Business Rules
Management and
Service Oriented
Architecture

A Pattern Language

Ian Graham

£ 807
Y SWILEY £
jz007

John Wiley & Sons, Ltd

Business Rules
Management and
Service Oriented
Architecture

Business Rules
Management and
Service Oriented
Architecture

A Pattern Language

[an Graham

EEEEEEEEEEEE a
1807 |
g@WlLEYg
{2007 |

NNNNNNNNNNNN

John Wiley & Sons, Ltd

Copyright © 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 85Q, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on www.wiley.co

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning
or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the
terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London
WIT 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be
addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate,
Chichester, West Sussex PO19 85Q, England, or emailed to permreq@wiley.co.uk, or faxed to (+44)
1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The Publisher is not associated with any product or
vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Ian Graham has asserted his right under the Copyright, Designs and Patents Act 1988, to be identified
as the author of this work.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 6045 Freemont Blvd, Mississauga, ONT, L5R 4]3, Canada

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN-13: 978-0-470-02721-9 (PB)
ISBN-10: 0-470-02721-5 (PB)

Typeset in 10.5/13 Palatino by Laserwords Private Limited, Chennai, India

Printed and bound in Great Britain by Bell & Bain, Glasgow

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

www.wiley.com

Contents

Foreword

Preface

1

Aligning IT with Business

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Historical Background

What are Business Rules?

What is Business Rules Management?

Why use a Business Rules Management System?
The Benefits

Summary

Bibliographical Notes

Service Oriented Architecture and Software Components

2.1
2.2
2.3
24
2.5

2.6
2.7

Service Oriented Architecture and Business Rules
2.1.1 Business Drivers, Benefits and Pitfalls
Service Implementation using Components
Agents and Rules

2.3.1 Agent Architecture

2.3.2 Applications of Agents

Service Oriented Architecture and Web Services
Adoption Strategies

2.5.1 After SOA

Summary

Bibliographical Notes

Approaches to Business Rules

3.1
3.2
3.3
34
3.5

Database-centric Approaches

GUIDE and the Business Rules Group

Using UML and OCL to Express Rules

Business Rules Management Systems and Expert Systems
Other Developments

vi Contents

3.6
3.7
3.8

Standards, Directions and Trends
Summary
Bibliographical Notes

4 Business Rules Management Technology and Terminology

4.1

42

43

44
4.5

4.6
4.7

4.8
49

Rules and Other Forms of Knowledge Representation
4.1.1 Rules and Production Systems

Knowledge and Inference

42.1 Semantic Networks

Inference in Business Rules Management Systems

43.1 Forward, Backward and Mixed Chaining Strategies
Data Mining and Rule Induction

Techniques for Representing Rules

4.5.1 Decision Trees and Decision Tables

Uncertainty Management

Ontology and Epistemology: the Réle of Object Modelling in
Natural Language Processing

Summary

Bibliographical Notes

5 Features of Business Rules Management Systems

51

52

5.3

54
5.5
5.6

The Components and Technical Features of a BRMS
5.1.1 Rules

5.1.2 Rule Templates

5.1.3 Rule Syntax Checking

5.1.4 Procedures and Algorithms

5.1.5 Ruleflows

5.1.6 Decision Tables and Decision Trees
5.1.7 Inference

5.1.8 Uncertainty and Explanation
BRMS Products

52.1 Blaze Advisor

5.2.2 HaleyRules and HaleyAuthority
5.2.3 JRules

5.2.4 PegaRULES and Versata

A Simple Application

5.3.1 The Application in Blaze Advisor
5.3.2 The Application in Haley Authority
5.3.3 The Application in JRules
Usability Issues

Summary

Bibliographical Notes

6 Development Methods

6.1
6.2
6.3
6.4

Knowledge Acquisition and Analysis
System Development

Halle’s Guidelines

Rule Style Guidance

65
68
68

71
71
74
76
78
79
79
84
87
88
91

96
98
98

29
101
103
104
104
104
105
105
105
106
108
111
117
123
130
132
133
136
139
141
141
142

