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INTRODUCTION 

In  the last decades, chemical physics has attracted an ever- 
increasing amount of interest. The variety of problems, such as 
those of chemical kinetics, molecular physics, molecular spectro- 
scopy, transport processes, thermodynamics, the study of the state 
of matter, and the variety of experimental methods used, makes 
the great development of this field understandable. But the 
consequence of this breadth of subject matter has been the scatter- 
ing of the relevant literature in a great number af publications. 

Despite this variety and the implicit difficulty of exactly 
defining the topic of chemical physics, there are a certain number 
of basic problems that concern the properties of individual 
molecules and atoms as well as the behavior of statistical en- 
sembles of molecules and atoms. This new series is devoted to 
this group of problems which are characteristic of modern chemical 
physics. 

As a consequence of the enormous growth in the amount of 
information to be transmitted, the ariginal papers, as published 
in the leading scientific journals, have of necessity been made as 
short as is compatible with a minimum of scientific clarity. They 
have, therefore, become increasingly difficult to follow for anyone 
who is not an expert in this specific field. In  order to alleviate 
this situation, numerous publications have recently appeared 
which are devoted to review articles and which contain a mare or 
less critical survey of the literature in a specific field. 

An alternative way to improve the situation, however, is to ask 
an expert to write a comprehensive article in which he explains 
his view on a subject freely and without limitation of space. The 
emphasis in this case would be on the personal ideas of the author. 
This is the approach that has been attempted in this new series. 
We hope that as a consequence af this approach, the series may 
became especially stimulating for new research. 

Finally, we hope that the style of this series will develop into 
samething more personal and less academic than what has become 
the standard scientific style. Such a hope, however, is not likely 
to be completely realized until a certain degree of maturity 

V 



vi INTRODUCTION 

has been attained-a process which normally requires a few 
years. 

At present, we intend to publish one volume a year, but this 
schedule may be revised in the future. 

In order to proceed to a more effective coverage of the different 
aspects of chemical physics, it has seemed appropriate to form an 
editorial board. I want to express to them my thanks for their 
cooperation. 

I. PRIGOGINE 
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I. INTRODUCTION 

This article is concerned with the statistical mechanics of inter- 
actions between point defects in solids at thermodynamic equili- 
brium. The review is made entirely from the point of view of the 

1 



2 A. R. ALLNATT' 

cluster formalism recently Although cluster methods 
are very familiar in the theory of classical gases and dense fluids 
they have had hardly any impact on the statistical mechanics of 
defects. This seems a pity because the formalism allows a very 
concise development and also allows one to take full advantage 
of certain developments in the theory of fluids. 

The remainder of Section I is devoted to a rather brief review 
of earlier work in the field in order to gain a little perspective. 
In Sections I1 to IV  the basic results of the cluster method are 
derived. In Section V a very brief account of the application of 
the formal equations to some systems with short-range forces is 
given. Section VI is devoted to a review of the application to 
systems with Coulomb forces between defects, where the cluster 
formalism is particularly advantageous for bringing the discussion 
to the level of modern ionic-solution theory.26 Finally, in Section 
VII a brief account is given of Mayer's formalism for lattice 
defectss0 since it is in certain respects complementary to that 
principally discussed here. We would like to emphasize that the 
material in Sections V and VI is illustrative of the method. This is 
not meant to be an exhaustive review of results obtainable. 

The notion of point defects in an otherwise perfect crystal 
dates from the classical papers by FrenkeP and by Schottky and 
Wagner.7stss The perfect lattice is thermodynamically unstable 
with respect to a lattice in which a certain number of atoms are 
removed from normal lattice sites to the surface (vacancy dis- 
order) or in which a certain number of atoms are transferred from 
the surface to interstitial positions inside the crystal (interstitial 
disorder). These forms of disorder can occur in many elemental 
solids and compounds. The formation of equal numbers of 
vacant lattice sites in both M and X sublattices of a compound 
Max, is called Schottky disorder. In compounds in which M and 
X occupy different sublattices in the perfect crystal there is also 
the possibility of antistructure disorder in which small numbers 
of M and X atoms are interchanged. These three sorts of disorder 
can be combined to give three hybrid types of disorder in crystal- 
line compounds. The most important of these is Frenkel disorder, 
in which equal numbers of vacancies and interstitials of the same 
kind of atom are formed in a compound. The possibility of 
Schottky-antistructure disorder (in which a vacancy is formed by 
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transferring an atom from its own sublattice to an a.dditiona1 site 
on a “wrong” sublattice) and of interstitial-antistructure disorder 
(involving interstitial atoms of one sort and misplaced atoms of 
the other sort) was pointed out much later by Krijger,4* but so 
far only the former has been 0bserved.4~ In actual systems the 
types of disorder described may occur simultaneously. For 
example, it has been suggested that both Schottky and cationic 
Frenkel disorder occur in silver br0mide.4~ The units which make 
up the various types of disorder, namely interstitial atoms, mis- 
placed atoms, vacant lattice sites, are referred to as point defects. 
I t  is also convenient to include impurity atoms under this 
term. 

