechnete Werte der mittleren Impulsdichte des Strahls am Muldenrand	128
	Zylinderdruckverläufe der Gasdichtevariation bei kon- stantem Luftverhältnis

Abb. 6.11:	Vergleich der berechneten Dampfpartialdrücke aus der Dampfdruckkurve und aus Gleichung 6.20	129
Abb. 6.12:	Ausgewertete Größen vonMattes [41]	131
Abb. 7.1:	Düsenkonfigurationen der Lochanzahlvariation	134
Abb. 7.2:	Konfigurationen der Düsen des hydraulischen Durch- flusses	135
Abb. 7.3:	Berechnete Werte der mittleren Strahlgeschwindigkeit am Muldenrand für eine Lochanzahl- und für eine <i>Qhyd</i> -	
	Variation	136
Abb. 7.4:	Berechnete mittlere Strahlgeschwindigkeit zur Darstel- lung des Einflusses der Lochanzahl	137
Abb. 7.5:	Berechnete mittlere Impulsdichte am Muldenrand für beide Variationen	138
Abb. 7.6:	Indizierkurven aus der Raildruckvariation mit <i>Ohvd</i> =	
	380 cm ³ /30s@100bar	140
Abb. 7.7:	Indizierkurven aus der <i>Qhyd</i> -Variation mit 900bar kon- stantem Raildruck	141
Abb. 7.8:	Ruß- und NOx- Messwerte aus den Abgasrückführraten- variationen bei der Variation des hydraulischen Durch-	
	flusses	142
Abb. 7.9:	Abgasrückführrate an der Rußgrenze 0.4g/kg fuel bei einer Variation des hydraulischen Durchflusses	144
Abb. 7.10:	Indizierkurven aus der Lochanzahlvariation bei einem Raildruck von 900 bar	146
Abb. 7.11:	Abgasrückführrate an der Rußgrenze 0.4 g/kg fuel bei der	
	Variation der Lochanzahl am Aggregat Nr. 2	147
Abb. 7.12:	Berechneter Lochdurchmesser bei beiden Variationen der Lochanzahl	148
Abb. 7.13:	Schematische Darstellung zur Definition von Größen bei	1.51
	der Variation der Duseneinragtiete	151
Abb. 7.14:	Unterlegscheibendicke und entsprechender geometrischer Strahlursprung	151
Abb. 7.15:	Gemessene Indizierkurven der Raildruckvariation bei dem geometrischen Strahlursprung von $GSU = 0.47$ mm.	152
	Brennen Standarsprung (on 656 - 0,17 mm).	10.

Abb. 7.16:	Gemessene Abgasrückführrate an der Rußgrenze 0,6 g/kg fuel bei der Variation der Düseneinragtiefe am Aggregat Nr. 1	153
Abb. 7.17:	Berechneter Auftreffanteil auf dem Turbulenzring bei Variation der Düseneinragtiefe am Aggregat Nr. 1, ange- lehnt an [41]	156
Abb. 7.18:	Aufnahme der Einlasskanäle vor und nach der Bearbeitung	158
Abb. 7.19:	Messergebnisse des stationär durchströmten Zylinder- kopfes	159
Abb. 7.20:	Brennraummodell zur Berechnung des Massenträgheits- momentes	162
Abb. 7.21:	Halbschnitt der verwendeten Mulde	163
Abb. 7.22:	Berechnete Drallverhältnisse cu/cm für die Drallvariation am Aggregat Nr.1	164
Abb. 7.23:	Ergebnisse aus der Drallvariation mit der 7-Lochdüse am Aggregat Nr. 1	166
Abb. 7.24:	Vergleich der Umsatzpositionen aus der Drall- und Raildruckvariation	168

XVIII

1 Einleitung

Mit der Einführung kleiner aufgeladener direkteinspritzender (DI) Dieselmotoren für Personenkraftwagen zu Beginn der 1990er Jahre hat sich das Bild des Pkw-Dieselmotors gewandelt. Zu seinen Vorzügen gehört es, neben hoher Wirtschaftlichkeit und Drehmomentstärke, dass der Dieselmotor spezifische Leistungswerte erreicht, die den Vergleich mit Ottomotoren nicht zu scheuen brauchen: zum Beispiel bis zu 74 Kilowatt pro Liter Hubraum beim BMW Alpina D3. Auch wenn der Dieselmotor durch seinen günstigen Verbrauch in der Bilanz des Treibhausgases Kohlendioxid (CO₂) zurzeit wettbewerbsfähig ist, muss er sich mit seinen Partikel- (PM) und Stickoxidemissionen¹ (NO_x) den immer schärfer werdenden Schadstoffemissionsgrenzwerten stellen. Seit der Einführung der Abgasgesetzgebung in der EU sind die Grenzwerte für Diesel-Pkw stets gesunken. Einen Überblick für dieselgetriebene Pkw gibt Abbildung 1.

