

by Nikhil Abraham
with Kathleen Taylor and Bud E. Smith

Getting a
Coding Job

Getting a Coding Job For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030‐5774, www.wiley.com

Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permis-
sion of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax (201)
748‐6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and
related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be
used without written permission. All other trademarks are the property of their respective owners.
John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY
MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK
MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT
IS READ.

For general information on our other products and services, please contact our Customer Care Department
within the U.S. at 877‐762‐2974, outside the U.S. at 317‐572‐3993, or fax 317‐572‐4002. For technical support,
please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print‐on‐demand. Some material
included with standard print versions of this book may not be included in e‐books or in print‐on‐demand.
If this book refers to media such as a CD or DVD that is not included in the version you purchased, you
may download this material at http://booksupport.wiley.com. For more information about Wiley
 products, visit www.wiley.com.

Library of Congress Control Number: 2015941960

ISBN 978‐1‐119‐05094‐0 (pbk); ISBN 978‐1‐119‐12101‐5 (ebk); ISBN 978‐1‐119‐12102‐2 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

Table of Contents
Introduction ... 1

About This Book .. 1
Foolish Assumptions ... 2
Icons Used in This Book ... 2
Beyond the Book ... 3
Where to Go from Here ... 3

Part I: Getting a Job in Coding 5

Chapter 1: Seeing the Big Picture .7
What Is Coding? ... 8
Why Coding Matters: Past, Present, Future ... 9

Coding in the past .. 9
Coding today .. 10
Coding in the future ... 12

Tracking the Explosion of Coding Jobs .. 14
Companies Hiring Coding Professionals .. 15

Full-time jobs .. 16
Freelancing and contract jobs .. 18

Chapter 2: Exploring Coding Career Paths .19
Augmenting Your Existing Job ... 19

Creative design ... 20
Content and editorial .. 21
Human resources ... 22
Product management .. 23
Sales and marketing ... 24
Legal .. 25

Finding a New Coding Job .. 26
Front-end web development... 27
Back-end web development.. 28
Mobile application development ... 30
Data analysis... 31

Chapter 3: Working as a Coder .33
Writing Code by Using a Process .. 33

Researching what you want to build ... 35
Designing your app .. 36

iv Getting a Coding Job For Dummies

Coding your app ... 38
Debugging your code... 38

Compensating a Coder .. 39
Salary and equity ... 39
Benefits and perks ... 41
Advancement .. 42
Restrictions on employment .. 42
Joining a company versus freelancing .. 43

A Week in the Life of a Coder ... 44
Monday.. 44
Tuesday ... 44
Wednesday ... 45
Thursday ... 46
Friday ... 46

Chapter 4: Understanding Key Coding Concepts 47
Developing for the Front End and Back End .. 48
Storing Data in SQL and NoSQL Databases .. 50

SQL databases .. 50
NoSQL databases ... 51

Saving Your Code in a Repository ... 52
Optimizing Code for Search Engines ... 54

Part II: Technologies Used When Coding 55

Chapter 5: Creating a Website .57
What Do HTML, CSS, and JavaScript Do? ... 57
Common HTML Tasks and Tags .. 60

Writing headlines ... 63
Organizing text in paragraphs .. 64
Linking to your (heart’s) content .. 65
Adding images .. 66

Common CSS Tasks and Selectors .. 67
Setting the font size ... 70
Setting the color ... 71
Setting the font style and font weight ... 72
Setting the font family ... 72

Common JavaScript Tasks and Commands ... 73
Understanding JavaScript structure ... 74
Using semicolons, quotes, parentheses, and braces 74
Storing data with variables ... 75
Making decisions with if-else statements ... 76
Working with string and number methods....................................... 80
Alerting users and prompting for input .. 81

Practicing Your HTML, CSS, and JavaScript .. 82

v Table of Contents

Chapter 6: Programming with Ruby and Python 83
Introducing Ruby and Python .. 83
Coding Advanced Functionality ... 86

Ruby design principles and code... 86
Python design principles and code ... 88

Choosing between Ruby and Python .. 90

Chapter 7: Creating Mobile Apps .93
Defining Types of Mobile Apps .. 93
Creating Mobile Web Apps for Any Phone ... 95
Coding Native Mobile Apps for iPhones and Android Devices 97
Identifying the Parts of an App .. 98

Chapter 8: Analyzing Big Data .101
Understanding Big Data .. 102

Defining big data .. 102
Preparing your data for analysis.. 103
Surveying techniques to analyze data .. 104

Decoding Data with R and Python ... 106
Using R for data analysis ... 107
Using Python for data analysis... 107