The papers of Wagner and Schottky contained the first statis- 
tical treatment of defect-containing crystals. The point defects 
were assumed to form an “ideal solution’’ in the sense that they 
are supposed not to interact with each other. The equilibrium 
number of intrinsic point defects was found by minimizing the 
Gibbs free energy with respect to the numbers of defects at con- 
stant pressure, temperature, and chemical composition. The 
equilibrium between the crystal of a binary compound and its 
components was recognized to be a statistical one instead of being 
uniquely fixed. 

One of the first detailed applications of these ideas was to the 
interpretation of ionic conductivity in simple ionic crystals. The 
vacancies in strongly ionic solids (eg. alkali halides, silver halides, 
alkaline earth oxides) are ionic vacancies, i.e. they carry effective 
electrical charges equal and opposite to those of the missing ions. 
Similarly, an interstitial ion has an effective charge equal to the 
charge on the ion. Since the bulk of the crystal is electrically 
neutral it follows that in a pure uni-univalent stoichiometric 
crystal the numbers of oppositely charged defects must be equal. 
Since antistructure disorder is clearly unlikely, either Schottky or 
Frenkel disorder, or both, are the most probable forms of disorder 
in an ionic crystal, and ionic conduction can occur through the 
migration of the defects. An important method of distinguishing 
between the two possibilities and also of finding the number and 
mobility of the defects was devised by Koch and WagnerS9 and 
makes use of conductivity measurements on both the pure crystal 
and crystals containing small, controlled amounts of divalent 
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cations. Provided these impurities are incorporated substitu- 
tionally in the crystal a vacancy must be added for every impurity 
ion to maintain electrical neutrality, and hence the number of 
additional vacancies is known. In this way alkali halide crystals 
have been shown to contain Schottky defects and AgBr and AgCl 
predominantly cationic Frenkel defects. More recently, the 
dynamics of the defects has been studied by a wide variety of 
techniques including dielectric nuclear magnetic reson- 
ance,72 and paramagnetic resonance.86 Recent work, principally 
diffusion and conductivity studies, has been reviewed by Lidiard.53 
The defects also make contributions to the equilibrium thermo- 
dynamic properties, but for ionic crystals these contributions are 
so small that it is only in relatively recent years that these con- 
tributions have been measured in favourable cases (e.g. the specific 
heat,15 thermal expansion,8s and adiabatic compressibility8a of 
silver bromide. In this substance the site fraction of cation 
vacancies may be as high as 10-2 at the melting point. The degree 
of disorder appears to be smaller than this for most simple ionic 
solids, e.g. approximately 10-4 for sodium chloride at  the melting 
point). 

Since ionic vacancies are electrically charged they may trap 
electrons or holes into localized states. For example, KC1 which 
has been heated in potassium vapour contains an excess of anion 
vacancies and these trap the electrons from the potassium ions 
to give F-centres. In the period following the Schottky-Wagner 
papers extensive studies of the formation and properties of such 
colour centres were commenced (see e.g. Mott and Gurneysg). 
The Schottky-Wagner ideas also gave a background for the con- 
sideration of nonstoichiometry in a wide range of other solids. 
For example, Fe,-,O and Fe,-,S were found to contain cation 
vacancies but apparently perfect anion sublattices. 38 Studies 
were also made of titanium oxides and chalcogenides, the pal- 
ladium hydride system, and various transition metal oxides and 
sulphides and selenides. More recently, extensive studies of point 
defects have been made in other materials, particularly metal@ 
and semicond~ctors,~~ by diffusion studies and many other 
techniques. 