 $^{^{1}}$ Stickoxide (NO_x) sind Moleküle, die durch Oxidation von Stickstoff (N₂) bzw. stickstoffhaltigen Verbindungen entstanden sind, wobei diese in Motorabgasen fast ausschließlich als NO, NO₂ und N₂O (Lachgas) vorliegen.

Zur Erfüllung zukünftiger Abgasgrenzwerte in Europa (abgekürzt: EURO V) ist beim Pkw-Dieselmotor neben der bereits realisierten CO- und HC-Konvertierung durch Oxidationskatalysatoren eine deutliche Partikel- und Stickoxidminderung unabdingbar. Zur Reduzierung der ausgestoßenen Stickoxidemissionen sind zwei Wege möglich: Eine innermotorische Vermeidung der Entstehung und eine zusätzliche Abgasnachbehandlung.

Die Katalysatoren zur NO_x -Reduktion im Abgas fanden bisher nur in Einzelfällen Einsatz in Serienfahrzeugen: z.B. mit dem Mercedes-Benz-BLUETEC-Konzept in der E-Klasse in Kalifornien (USA) [74], wo die Grenzwerte auf sehr niedrigem Niveau liegen. Dort reichen die innermotorischen Maßnahmen zur Erfüllung der NO_x -Grenzwerte nicht mehr aus, so dass die Zusatzkosten für einen NO_x -Katalysator in Kauf genommen werden müssen.

Die wirkungsvollste innermotorische Maßnahme zur Minimierung der Stickoxidemissionen stellt die Abgasrückführung dar. Die derzeit am weitesten verbreitete Abgasrückführungsart zur Erfüllung der heute gültigen Norm Euro IV bei Diesel-Pkw ist die externe Abgasrückführung. Dabei wird dem Abgastrakt vor der Turbine des Turboladers über ein Abgasrückführventil eine definierte Menge Abgas entnommen und der Ansaugluft hinter dem Verdichter des Turboladers zugeführt. Die Verminderung von NO_x durch Abgasrückführung bewirkt jedoch eine Erhöhung der Partikelemissionen. Aus der Senkung der Stickoxid-Emissionen und dem gleichzeitigen Anstieg der Partikelemissionen ergibt sich ein NO_x-Partikel-Konflikt, Abb. 1.2.

Ansätze zur innermotorischen Verbesserung der Stickoxid- und Partikel-Emissionen zielen vor allem in Richtung einer Verringerung der Partikel; damit wird eine Erhöhung der Abgasrückführrate ermöglicht. Der Partikelanstieg aufgrund hoher Abgasrückführrate findet dadurch bei geringeren NO_x-Werten statt.

Abbildung 1.2: Innermotorische Maßnahmen zur Senkung der NOx-Emissionen

Die effektivste Möglichkeit zur Einhaltung zukünftiger Grenzwerte für Partikelemissionen ist der Einsatz eines Dieselpartikelfilters (DPF), der sich derzeit im Automobilsektor etabliert. Das Abgas durchströmt den Filter, in dem die Partikel festgehalten werden. Eine technische Herausforderung stellt die Filterregeneration dar. Partikelablagerungen führen zu erhöhtem Abgasgegendruck, wodurch der Kraftstoffverbrauch steigt. Die Regeneration selbst wird während des Fahrens durchgeführt, mittels eines Motorbetriebs, der einen schlechten Wirkungsgrad aufweist (mit einer zusätzlichen späten Nacheinspritzung zur Anhebung der Abgastemperatur). Um diese Nachteile beim Betrieb mit DPF zu reduzieren, ist es notwendig, die erzeugten Partikelemissionen auf niedrigem Niveau einzugrenzen. Da die Abgasrückführrate künftig eher erhöht wird, um die zukünftige NO_x-Grenzwerte einzuhalten, muß das Partikelemissionsniveau bei hoher Abgasrückführrate durch innermotorische Maßnahmen weiter reduziert werden. Eine innermotorische Partikelminderungsmaßnahme mit der bestehenden diffusiven¹ Verbrennung im Pkw - Dieselmotor, bei der keine Verschlechterung der innermotorischen CO- und HC-Emission eintritt, ist die Steigerung des Einspritzdrucks. Die Weiterentwicklung der Dieseleinspritzsysteme in den vergangenen Jahren ging mit einem starken Anstieg der Einspritzdrücke einher, wobei aktuelle Systeme Spitzendrücke von 2000 bar² erreichen und eine weitere Steigerung absehbar ist. Besondere Bedeutung kommt in diesem Zusammenhang dem Einspritzsystem und der Frage zu, ob mit konventioneller Verbrennungsführung im Pkw-Dieselmotor wesentliche Fortschritte bei der Absenkung der Partikelemission bei hoher Abgasrückführrate durch Anhebung des Einspritzdrucks überhaupt zu erzielen sind. Als Schlüsselinformation für eine solche Potenzialabschätzung gilt die Antwort auf die Frage: Wie wird die hohe kinetische Energie des Kraftstoffstrahls im Pkw-Brennraum, der einen hohen Anteil an extern rückgeführtem Abgas enthält, in eine Absenkung der Partikelemission umgesetzt?