143
143
149
150
151

Contents vii

6.5 Summary 157

6.6 Bibliographical Notes 158

7 A Pattern Language for BRMS Development 159

7.1 What are Patterns? 159

7.2 Why a Pattern Language? 168

7.3 The RulePatterns Language — Part I 169

7.3.1 Patterns for Requirements, Process and Architecture 172

7.3.2 Patterns for Finding, Writing and Organizing Business Rules 192

7.4 The RulePatterns Language — Part II 208

741 Patterns for Knowledge Elicitation 209

7.4.2 Patterns for Product Selection and Application Development 230

7.5 Related Patterns and Pattern Languages 234

7.5.1 Arsanjani’s Rule Object Patterns 234

7.5.2 KADS Patterns 235

7.5.3 Organizational Patterns 235
APPENDICES

A The Business Rules Manifesto 237

B A Simple Method for Evaluating BRMS Products 241

References and Bibliography 259

Index

265

viii

Contents

Trademark Notice

ART™ is a trademark of Inference Corp.; Biztalk™, COM™, COM+™,
DCOM™, SOAP™, Internet Explorer™, Microsoft Windows™, Access™,
PowerPoint™, MSMQ™, MTS™ Excel™, Intellisense™, OLE™, Visual Basic™,
Visual Studio™ and Microsoft Office™ are trademarks of Microsoft Inc.;
Catalysis™ is a European trademark of TriReme International Ltd. and a US ser-
vice mark of Computer Associates Inc.; CORBA® TIOP® and OMG™ are regis-
tered trademarks of the Object Management Group™, ORB™, Object Request
Broker™, OMG Interface Definition Language™, IDL™, CORBAservices™,
CORBAfacilities™, Unified Modeling Language™, UML™, XMI™, MOF™
and the UML Cube logo are trademarks of the OMG.; Haley Authority
and Haley Rules are trademarks of Haley Systems Inc.IBM™, AS/400™,
0OS/400™, CICS™, Component Broker™, DB2™, ENVY™, IMS, Visual Age™
and Websphere™ are trademarks of International Business Machines Inc.;
Iceberg™, Tuxedo™ and Weblogic™, are trademarks of BEA Systems; Java™.
EJB™, Enterprise Java Beans™, Java Beans™ are trademarks of Sun Microsys-
tems Inc.; JRules is a trademark of ILOG SA;Kappa™, KEE™ are trademarks of
Intellicorp Inc; Netscape™, Netscape Navigator™ are trademarks of Netscape
Inc.; Nexpert Object™ and Blaze Advisor are trademarks of a Fair Isaac
Inc.; NeXT™, NeXtStep™ and OpenSTEP™ are trademarks of NeXT Corp.;
Objectory™, Rational Unified Process, RUP, Rose and Requisite Pro™ are trade-
marks of Rational Inc.; Oracle®, CASE*METHOD™, Express™, are trademarks
of Oracle Inc.; Orbix™ is a trademark of Iona Technologies Plc ProcessWise™
and REVEAL™ are trademarks of ICL Ltd.; Select™ is a trademark of Princeton
Softech; Simula™ is a trademark of Simula AS; Syntropy ™is a trademark of
Syntropy Ltd.; Telescript™ is a trademark of General Magic Inc.; Together™
and Together]™ are trademarks of Together Inc.; Other trademarks are the
property of their respective owners.

Foreword

In Business Rules Management and Service Oriented Architecture, lan Graham
provides a solid architectural introduction to business rules for IT professionals
and architects taking the next steps into SOA, components, and other state-of-
the-art software engineering techniques. He speaks of concerns I find just about
every IT architect has these days, offering a wide-ranging set of solutions. It’s
a compelling story.

Let me share with you briefly some of the things Ian gets right in this book.

e Separating concerns of business from those of the infrastructure (the
‘plumbing’) is fundamental to building better architecture. He deftly
explains how both business rules and SOA can help you make that
happen.

e SOA and business rules management systems (BRMS) are parallel and
complimentary technologies. They're both about the quest for
agility — creating new levers to manage (and encourage!) endless,
fast-paced change. Is there anything much more urgent than that these
days?

e It’s all about re-use — but the right kind of re-use. A BRMS allows reuse of
rules across services. Why does that matter to you? You want your
services to be easily reconfigured. When the business changes, you want
to be able to change the rules without ever digging into the code. Ian
claims (and I certainly agree) that this alone can speed development and
ease maintenance even more than the adoption of SOA on its own.

e There are some areas where I'm afraid we need a bit of attitude
adjustment. (Those are my words, not Ian’s — he’s much more diplomatic
about it.) Creating a business model is not a waste of time. More and
more descriptive use cases are not going to solve all your problems!

Foreword

I could go on and on about that last one, but Ian more than does the topic
justice, so I'll just invite you to jump right into the book.

e The notion of business rules is on an inevitable collision course with the
notion of patterns. As one who studied this area a great deal in the
formative years of business rules (The Business Rule Book, 2" edition was
published in 1997), I applaud Ian for breaking new ground in this
important area.

There are many other things I could mention about what Ian gets right in this
book. For example, what about legacy systems? Ian points out how adopting
a BRMS will assist in the transition to SOA because service-based and legacy
applications can be coupled using the BRMS as the common decision engine.
What about semantics and pragmatic management of business intellectual
property (IP)? Business rules provide a pragmatic, proven answer on that one.

The main thing I want to mention, however, is that Ian says he finds little
to disagree with in the Business Rules Manifesto (Business Rules Group, 2003).
That’s an important statement — one that as an IT architect you should find
comforting — because it reflects a growing consensus in the industry as to just
what business rules are about. I mentioned the ‘formative” period of business
rules above — well, that period is just about over. By any reasonable measure,
business rules are mainstream now. Do have a quick look at the Manifesto — it’s
conveniently included right here in the book for you. Incidentally, the Manifesto
has been translated into about a dozen languages as of this writing. It’s impact
is truly global.

It's exciting to see new ideas become reality. That’s especially so when
the ideas make the professional’s job easier, and the resulting systems better
for business. Fortunately, Ian’s work is highly approachable. If you want to
know how to go about building a world-class rule-based, service-oriented
architecture, read on!