The observations on defect-containing crystals show that they 
fall broadly into two groups. In  the first group the deviations from 
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the perfect crystal structure are detectable but very small. 
Examples are the intrinsic lattice disorder occurring in metals, in 
simple ionic conducting solids such as NaC1, AgBr noted above, 
and in ionic semiconductors such as PbS,-,, %nO,-,, and 
F-centres in alkali halides. The second group comprises compounds 
which show gross deviations from stoichiometry, e.g. Fe,.,,O, the 
palladium hydride system, and very many other hydrides, 
oxides, and chalcogenides of transition metals. Anderson’ has 
recently reviewed some of the characteristics of this group (see 
also the other papers in this book), in which a high proportion of 
the defects must be adjacent to each other or in small clusters of 
*defects. The systems we have in mind in the present discussion 
belong primarily to the first group. However in Section VII we 
review briefly a method which should prove valuable for systems 
with larger deviations from stoichiometry, although detailed 
calculations are so far lacking. 

Results of the “ideal solution” approach were found to be 
identical with those arrived at  on the basis of a simple quasi- 
chemical method. Each defect and the various species occupying 
normal lattice positions may be considered as a separate species 
to which is assigned a “chemical potential”, p, and at equilibrium 
these are related through a set of stoichiometric equations cor- 
responding to the “chemical reactions” which form the defects. 
For example, for Frenkel disorder the equation will be 

pi f P, = Pt (1) 

corresponding to the reaction : 

Interstitial Vacant lattice - Atom in normal - 
atom + site lattice site 

The quantities p are not Gibbs chemical potentials since their 
definition involves the defect composition of the crystal. We 
shall call them defect chemical potentials and they are defined by 
the relation 

t 

W, here G is the Gibbs free energy of the crystal. From th6 “ideal 
scjlution” expression for G the chemical potentials are quickly 

a 
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found; for a small degree of Frenkel disorder we have 

pi = gi + kTlog ci + I.: 
p a  = gw + kT 1% cw 

Pz = P! (3) 

(4) 

and Eq. (1) yields at  once 

C r 4  = K = exp [- (g, + gw)/kTI 
In these equations g,, is the change in Gibbs free energy on taking 
one atom from a normal lattice site to the surface of the crystal 
and (gi + gu) the change when an atom is taken from a normal 
lattice site to an interstitial site, both at constant temperature 
and pressure. c, denotes a site fraction of species Y on its sub- 
lattice, and &’ is the chemical potential of a normal lattice ion in 
the defect-free crystal. 

The quasi-chemical method, namely the use of a set of reaction 
equations and corresponding equilibrium constants analogous 
to Eqs. (1) and (4), is the most widely used approach to defect 
properties and is presented in detail in the book by KrOger.4l 
(We should note that there is a degree of arbitrariness in writing 
the reaction equations and defining a set of defect chemical 
potentials. This point is fully discussed by Kroger, sections 7.8 
and 22.13. The definition above corresponds to assigning chemical 
potentials to what he calls “structure elements”.) The correspond- 
ing defect chemical potentials are of value in discussions of matter 
transport via defects using the methods of irreversible thermo- 
d y n a m i c ~ . ~ ~ ~ ~  