Visualizing and Interacting with Data ... 109

Part III: Getting Your Coding Education 111

Chapter 9: Coding on Your Own . .113
Assessing Your Goal, Time, and Budget ... 114

Choosing your goal .. 114
Making time to learn how to code ... 114
Spending money to learn how to code.. 115

Learning to Code Online and Offline ... 118
Using blogs and books .. 118
Learning from online websites ... 120
Adding support with mentors .. 123

Staying on Target to Achieve Your Goal ... 125
Pick a language, any language .. 125
Define a goal ... 126
Google is a coder’s best friend ... 126
Zap those bugs ... 127

Just Ship It .. 128
Collect Feedback .. 129
Iterate on Your Code ... 129
Share Your Successes and Failures ... 130

vi Getting a Coding Job For Dummies

Chapter 10: Going to Boot Camp .131
Discovering Coding Boot Camps ... 131
Filtering Boot Camps by Topic and Quality ... 134
Understanding the Coding Boot Camp Curriculum 138
Choosing the Right Boot Camp for You .. 142
Applying to a Coding Boot Camp .. 144
Preparing to Attend a Coding Boot Camp .. 146

Completing the prework ... 146
Financing your education ... 148

Finding a Job after a Coding Boot Camp .. 149

Chapter 11: Exploring Undergraduate and Graduate Degrees151
Getting a College Degree ... 152

College computer science curriculum .. 152
Doing extracurricular activities ... 155
Two-year versus four-year school ... 156

Enrolling in an Advanced Degree Program .. 157
Graduate school computer science curriculum 158
Performing research .. 160

Interning to Build Credibility ... 161
Types of internship programs .. 161
Securing an internship .. 162

Chapter 12: Training on the Job . .165
Taking a Work Project to the Next Level .. 166
Learning on the Job and After Work ... 167

Training on the job .. 168
Learning after work ... 169

Freelancing to Build Confidence and Skills .. 171
Transitioning to a New Role ... 172

Assessing your current role ... 172
Networking with developers .. 173
Identifying roles that match your interest and skills 174

Part IV: Launching Your Career Path 175

Chapter 13: Building Your Portfolio Site .177
Introducing Sarah Rudder’s Portfolio Site .. 178

Sarah’s career so far .. 178
Sarah’s portfolio site, above the fold .. 179
The rest of Sarah’s page — and site .. 182

Introducing Matt Rudder’s Portfolio Site ... 185
Creating Your Own Portfolio Site .. 188

vii Table of Contents

Chapter 14: Networking for Opportunities . .191
Networking in the Real World .. 191

Networking in your current company ... 193
Networking outside your company ... 194

Building Your Online Network ... 196
Creating a Winning Resume ... 197

Making a print resume stand out ... 197
Following the rules for LinkedIn .. 200

Chapter 15: Interviewing and Becoming a Star 203
Getting the Interview ... 203
Surviving Interviews .. 206

The phone screen .. 207
Before you interview ... 208
Acing the interview .. 209

Becoming a Star Employee ... 212
Be stellar at your core skill ... 213
Get more technical .. 214
Communicate better and earlier .. 215

Part V: The Part of Tens .. 217

Chapter 16: Ten Interview Questions Decoded 219
Can You Walk Me through Your Resume? .. 220
What Recent Project Have Your Worked On? .. 220
Why Do You Want to Work Here? ... 221
What Feature Would You Add to or Remove from Product X? 223
What Team Conflict Have You Resolved? .. 224
What Is Your Ideal Company and Job? ... 225
What Is Your Superpower? ... 226
Which Three Strengths and Weaknesses

Would Your Friends Use to Describe You? .. 226
What Do You Know to Be True that Most People

Disagree With or Find Surprising? ... 227
What Questions Do You Have for Me? .. 228

Chapter 17: Ten Job Search Strategies .229
Publish Your Code ... 229
Blog Regularly .. 230
Learn New Technologies .. 231
Update and Refresh Your Resume .. 232
Review Your Public Information .. 232

viii Getting a Coding Job For Dummies

Attend Hackathons .. 233
Teach Yourself a Popular API .. 235
Build and Release Something People Want .. 235
Consult to Fix a Painful Problem ... 237
Do a Trial Engagement .. 237

Chapter 18: Ten Coding Myths .239
You Must Be Good at Math .. 239
You Must Have Studied Engineering ... 240
You Can Learn Coding in a Few Weeks ... 241
You Need a Great Idea to Start Coding ... 241
Ruby Is Better than Python .. 242
Only College Graduates Receive Coding Offers 243
You Must Have Experience .. 244
Tech Companies Don’t Hire Women or Minorities 245
The Highest Paying Coding Jobs Are in San Francisco 246
Your Previous Experience Isn’t Relevant ... 247