Ronald G. Ross
Executive Editor, www.BRCommunity.com
Principle, Business Rule Solutions, LLC

Preface

There has been a great deal of interest in business rules management systems
(BRMS) for several years now and the technology has matured consider-
ably. At last it seems that the time is ripe and a plethora of commercial
applications are beginning to be fielded, driven by the escalating difficulty
of maintaining essential computer systems, the onus of greater regulatory
compliance, the increasing complexity and volatility of business processes and
many other factors. The existing literature is surprisingly sparse and most of
it approaches business rules management from the standpoints of database
practice and project management or concentrates on perfecting rule syntax.
All these approaches are valuable but the origins of the subject are more
diverse. It is now time, therefore, for a concise but comprehensive look at
the subject that gets away from both database-centred tunnel vision and from
the exaggerated (and thus discredited) claims of the erstwhile expert systems
community.

The other factor that has moulded the approach I have taken here is the
massive explosion of interest in service oriented architecture (SOA), one of
the most significant potential steps forward in computing for a decade. Here
there is much confusion. Some commentators seem to identify service oriented
architecture with web services, whilst others claim that the main idea is to build
an ‘orchestration” layer that will glue any new services together with APIs to
the goulash of legacy systems. Both these claims are wrong and the second one
is downright dangerous. With many of my clients now adopting SOA (and
some implementing business rules too) I have become more convinced than
ever that the key to success with both technologies is to pay serious attention
to modelling not only systems issues but the business environment as well.
With the help of my colleague Derek Andrews, I have tried to explain this in
Chapter 2.

xi

Preface

As the manuscript developed, and looking constantly at the interactions
between these strands, I found that a constant theme emerged, almost
organically, from my researches, practice and discussions: service oriented
architecture without business rules management is not going to crack the nut.
Similarly, BRMS without SOA is unlikely to address all the pressing needs of
business that so desperately need addressing by IT practice. So the propaganda
message here is simple: SOA and BRMS; do both, or don’t bother with either.
And do them on the basis of first class requirements engineering and modelling
practices too.

Even companies that decide not to invest in a full-blown BRMS product
can benefit from externalizing their rules; writing them down in a clear and
consistent style leads to immediate benefits. One of my clients, for example, is
developing its own customized variant of Ross’s RuleSpeak. This will enable
their business analysts, users and developers to communicate more effectively
and has already led to the discovery of errors and inconsistencies in existing
documentation.

What the Book Covers

The aim of this book is to bring together the following key ideas in modern
enterprise system development best practice.

e The need to separate business logic cleanly from the software ‘plumbing’.
e The need for service-oriented architecture.

e How the former depends on component-based development (CBD).

e Database-centred approaches to business rules.

e Knowledge-based approaches to business rules.

e Best software engineering practice for designing robust, flexible systems
and aligning IT with business more closely than has hitherto been the
case.

e Using patterns to design and develop service oriented business rules
management systems.

The text starts with a business case for adopting BRMSs and surveys the
wide range of possible application areas for this technology. Then we present
a tutorial on and discussion of service oriented architecture, its role, concepts,
and supporting technologies. In this chapter we meet the central role of
modelling in the design of successful computer systems, which a major theme
of the book. The ideas of greater business alignment and of intelligent software
agents are used to pull together the two strands of BRMS and SOA. Chapter 3
is an historical digression looking at the sources of the main ideas of BRMS,
but it also discusses trends and emerging standards.

Preface

Chapter 4 is a technical tutorial on business rules management systems.

Chapter 5 applies the ideas of the previous chapters to existing and notional
BRMS products.

Chapter 6 looks at knowledge elicitation and requirements engineering
techniques insofar as they are specific to BRMS.

Finally, we gather together all the book’s techniques and guidelines into
a pattern language that is intended to be a how to’ guide to running an
actual BRMS/SOA project. Using the language, if done as intended, should
generate specific solutions to a range of concrete development problems. The
two appendices support the material in this chapter.

I believe that pattern languages are far more powerful and flexible than
mere checklists. However, as with a checklist, no pattern language is ever
complete and finished, and the reader will undoubtedly want to refer to the
work of other authors as well as mine. Notably, have drawn on the modelling
patterns of Peter Coad when discussing SOA, Barbara von Halle’s work on
method and as yet unpublished SOA patterns under development by Derek
Andrews, Hubert Matthews and (to a smaller extent) myself. On rule writing
style, I have tried to capture the essence of the works on Ronald G. Ross and
Tony Morgan but, as always, there is no substitute for reading the originals.
The bibliographical notes to each chapter provide pointers to references of
this kind. There are also some references to my own earlier works, notably
those on requirements engineering, but I have tried to make such material
self-contained within this text.

Intended Readership and Scope

The book is intended to be accessible to readers who do not have deep
knowledge of theoretical computer science, but at the same time it attempts to
treat the important issues accurately and in depth. It provides a tutorial on the
technology and advice on how best to exploit business rules management in
practice.

The primary audience is IT professionals (architects, analysts, developers,
strategists, managers) and some of their interested customers. It may be of use
to undergraduate and postgraduate students studying information technology
or software engineering. It will therefore be of interest to teachers of Computer
Science and Business IT. I have assumed that the reader has at least a nodding
acquaintance with the basic UML notations for use cases, class diagrams and
state models.