In the interpretation of many experiments, both equilibrium 
and non-equilibrium, it becomes necessary to recognize that 
defects interact so that their relative distribution is no longer. 
random. For example, in the interpretation of thermal expansion 
measurements on aluminium7g it is necessary to recognize thre 
possibility of divacancies (two vacancies on adjacent lattice sites);. 
The quasi-chemical method is then extended, the equilibriur n 
between the species divacancy and vacancy being described b\y 
an additional mass-action equation and a certain binding energly, 
and the divacancy can be assigned a defect chemical potential 0 s  
a separate species. Trivacancies or higher aggregates each char -ac- 
terized by further equilibria may exist. The quasi-chemi, cd 
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method is thus quite simply extended to compound defects such 
as nearest-neighbour aggregates or vacancies trapped as neigh- 
bours to solute atoms. In ionic crystals where the defect interac- 
tions are Coulombic except at small separations, the interactions 
are of long range and relatively important in their effect on defect- 
controlled properties. The interactions of divalent cations and 
cation vacancies in a sodium-chloride-like crystal are of particular 
interest in connection with the Koch and Wagner type of experi- 
ment described above. The extension of the quasi-chemical 
method is somewhat less straightforward in this case. Lidiard6I 
has treated the thermodynamics of such a system by distinguish- 
ing between neutral “complexes”, composed of a vacancy and an 
impurity ion on adjacent sites and characterized by a binding 
energy, and the interactions among defects not involved in com- 
plexes. The contribution of the latter interactions, to the total 
free energy of the system was calculated by applying the results 
of the Debye-Huckel theory of electrolyte solutions. The effect 
of these interactions on the equilibrium could then be found. The 
use of this sort of theory, which is essentially a modification of the 
Bjerrumll theory of electrolyte solutions, and its assumptions will 
be reviewed in detail in a later section (VI-A). We may note here 
however that the Debye-Huckel law is only a limiting one and is 
derived for the case of a continuum rather than for discrete lattice 
sites. Furthermore it is recognized that the concept of a “com- 
plex” appears to be slightly arbitrary when considered in detail. 
Although the method is presumably quite adequate at low enough 
concentrations it is difficult to pin down the conditions under 
which deviations become important or to develop within the same 
framework a theory valid at  high concentrations. (This particu- 
lar problem provided one of the strongest motivations for setting 
up the cluster formalism.) 

The preceding paragraphs illustrate that analogies between point 
defects in a crystal and solute molecules in a solution ‘have been used 
previously but in a fairly elementary way. However, the implica- 
tions of the existence of such analogies in the formulation of the 
statistical mechanics of interacting defects has not been considered 
in detail apart from an early paper by Mayer,69 who was interested 
primarily in the relation of defect interactions to the solid- 
liquid phase transition in crystals with short-range forces. The 



a A. R.  ALLNATT 

formalism described here is analogous in intent to the McMillan- 
Mayera4~33 theory of solutions and is suitable for crystals contain- 
ing small concentrations of defects, up to say one per cent. The 
contribution of the defect interactions to each thermodynamic 
function can be expressed as a “cluster expansion”, i.e. a power 
series in the concentration of the defects. The coefficients of the 
power series are defined in terms of the summations over co- 
ordinates of functions analogous to the ‘If” functions of imperfect 
gas and solution theory.33 In particular, the expressions for the 
defect chemical potentials and the expressions for defect con- 
centrations derived from them are merely changed by the inclu- 
sion of activity coefficients for which cluster expansions are 
available. The use of the law of mass action is thus avoided. 
Within such a formalism the spatial distribution of defects, 
previously described in terms of “complexes” divacancies, or 
higher aggregates using the law of mass action, must be reformu- 
lated as the study of the relative distribution functions of the 
defects. Cluster expansions are derived for these quantities. 
These quantities prove essential for a systematic development of 
the phenomenological coefficients in diffusion,26 although we shall 
not discuss this here. 

11. CONFIGURATIONAL SPECIFICATION OF 
DEFECT-CONTAINING CRYSTALS 

To state clearly the problem at hand it is necessary to introduce 
initially a detailed notation for the composition of a crystal. For 
much of the later manipulations it is possible to use a very much 
simpler, abbreviated version of the notation. From the point of 
view of thermodynamics, the composition of an imperfect crystal 
is specified when the number of atoms of each of the different 
chemical species present is given. Let atoms which appear in a 
perfect crystal be denoted by a subscript 0, and let No denote the 
No atoms of ~7 different species (Nol, No,, . . ., No,), all of which 
species appear in the perfect crystal, i.e. 

f7 

No = c NO8 
s=l 

Let N, denote the set of N ,  atoms of Y species @Val, No2, . . ., Nay) 
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none of which species occurs in a perfect crystal of‘ the material, 
so that 

V 

Na = C Nas (6) 
s=l 

Then the composition of an imperfect crystal is given thermo- 
dynamically by the set of numbers N = No + Na. For each species 
there is a chemical potential; thus ptOs is the chemical potential 
for an atom of species Os, po denotes the set of cr such quantities, 
and similarly for pa. 