Durch den hohen Einspritzdruck wird ein hohes Druckgefälle an den Spritzlöchern der Düse erreicht, das für eine hohe Austrittsgeschwindigkeit des Kraftstoffstrahls sorgt. Die direkte Einbringung des Kraftstoffs mit hoher Geschwindigkeit in den Brennraum beeinflusst die Aufbereitung des Kraftstoff-Luft-Gemisches und dadurch den Verbrennungsablauf. Der Brennverlauf beeinflusst den Innenwirkungsgrad und die Schadstoffemissionen. Hierbei sind einzelne Auswirkungen der intensiven Wechselwirkung des Kraftstoffstrahls mit dem Brennraumgas erforscht worden: Die feinere Zerstäubung des Kraftstoffstrahls in kleine Tröpfchen, die Erhöhung der Turbulenz im Brennraum, die durch den Strahl induzierten Gasbewegungen, das Einbringen des Gases in den Strahl (Gasentrainment) oder die intensivere Interaktion mit der Mulde. Jedoch steht eine Gewichtung der einzelnen Prozesse in einem einheitlichen Modell noch aus. Gesucht ist ein Modell, das ein besseres Verständnis des Vorgangs erlaubt, der

¹ Als diffusiv wird ein kompletter Verbrennungsvorgang bezeichnet, der zu Beginn eine zeitliche Überlappung der Einspritzung und der Verbrennung im Brennraum aufweist. Eine diffusive Dieselverbrennung fängt aufgrund des vorhandenen Zündverzugs mit einem vorgemischten Verbrennungsanteil an.

 $^{^2}$ Das Einspritzsystem CRS3.3 der Robert Bosch GmbH weist einen maximalen Raildruck von 2000bar auf.

Einleitung

diejenige Aufbereitung des Kraftstoff-Luft-Gemisches ermöglicht, die zu niedrigen Partikelemissionen führt.

Ziel der folgenden Darstellungen ist es zu zeigen, wie die kinetische Energie des Kraftstoffstrahls im mittleren Teillastbetrieb mit diffusiver Verbrennungsführung unter Verwendung von Abgasrückführung umgesetzt werden kann, und zwar so, dass die Partikelemission im Abgas maßgebend reduziert wird. Als Versuchsträger stehen hierfür zwei Einzylinder-Versuchsmotoren zur Verfügung, die im Motorenprüffeld des Geschäftsbereichs Diesel Systems der Robert Bosch GmbH betrieben werden. Die zwei Aggregate verfügen über eine moderne Brennverfahrensauslegung mit einem Verdichtungsverhältnis von 16:1 und sind mit Common Rail Einspritzsystemen¹ ausgerüstet. Beide Aggregate sind repräsentativ für aktuelle Serienmotoren in Pkw-Fahrzeugen mit Dieselkraftstoff. Eine detaillierte Beschreibung der Aggregate ist dem Anhang 1 zu entnehmen.

Untersucht wird an beiden Einzylindermotoren an einem für den europäischen Fahrzyklus relevanten Teillastbetriebspunkt. Abbildung 1.3 veranschaulicht den gewählten Betriebspunkt im Kennfeld eines Vollmotors. Zusätzlich ist das Lastkollektiv eines 1500 kg Mittelklasse-Pkw mit einem 2.0 Liter Hubraum Vierzylinder Dieselmotor im Europäischen Zyklus dargestellt.

Der blau eingezeichnete Betriebspunkt mit einer Drehzahl von n = 2000 U/min und einer effektiven Last von pme = 6,5 bar liegt im oberen Bereich der Lastkollektive. Dieser Betriebspunkt weist passend zu den Anforderungen der Untersuchungen eine diffusive Verbrennung mit einem Anstieg der Partikelemission bei hoher Abgasrückführrate auf. Bei den Motorergebnissen der Einzylinderversuche ist stets die indizierte Motorlast angegeben, da die Reibung des Einzylindermotors nicht der Reibung eines vergleichbaren Vollmotors entspricht und somit effektive Größen des Einzylindermotors von realistischen Vollmotorwerten abweichen.

¹ Beim Common Rail System (CRS) ist die Einspritzung von der Druckerzeugung entkoppelt. Der Kraftstoffspeicher (Common Rail) hält dabei den Kraftstoffdruck auch nach der Entnahme von Kraftstoff auf nahezu konstantem Niveau, da aufgrund der Elastizität des Kraftstoffs eine Speicherwirkung entsteht. Eine Beschreibung des Funktionsprinzips kann dem Anhang 3 entnommen werden.