The book is designed to be read sequentially, although readers with differing
interests may safely omit some sections. For example, readers with a less
technical focus may skip the material on web services. The impatient reader,
who already knows what backward chaining is, may even jump straight into

Xiv

Preface

Chapter 7, which contains the RulePatterns pattern language. This chapter is
intended as a stand-alone reference. Here too, the introductory sections (7.1
and 7.2) may be of no interest to people who already possess a sound
knowledge of the idea of pattern languages.

While the scope of this book is broad and intended to cover the gamut of
topics pertinent to a move to service oriented architecture and business rules
management, it does not attempt to duplicate unnecessarily the work of other
authors. Notably, there is scant consideration given to such issues as analytics,
business rule maturity models, tying business rules to other deliverables,
integration of the business rules approach with proprietary methods such as
RUP or non-proprietary methods such as that of Halle (2002). These, I feel,
are either already adequately dealt with in other texts or deserve a treatment
separate from the one given here.

Acknowledgements

Although it contains much original material, this book is largely a survey
of other people’s work and could not have been written without that work.
I would like to acknowledge the contribution of these other authors. Also,
many of the ideas contained were honed in discussions with my colleagues
at Trireme and participants in various conferences and seminars. In par-
ticular, at EuroPLoP 2006, Ademar Aguiar, Jon Bennett, Frank Buschmann,
Alexander Fiilleborn, Marina Hasse, Michaelis Hadjisimou, Kevlin Henney,
Lise Hvatum, Maria Kavanagh, Alan Kelly, Klaus Marquardt and Martin
Schmettow all made very helpful comments on some of the patterns presented
in Chapter 7. Conversations with members of staff at some of my clients,
whom I may not identify here, also provided invaluable insights and helped
me keep my feet on the ground; thanks to you too, you know who you
are.

Special thanks are due to Derek Andrews for his contribution to Chapter 2
and to him, Clive Menhinick and Hubert Matthews for many interesting and
sometimes formative discussions. The remarks of several anonymous referees
were very helpful too. Of the reviewers whose names I do know, I especially
want to thank Barbara von Halle, Tony Simons, Ron Ross and Paul Vincent
for their comments and kind suggestions for improvements. I have tried to
incorporate them as best I could.

I am grateful to the Business Rules Group for permission to reproduce their
seminal Business Rules Manifesto as Appendix A.

The team at Wiley were a joy to work with on this project. I don’t know
the names of all the production and other back-room workers there but I can
express my profound thanks to all of them and to my editors, Drew Kennerley
and Sally Tickner.

Preface XV

Even with all this help, the responsibility for any mistakes or omissions is
entirely mine. If you can get past any of these that remain, then I do hope
you find the book entertaining as well as merely informative. I would be most
interested to read any comments you may have.

lan Graham
Balham, August MMVI
(ian@trireme.com)

Aligning IT with Business

I have not kept the square, but that to come
Shall all be done by the rule.

William Shakespeare (Antony and Cleopatra)

Businesses continue to strive for shorter time to market and to lower the
cost of developing and maintaining computer applications to support their
operations. Business rules management technologies can play an important
role in this.

Well, if you believe that, you'll believe anything. You are already thinking
‘Another silver bullet!” But stay with me for at least another few paragraphs,
whilst I try to convince you that it may actually be worthwhile to read further.

When I started writing this book, this chapter had the provisional title of
‘Why Business Rules?” or some such. As I started laying out the reasons,
it became clear that I was ducking the main issues facing the world of IT
(information technology) by thus restricting my focus. So I asked myself “‘Why
are we doing all this?’

According to Standish (1995; 2004), around 66% of large US projects fail,
either through cancellation, overrunning their budgets or delivering software
that is never put into production. Outright project failures account for 15%
of all projects, a vast improvement over the 31% failure rate reported in the
first survey in 1994, but still a scandal. On top of this, projects that are over
time, over budget or lacking critical features and requirements total 51% of all
projects in the 2004 survey. It is not incredible to extrapolate these — frankly
scandalous — figures to other parts of the world. What is harder to believe is
that our industry, and the people in it, can tolerate such a situation. Clearly we
should be doing something differently. The Standish surveys also looked into

2

Chapter 1

the reasons why people involved in the sample projects thought such projects
fail. The reasons given — in descending order of importance — were:

m]Jack of user involvement;

® no clear statement of requirements;
® no project ownership;

® no clear vision and objectives; and

® Jack of planning.

The first four of these relate strongly to the need for better requirements
engineering and point to the developer-centric culture of many IT development
organizations, a culture highlighted by Alan Cooper (1999) and others, and
familiar to those of us who have worked in or with corporate IT over a
long period. Too often, developers expect users to learn their language — often
nowadays in the form of UML diagrams. In today’s fast-moving competitive
environment this will not work. Project teams must develop languages that
can be understood by users and developers alike: languages based on simple
conceptual models of the domain written in easily understood terms. Business
process modelling approaches of the sort pioneered by Graham (2001) and
business rules management systems both have a role to play in this critical
challenge for IT in the 21% century.

Furthermore, the level of abstraction at which we work is far too low. IT
departments are often culturally and technically miles away from the concerns
and thought processes of the customers they serve. The problem is, thus, far
broader than the need for business rules management; the real problem we
have to solve is how to align IT practice with business need.