We turn now to the microscopic description of an imperfect 
crystal. The various defects in any imperfect crystal can be 
imagined to be formed from a corresponding perlect crystal by 
one or more of the following processes: (a) remove an atom of 
species 0s from the crystal leaving a vacant lattice site, (b) remove 
an atom of species 0s from the crystal and replace it by an atom 
of a different species (either Ot or at), (c) add to the crystal an atom 
of any species to a site on a sublattice unoccupied in the perfect 
crystal. We refer to the latter as atoms in interstitial positions. 
Let B be a set of numbers such that B‘ is the number of sites on 
sublattice number I in the perfect crystal, and let 4 be the number 
of sublattices in the crystal (including interstitial sublattices not 
occupied in the perfect crystal). The total number of sites of all 
kinds in the perfect crystal is then 

9 

‘=1 
B =zB‘ (7) 

Thus atoms of species 0s may be found in an imperfect crystal 
in their normal lattice positions, occupying sites on the “wrong” 
sublattice (that is a sublattice occupied by an atom of a different 
species in the perfect crystal), or in interstitial positions. Let the 
numbers of such atoms be N& N g ,  NI,,  respectively, so that 

An atom on a wrong sublattice may be classified according to the 
number of the sublattice it is on (and hence the species of atom it 
has replaced). Thus, we have 
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where N F  is the number of atoms of species 0s which occupy 
sites on sublattice number 7,  which would be occupied by some 
other species Ot in the perfect crystal. In Eq. (9), the limit of the 
summation, 6,  is the number of occupied sublattices in the perfect 
crystal. The prime indicates the exclusion from the sum of sub- 
lattices occupied by atoms of species 0s in the perfect crystal. 
In  a similar manner if NE is the number of interstitial atoms of 
species 0s which occupy interstitial sites of kind I, then 

N& = 2 N$ ( 10) 
r = l  

where T is the number of kinds of interstitial sites. Similarly we 
have 

where N$ is the number of species 0s on “right” lattice sites of 
type r. Here the prime indicates the exclusion of sublattices 
occupied by atoms of species Ot # 0s in the perfect crystal. The 
N,, solute atoms of species as may occupy interstitial or sub- 
stitutional positions. If the numbers of such atoms are NL,  N: 
respectively then 

N,, = Nf;, + N i  (12) 

where NE is the number of solute atoms of type as which occupy 
interstitial sites of type 7, and NE is the number of solute atoms of 
the same kind which are substitutionally incorporated into the 
crystal replacing an atom on sublattice number 7. In  addition to 
sites occupied in the various ways already described there may 
be vacant lattice sites. Let N E  be the number of vacant lattice 
sites on sublattice number 7 which have been formed by removing 
an atom of type 0s from the perfect crystal. 

A notation for the various sets of atoms defined in the last 
paragraph will now be introduced. Let NF denote the set of 
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numbers (Ng2,  NE3, . . .), a typical member of the set being 
N r .  Similarly, let Nt, N& Nt, Ni, Nr denote the sets of 
numbers, typical members of which sets are N g ,  N$, N g ,  N z ,  
N c  respectively. The six sets of numbers just defined specify the 
microscopic composition of the lattice completely; their defini- 
tions and interrelations are summarized in Fig. 1. It should be 

Atoms Vacmcies 

Solvent atoms Solute atoms 

NosPo % P O  

Right Wrong Interstitial Substitutional In terstitial 

NOR N,w N:, N,S & 
Fig. 1. Summary of the classification of atoms in an imperfect crystal. 

noted that it is not necessary to specify the chemical potential of a 
species in such detail because for a system in equilibrium the 
chemical potential of a species is the same whatever the site it is 
occupying. The chemical potential of a vacancy is zero because 
it is a structural rather than a compositional entity; making a 
vacancy need not involve transfer of the atom to a reservoir. 

Having clearly stated in detail the microscopic composition, we 
now introduce a simpler, abbreviated notation which is convenient 
for the subsequent manipulations. The set of numbers Nf may 
be relabelled to give in their place a set of numbers N,, a typical 
member of the set being Ni8,  which is the number of atoms of 
kind s on sublattice number 7. The other five sets of numbers, 
NF, Nt, Nf, Ni, N:, which specify compIetely the defect com- 
position of the crystal, will be similarly relabelled to give a set of 
numbers N,, a typical member of the set being NL. The number 
IVL is the number of defects of type s, and they are situated on the 
sublattice number 7. (By the definitions employed, one kind of 
defect can only appear on one sublattice but one sublattice may 
contain more than one kind of defect. Although I is specified by s, 
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the double labelling of Y and s in is used because it is con- 
venient to be able to distinguish whether two different kinds of 
defect occupy the same or different sublattices.) The total 
number of defects on sublattice Y is 

S7=1 

where y ( r )  is the number of different sorts of defect on sublattice 
number 1. The sum is over the y ( r )  types of defect s, on the Y 
sublattice. The microscopic composition of the crystal is com- 
pletely specified by the set of numbers (N, + N,), and N, refers 
solely to the defect composition. 

I t  is convenient to employ the set notation of Meeronsl with 
minor modifications suited to the present problem. Thus for a 
set of defects N, of w kinds we define 

and for a set of quantities x2 pertaining to the same set of particles 
W 

xp = (xis)”z* (17) 
S = l  

We shall also employ the convenient notation 
0 

N, X, = C N!&gs (18) 
8 = 1  

For a crystal of 4 sublattices we define 

where NL is defined by Eq. (15). Similarly we use the notation 

We use the symbol {N,} to denote a configuration of N, defects, 
that is a particular assignment of the set of N, defects, all dis- 
tinguishable, to the lattice sites of the crystal, the latter being all 
labelled and distinguishable. Although the notation above is 
rather different from that generally employed in discussions of 
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defects it will be found to have great advantages in developing the 
statistical mechanics. 

After these preliminaries we can now set up the partition 
function for a canonical ensemble of systems of composition 
N = No + N, in volume V at temperature T. I t  is 

In the equation EJN, V ,  (N,)) is one (number i) of a complete 
set of energy eigenvalues for a crystal of composition N and 
volume V in which N, defects are in a specified configuration 
denoted by {N,). (Implicit in this labelling of quantum states is 
the assumption that the kinetic energy associated with defect 
diffusion is negligible, as discussed below.) The summations are 
over all the eigenstates for a given configuration of defects and 
over all possible configurations of defects for the given composi- 
tion and defect constitution N,. The factor N,! arises because in 
specifying the configuration of defects we have treated defects of 
the same kind as distinguishable. The justification for the preced- 
ing equation may be found by considering briefly the application 
of the Born-Oppenheimer approximation to the crystal. 

The Schrodinger equation for the system is 

[TN + T ,  + V(r, R)lY(r, R) = EY(r, R) (22) 

Here TN and T ,  are the kinetic energy operators for the nuclei 
and electrons respectively, and V(r, R) is the total Coulombic 
energy of nuclei and electrons. r and R denote the: sets of coordi- 
nates of the electrons and nuclei respectively. One seeks wave 
functions of the form 

w, R) = @(R, r)x(R) (23) 

The function @ is determined approximately for a fixed set of R 
from the equation 

The eigenvalues of this equation have local minima, each one for 
some particular value of the coordinates R,, and U may be ex- 
panded about its value at the local minimum 
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U(R) = U ,  + (R - &) VUo + +[(R - R,) * V}’Uo + . . . 
(25) 

The value of U for each local minimum is used to set up an equa- 
tion for the nuclear motion 

l T N  + ul% == Ex (26) 
which determines the function %(R) and a set of eigenvalues Ei .  
Equation (26) can be deduced by substitution of Eq. (23) in 
Eq. (22) neglecting the terms 

XTN@ + 2 P ~ X  pa@Pma (27) 