To believe that adopting a business rules management system on its own
will solve this problem is nothing short of naive. Business rules management
is only a part of the solution. To align IT with business we must also con-
sider innovative approaches to requirements engineering and service oriented
architecture. Whilst its focus remains on business rules, this book is about all
these issues.

Briefly — because the next chapter will be devoted to a detailed discus-
sion —service oriented architecture (SOA) is an architectural concept in
software design that emphasizes the use of combined services to support
business requirements directly. In SOA, resources are made available to ser-
vice consumers in the network as independent artifacts that are accessed in a
standardized way. SOA is precisely about raising the level of abstraction so
that business processes can be discussed in a language understood by business
people as well as IT folk. Business rules are about aligning IT with the business
too. It is to them we now turn.

In this chapter, after a short look at the history of the idea and technology
of business rules management systems (BRMS), we examine the features and
responsibilities of a BRMS, and then the benefits of and business drivers for

Aligning IT with Business

adoption of the technology. We list typical applications and indicators of the
need for a BRMS.

In subsequent chapters we will relate business rules to the concept of
service oriented architecture, look at different approaches to and philosophies
of business rules management, cover the key technical features of a BRMS
(including inter alia knowledge representation and inference techniques) and
discuss requirements engineering, appropriate development methods and
processes. Next we try to distil this knowledge into a prototype pattern
language.

1.1 Historical Background

The first talk of business rules management emerged from discussions in the
database community as long ago as the late 1980s, notably in a journal called
The Database Newsletter — although the term was used as early as 1984 in an
article in Datamation.

However, there is an older tradition in the artificial intelligence (AI) commu-
nity going back, arguably, to EMYCIN, the first so-called expert system shell.
MYCIN (Shortliffe, 1976) was an expert system that could diagnose infectious
diseases of the blood — with some success too. MYCIN was not, in any sense,
a business rules management system; its rules were pretty much hard coded
and concerned a fairly esoteric domain: medicine. EMYCIN (Melle et al., 1981)
was ‘empty” MYCIN: MYCIN with the rules taken out and two significant
mechanisms. First, rules on any suitable domain (including business domains)
could be typed in and run under the control of the same logic used by MYCIN.
Secondly, an EMYCIN application could be asked to explain its conclusions
when asked ‘How?” or “‘Why?” I will explain how all this works in a later
chapter. For now, notice only that EMYCIN separated business rules from
both data and the control logic that enabled conclusions to be reached, and
this is a key principle of modern business rules management systems. Further-
more, the rules were entirely declarative (unconnected statements rather than
the interdependent lines of a computer program); another key principle of the
business rules approach.

The first implementations of business rules in databases were more limited
in several ways, the first being that rules were usually implemented as stored
procedures written in procedural and proprietary extensions of declarative
SQL. Other rules, notably those for referential integrity, were implemented
in the database system itself, but nothing more complex was to succumb
to this approach. The next step forward took some time. Active databases
incorporated triggers: if/then rules that caused updates dependent on the
values entered into the database. But even triggers did not offer the flexibility
of EMYCIN'’s general if /then rules.

Chapter 1

As an example of the gulf between the two traditions, I recall attending
the British launch of Sapiens (still a major player in the BRMS marketplace
today) in around 1989. I have a fairly low tolerance for sales pitches, but I was
aroused from my slumbers when told that the product (basically a database
and 4GL) was object-oriented and rule-based. As the technical presentation
wore on, it became clear that the ‘objects” were merely relational tables; by the
end nothing much had been said about rules.

‘Can you give me an example of a rule?’ I asked.
‘Of course. All employees must be over 16.”
‘No, I mean a proper rule with an “if” and a “then”./

The speaker paused for a second. ‘OK, then. If you are to be an employee
then your age must be greater than or equal to 16.”

I decided to hold my peace, and went away rather unimpressed.

The point here is not just that salesmen can sometimes be rather uneco-
nomical with buzzwords, but that there is a misunderstanding about what
constitutes a rule (and, indeed, an object in this particular case). I regarded the
example given as a range constraint on an attribute, rather than a rule. What
is evinced is a lack of common terminology among the two camps.

Consider the following (very slightly edited) dialogue between MYCIN and
a human physician.

>Is the patient’s illness with ORGANISM-1 a hospital

acquired infection?

>WHY?

[i.e. Why is it important to determine whether or not
the infection with ORGANISM-1 was acquired while the
patient was hospitalized?]

>This will aid in determining the category of ORGANISM-1.

It has already been established that

[1.1]the gram stain of ORGANISM-1 is gramneg, and
[1.2]the morphology of ORGANISM-1 is rod, and
[1.3]the aerobicity of ORGANISM-1 is facultative

Therefore, if

[1.4]the infection with ORGANISM-1 was not acquired
while the patient was hospitalized

then

There is strongly suggestive evidence (.8) that
the category of ORGANISM-1 is enterobacteriaceae
ALSO:
There is weakly suggestive evidence (.1) that
the identity of ORGANISM-1 is pseudomonas-aeruginosa

Even ignoring the specialized terminology, it should be clear that the
implied rule is far more complex than a constraint saying that staff entered

Aligning IT with Business

in the database must be over 16. We will see many examples of similarly
complex rules in more familiar domains as we proceed. Furthermore, we will
encounter more complex constraints that involve more than one attribute,
object or database table.

The first step towards a reconciliation between these two camps came
with Ron Ross’s (1994) Business Rule Book, to be followed by his several subse-
quent publications that show that he is aware of both traditions, though mainly
rooted, originally, in the database world. Ross founded Business Rule Solutions
in 1997 to focus on applied business aligned models (strategy, process, vocab-
ulary, rules, etc.) that would be completely independent of any IT tradition.

In 1995, a group of IT practitioners produced the GUIDE Business Rules
Project Report, which also clarified the territory, though remaining database
centred. The manifesto of the (now better informed) database-centred approach
was finally published by Chris Date (2000). In the same year, the Business
Rules Group published the first version of the Business Rules Manifesto, which
established the ground rules for what constitutes a BRMS and the principles
of the business rules approach. By 2002, Barbara von Halle, another database
guru, had published the first comprehensive method for applying the approach
and Tony Morgan became the first Al expert to publish a book on the subject.

In the interim, products evolved. Some of them were extensions of database
or repository products, others evolved from expert systems shells. We will
look at some of them later.

As I write, it seems to me that there is now enough maturity in both
theory and practice for commercial organizations to apply the business rules
approach, along with mature object-oriented modelling techniques, better
requirements engineering and the philosophy of service oriented architecture,
to the critical problem of aligning IT with business goals and practices.

1.2 What are Business Rules?

Most early definitions (e.g. Appleton, 1984) conflate business rules with
database constraints. Ross (1987) is more general, defining a business rule
as a rule or policy that governs the behaviour of the enterprise and dis-
tinguishes it from others. Elsewhere (1994), he defines a rule as a ‘discrete
operational business policy or practice’, and insists that a rule is a declara-
tive statement expressed in ‘non-technical’ terms. Of course some business
domains are replete with technical jargon, so perhaps ‘non-IT” is what is
intended. The declarative point is key. Declarative is the opposite of procedu-
ral. In a procedural rule language the order of execution of the rules matters;
in a declarative language the outcome is the same whatever execution order is
selected. Date (2000) makes the same point, insisting that rules convey ‘what
not how’.

Chapter 1

Halle (2002) sees rules as conditions that ‘govern a business event so that it
occurs in a way that is acceptable to the business’. Date (2000) makes it clear
that these ‘business events” are to be viewed as events that result in an update
to a database; the rules are there to ensure that rogue updates are not allowed.
Date too insists on the declarative nature of rules; he sees rules as predicates
(statements that are true or false) concerning the database domains.

The GUIDE project (Hay and Healy, 1997) saw a rule as defining or con-
straining some aspect of a business and ‘intended to assert business structure,
or to control or influence the behaviour of the business’. Such a rule ‘cannot be
broken down” without the loss of important information; i.e. rules are atomic.
But GUIDE too deliberately restricted its scope to row 3 of the Zachman frame-
work (Zachman, 1987); i.e. to ‘specific constraints on the creation, updating
and removal of persistent data in an information system’. However, there
is a major acknowledgement of the role of inference. GUIDE said that facts
could be derived by mathematical calculation, deductive inference and even
induction (i.e. data mining). It went so far as to say that each of these three
derivation methods is “itself a kind of business rule’.

The Business Rules Group, taking on the mantle of GUIDE, has given
various revisions of the definition such as: ‘a directive that is intended to
influence or guide business behaviour ... in response to risks, threats or
opportunities’. More importantly, the Business Rules Group has published
the Business Rules Manifesto (reproduced as Appendix A). The manifesto
provides principles, rather than a definition, insisting that rules are atomic,
declarative, logically well-formed, separated from processes, procedures and
technology and, critically, written in business terms.

In what is probably one of the best and most sensible and practical books
yet on business rules management, Morgan (2002) defines a business rule as ‘a
compact statement about an aspect of a business [that] can be expressed in terms
that can be directly related to the business, using simple, unambiguous language that’s
accessible to all interested parties: business owner, business analyst, technical
architect, and so on” (emphasis added). One focus in this book will be on the
ease of expression of rules and the suitability of available products for business
owners, business analysts, as well as on their technical features.

It is difficult to fault any of the above definitions, except if one were to
criticize them in terms of scope and emphasis. I can find little or nothing
to disagree with in the Business Rules Manifesto (BRM). To me, Morgan’s
definition seems to capture the essence of the notion best. However, there is
one issue unaddressed so far.

All these definitions emphasize one business. Open business on the web,
closer customer relationships, and collaborative ventures all indicate a need
to share business rules. Some rules could be about more than one business.
Some rules could be imposed by one business on another (e.g. taxation rules).
Some rules might be better shared with customers — perhaps in the form of
explanations (a BRM principle). Taking this into account and picking up some

Aligning IT with Business

7

points from all the definitions, here is my definition for the purposes of this
book, based most chiefly on Morgan’s.