and then multiplying by @* and integrating over the electron 
coordinates. In  Eq. (27) p, is the momentum operator for 
nucleus a whose mass is ma. Under the conditions that the Born- 
Oppenheimer approximation converges] the neglected terms 
can be treated as a small perturbation. Even if the convergence 
is poor, the classifying of states by means of local minima in U 
plus index i remains. If we neglect the contribution of diffusive 
motion to the energy of the system then the eigenenergy Ei is 
accurately the total energy of the system and is indeed a function 
of the configuration of the defects {N,} (which is equivalent to the 
set of minimal positions %) in the crystal of given composition 
and volume in the manner indicated in Eq. (21). Furthermore, 
the sum over states is the sum over the complete set of eigenvalues 
for a given configuration {N,} (that is, for a given local minimum 
in U(R)), followed by a sum over all configurations {NJ (that is, 
a sum over all local minima U(R) for a crystal of defect composi- 
tion N,). The complete expression for the partition function 
would of course contain a summation over all defect compositions 
N, consistent with the given N, V ,  T. We have retained in 
Eq. (21) only the eigenstates corresponding to the value of N, 
found by minimizing the Helmholtz free energy -kT log 
Q(N, V ,  T )  at constant N, V ,  T with respect to the set N,. The 
summation over eigenstates for a given configuration appearing 
in Eq. (23) can be written as 

t: exp [--E,(N, I‘, {N,Wirl 
i 

= exp [--F(N, J‘, T ;  {Ns})/kT] (28) 
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where F(N, V ,  T; {N,}) is a Helmholtz free energy. The free 
energy may be written in the form 

F(N, v, T ;  (NJ) = Fo(N) + F(Nz:N) + F((N2)) (29) 

Here Fo(N) is the Helmholtz free energy for the perfect crystal 
from which the imperfect crystal of composition N can be imagined 
formed in the manner described in the second paragraph of this 
section. F(N2:N) is the part of the Helmholtz free energy of the 
crystal of composition N containing N, defects which is indepen- 
dent of the configuration of the defects, but dependent on the 
defect composition. F((N$) is the configuration-dependent part 
of the free energy. (All three quantities on the right-hand side of 
Eq. (29) are of course functions of Y and T.)  The expression for 
the partition function can be written in the required form, using 
Eqs. (28) and (29), as the product 

Q(N, v j  T ;  P 2 ) )  = QoQo (30) 

where Qo is independent of defect configuration, and Q, depends 
on the configuration of the defects. 

Qo = exp [- ( F o p )  + F(N,:N))/W 

Qo = Z ( ~ X P  [--F((N~})I~TI),”Z ! 

(31) 

(32) 
IN3 

The summation is over all possible configurations, of the defects, 
each defect being allowed to occupy any site on its particular 
sublattice subject to the restriction indicated by the prime that 
no two defects can occupy the same site. It is convenient to 
refer to  this condition as the excluded site property. 

It will be assumed that the free energy of interaction can be 
expanded as a sum of component potentials 

+ . . - FR’((N2)) (33) 

The first sum is over all  pairs i, j of the set N,, and similar defini- 
tions apply to higher terms. The retention of higher order than 
pair interactions is essential for the problem at hand, but the 
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cluster method is only of value if the terms decrease fairly rapidly 
in magnitude, F N 2 )  being negligible for large N,. 

The defect interaction energies appearing in Eq. (33) are, for 
the purposes of the present article, assumed to be known either 
from theory or experiment. Certain other quantities appear in 
the final expressions for the thermodynamic functions and must 
therefore be known. The quantity defined by the relation 

is equal to the chemical potential (in the pure crystal) of the atom 
which would occupy in the perfect crystal the site occupied by 
species i s  on sublattice I in the imperfect crystal. (It is zero for 
interstitial defects since, by definition, these sites are unoccupied 
in the perfect crystal.) We also require the defect formation 
energies defined by the relation 

The second term on the right hand of this equation has a simple 
meaning for each defect. For example, for a vacancy it is the 
change in Helmholtz free energy on forming the vacancy by 
transporting an atom from the site to infinite distance from the 
crystal at constant temperature and volume apart from the con- 
tribution from defect interactions. For other defects it is the 
change in free energy under the same conditions when the atom 
(if any) which occupies the site in the perfect crystal is removed 
from the crystal and replaced by the defect atom. It would be 
logical to review at this point the calculation of the defect forma- 
tion energies for systems with small concentrations of point defects. 
However, the recent review by Howard and Lidiard includes 
just such an account.37 We shall merely note here that adequate 
calculations of three-defect or higher-order interactions have not 
so far been made for even the simplest solids nor are they available 
with any certainty from experiment, although they may some- 
times be important as will be noted in examples below. A com- 
prehensive account of the defect interaction energies from both 
experiment and theory can be found in Kroger’s book.41 