A business rule is a compact, atomic, well-formed, declarative state-
ment about an aspect of a business that can be expressed in terms that
can be directly related to the business and its collaborators, using sim-
ple unambiguous language that is accessible to all interested parties:
business owner, business analyst, technical architect, customer, and so
on. This simple language may include domain-specific jargon.

The term ‘well-formed’ comes from logic and needs explanation. The rules
must be executable on a machine if they are to be of much use in a business rules
management system. This implies that they must be convertible into statements
in some formal logic: statements that are well-formed with respect to that logic.

One corollary of the declarative principle is that business rules do not describe
business processes; they do, however, constrain what processes are permissible.

Business rules are statements expressed in a language, preferably a subset
of a natural language such as English. I see two clear kinds of statements that
must be distinguished: assertions and rules. Assertions or facts have the form:
‘A is X" or ‘P is true’. These are equivalent forms; e.g. I can convert the former
into ““A is X" is true’. Simplifying slightly, until later in this book, rules have
the equivalent forms: ‘If A then X’; X if A’; “‘When A then X’; and so on. Here
X can be a fact or an action.

We can see from Table 1.1 that rule statements can be classified. Date, Ross
and Halle all offer useful classification schemes, but I do not want to be so
specific here.

Table 1-1 Examples of statements and their types

Eeyore is a donkey. Assertion
Computers come in blue boxes. Assertion
NetMargin = 2,000. Assertion
Bill Gates is wealthy. Assertion
If the computer's box is not blue then paint it blue. Action rule
To paint something: acquire funds, visit shop, buy paint, Procedure
paint article.
Wealthy people are always tall and handsome (if Z is Rule
wealthy then Z is tall and handsome).
NetMargin = Revenue - Costs. Procedure or Rule
Employees must be over 16. Range constraint or Rule
A borrower may borrow up to 6 books. Cardinality constraint or Rule

A borrowed book must be owned by the library that the ~ General constraint or Rule
member belongs to.

If any employee has a salary greater than the MD then set Trigger rule
the MD'’s salary to the maximum of all employee’s
salaries.

Chapter 1

Statements are always statements about something. Ross refers to these
somethings as terms. Other authors refer to the vocabulary of the domain or
even the domain ontology.

Strictly, ontology is the philosophical science concerned with what exists:
the science of Being. Here, though, it is used to mean the model of the
domain that we work with, including the things we can discuss, their prop-
erties and how they relate to each other. I will take the view in this book
that the domain ontology is precisely an object model, usually expressed by
a UML type diagram; but more on that later. Some readers might like to
think of the ontology as the database schema —at least for the time being.
The ontology tells us what we are allowed to discuss when we write rules.
Without a sound ontology the rules are meaningless, and any attempt at
writing them in natural language is certainly doomed. This means that
we must modify our definition slightly. We can do so by adding just one
sentence.

Business rules are always interpreted against a defined domain
ontology.

Having defined what business rules are, there is still much more to say
about them, such as how they may be linked together to derive new facts
(inference), how they are best written (rule structure) or how they are to be
discovered (knowledge elicitation). We will return to these topics (and more)
in subsequent chapters. For now, let us take a look at how rules may be
managed.

1.3 What is Business Rules Management?

Business rules management is the practical art of implementing systems based
on the business rules approach. This can be done in many ways, but the
most economical is to use a business rules management system. In addition,
there will be some process adopted for managing and organizing projects and
conducting tasks such as rule authoring, rule maintenance, and so on. We will
return to such issues later.

Let us start with business rules management systems.

BRMSs have the following features and responsibilities:

® Storing and maintaining a repository of business rules that represent the
policies and procedures of an enterprise.

m Keeping these rules (the business logic) separate from the “plumbing’
needed to implement modern distributed computer systems.

Aligning IT with Business

9

® Integrating with enterprise applications, so that the rules can be used for
all business decision making, using ordinary business data.

® Forming rules into independent but chainable rulesets and performing
inferences within and over such rulesets.

= Allowing business analysts and even users to create, understand and
maintain the rules and policies of the business with the minimum of
learning required.

= Automating and facilitating business processes.

m Creating intelligent applications that interact with users through natural,
understandable and logical dialogues.

The idea that the rules are stored in a repository is a critical one. If we
are to manage rules there seems no alternative to storing them in some sort
of central database. Furthermore, storing the rules in a layer separate from
both applications and from the various databases that may exist in a real
organization gives obvious maintenance advantages. We might even argue
that centralizing the rules makes them more readily reusable. However, there
is an opposing force: that of the need for reuse of the objects in our domain
model. If the rules (and indeed rulesets) are not encapsulated within the
objects that they constrain, then those objects are incomplete and, if reused,
may function incorrectly.

Date (2000) also argues that, ideally, rules should be part of the database but
then, rather reluctantly, concedes that storing the rules in a separate layer gives
the advantage of DBMS-independence. Contrariwise, Bruce (1992) points out
that treating rules separately ‘avoids the debate over which object (or objects)
should encapsulate the rules’. This is indeed a hard problem sometimes, and
I will return to the issue in subsequent chapters. All design problems concern
the resolution of contradictory forces such as the ones referred to: reuse versus
independence. In Chapter 7, I present some patterns aimed at resolving these
forces. For now, assume that rules live in a repository and are managed
thereby.

The business drivers for the adoption of BRMSs are as follows:

® Current software development practice inhibits the rapid delivery of new
solutions and even modest changes to existing systems can take too long.

® Accelerating competitive pressure means that policy and the rules
governing automated processes have to be amenable to rapid change.
This can be driven by new product development, the need to offer
customization and the need to apply business process improvements
rapidly to multiple customer groups.

® Personalizing services, content and interaction styles, based on process
types and customer characteristics, can add considerable value to an
organization’s business processes, however complex. Natural dialogues

Chapter 1

and clearly expressed rules clarify the purpose of and dependencies
among rules and policies.

In regulated industries, such as pharmaceuticals or finance, the rules for
governance and regulation will change outside the control of the
organization. Separating them from the application code and making
them easy to change is essential, especially when the environment is
multi-currency, multi-national and multi-cultural.

Even in unregulated industries, companies subject to the Sarbanes-Oxley
Act are required to make their business processes (and thus the rules that
they follow) visible. If such rules are scattered through multiple
applications, duplicated (consistently or otherwise) in different places
and embedded in procedural code, this becomes a costly and nigh
impossible exercise.

Business rules and processes can be shared by many applications across
the whole enterprise using multiple channels such as voice, web, and
batch applications, thereby encouraging consistent practices.

Using BRMSs should decrease development costs and dramatically shorten
development and maintenance cycles.
Typical applications of BRMS technology include these:

Automating procedures for such things as
w claims processing

w customer service management

w credit approval and limit management
w problem resolution

w sales

Adpvice giving and decision support in such fields as
w benefits eligibility

w sales promotions and cross selling

w credit collection strategy

w marketing strategy

Compliance with

w external and legal regulations
w company policy

Planning and scheduling of

w advertising

w timetables and meetings

w budgets

w product design and assembly

Diagnosis and detection of
= medical conditions
w underwriting referrals

Aligning IT with Business

Business rules arise from the objects that one encounters in a business and
their interrelationships. These ‘business objects” may be found in documenta-
tion, procedure manuals, automation systems, business records, or even in the
tacit know-how of staff. It is these objects that are modelled by our domain

w fraud (e.g. telephone or credit card fraud)
w faults in machinery
w invalid and valid data

Classification of

w customers

w products and services
w risks

Matching and recommending
w suitable products to clients
w strategies to investors.

ontology objects.

Morgan (2002) identifies the following indicators of the need for a business

rules management system:

Policies defined by external agencies.

w Government, professional associations, standards bodies, codes of

practice, etc.

Variations amongst organizational units.
w Geography, business function, hierarchy, etc.

Objects that take on multiple states
w Order status, customer query stage, etc.

Specializations of business objects
w Customer types, business events, products, etc.

Automation systems

w Business logic embedded and hidden within existing computer
systems

Defined ranges and boundaries of policy

w Age ranges, eligibility criteria, safety checks, etc.

Conditions linked to time

w Business hours, start dates, holidays, etc.

The quality manual

w Who does what, authorization levels, mandatory records, etc.

Significant discriminators

w Branch points in processes, recurring behaviour patterns, etc.

Information constraints
w Permitted ranges of values, objects and decisions that must be
combined or exclude each other.

12

Chapter 1

m Definitions, derivations or calculations
w Transient specialization of business objects, proprietary algorithms,
definitions of relationships.
® Activities related to particular circumstances or events
w Year-end, triggering events, conditional procedures, etc.

If any of these concerns are familiar, then your organization may well be a
candidate for a BRMS.

1.4 Why use a Business Rules
Management System?

As I have pointed out, according to Standish (1995; 2004) around 66% of large
US projects fail. Clearly we should be doing something differently.

Another key statistic relevant to the failure of IT in the modern world is
the cost of maintenance. It is widely estimated that well over 90% of IT costs
are attributable to maintenance of existing systems rather than to their devel-
opment. This is one of the reasons that object-oriented and component based
development is so attractive: when the implementation of a data structure
or function changes, these changes do not propagate to other objects. Thus
maintenance is localized to the changed component(s) or service(s). However,
this benefit does not extend to changes to the business rules if they are scat-
tered around the application or tightly bound to interface definitions. If the
interface changes — as well as the implementation — the changes will propagate
and maintenance will be very costly.

To overcome this we need to separate the definition of policy from
implementation and code detail. BRMSs facilitate this. Ideally, the rules are
subdivided into modules that are encapsulated in individual objects, includ-
ing so-called ‘blackboard’ objects, which are visible to all objects that have
registered an interest in them. Such blackboards encapsulate global or organi-
zational policy, while rulesets that pertain to specific classes (such as clients or
products) can be stored (at least conceptually) within those objects for better
reuse.

The separated rulesets need to be maintained and kept under version
control. This implies that a good BRMS will store rulesets centrally in a
repository. As we shall see later, the apparent contradiction between the need
for encapsulation and centralization can be resolved using patterns, notably the
POLICY BLACKBOARD and ENCAPSULATE A REFERENCE patterns (cf. Chapter 7).

We think that a good BRMS should allow applications to be deployed in a
service oriented architecture (SOA). The rule engine should therefore present
itself as a service to applications and applications should be deployable
themselves as services (e.g. as web services).