Chapter 19: Ten Coding Job Websites .249
Part-Time and Contract Coding Jobs .. 249

oDesk/Elance .. 250
Freelancer ... 250
CodersClan ... 251
Startup Weekend .. 251

Full-Time Coding Jobs ... 252
AngelList ... 252
Indeed .. 253
Hacker News ... 253
LinkedIn ... 254
Stack Overflow Careers ... 255
Hired .. 255

Talk the Talk .. 257

Index ... 265

Introduction

E
verywhere you turn, people are looking for coders. In offices and board-
rooms, at your neighborhood bar, and around the family table, people

have ideas wanting to become websites, data needing to be analyzed, and
processes waiting to turn into a mobile app. Building a product requires
many people — including designers, product managers, marketers, and
content creators — but finding coders is always at the top of everyone’s list
because they are so scarce.

On the supply side of the equation, learning to code and then getting a job
can feel overwhelming. However, there have never been more ways to learn
how to code, including on your own, in school, at a coding boot camp, and on
the job. And companies of every size and type are hiring developers.

Getting a Coding Job For Dummies will help you make sense of all the options
and show you ways to get that first coding job.

About This Book
This book is designed for the person with little to no experience with coding
jobs. In plain English, you discover why coding jobs are so popular, which
technologies to use when coding, ways to learn coding, and how to launch
your career. The topics covered include the following:

✓✓ How coding became such a hot topic and big industry

✓✓ Types of coding jobs

✓✓ Options for learning to code, including coding boot camps

✓✓ Coding technologies used to build websites, analyze data, and create
mobile apps

✓✓ Building a portfolio and a network

✓✓ Interviewing your way into your first coding job

2 Getting a Coding Job For Dummies

As you read the book, keep the following in mind:

✓✓ Skip around as much as you like. The book can be read from beginning
to end, but if a topic interests you, start there.

✓✓ At some point, you will have questions or something will not make
sense. Do not fear! Many resources are available to help, including sup-
port forums, free tutorial websites, others on the Internet, and me! Using
Twitter, you can send a public message to me at @nikhilgabraham.

Foolish Assumptions
I do not make many assumptions about you, the reader, but I do make a few.

You do not need to have previous programming experience. In this regard,
you need to be able to read, type, and follow directions. I explain as many
concepts as possible by using examples and analogies you already know.

Before trying to get a coding job, you will spend some time learning how to
code. Chapter 5 shows you some basic code examples, and Part III outlines
options and resources for learning how to code in greater depth. If you
don’t have any coding knowledge, keep in mind that it will take at least a few
months to learn enough to be able to get a coding job.

You’ll need a computer running the latest version of Google Chrome if you
want to complete the coding examples. Chrome is a free browser and the
examples in the book and in the external resources have been tested and
optimized for the Chrome browser, although they may also work in latest ver-
sion of Firefox. Using Internet Explorer when learning to code is discouraged
because its support for coding languages varies and it doesn’t always work
as expected.

I assume that you have access to an Internet connection. You can read
almost all the book without an Internet connection, but you need an
Internet connection to access external learn‐to‐code resources, such as the
Codecademy website. Many listed resources are free and can be used with-
out downloading or installing anything.

Icons Used in This Book
Here are the icons used in the book to flag text that should be given extra
attention or that can be skipped.

3 Introduction

This icon indicates useful information or explains a shortcut to help you
understand a concept.

This icon explains technical details about the concept being explained. The
details might be informative or interesting but are not essential to your
understanding of the concept at this stage.

This icon marks a concept that likely has been explained before. It’s flagged
to reinforce what you’ve already learned.

Watch out! This icon indicates common mistakes and problems that can be
avoided if you heed the warning.

Beyond the Book
Online resources are available in addition to the ones in this book:

✓✓ Cheat sheet: Visit www.dummies.com/cheatsheet/
gettingacodingjob for tips while job searching and during your
interviews.

✓✓ Extras: Additional articles with extra content are posted for roughly
each section of the book. You can access this additional material by
 visiting www.dummies.com/extras/gettingacodingjob.

✓✓ Updates: You can find any updates or corrections by visiting www.
dummies.com/extras/gettingacodingjob.

Where to Go from Here
With all the administrative stuff out of the way, it’s time to get started.
Remember, you can start at the beginning or jump to whatever section
interests you the most. Congratulations on taking your first step to getting a
coding job!

http://www.dummies.com/cheatsheet/gettingacodingjob
http://www.dummies.com/cheatsheet/gettingacodingjob
http://www.dummies.com/extras/gettingacodingjob
http://www.dummies.com/extras/gettingacodingjob
http://www.dummies.com/extras/gettingacodingjob

Part I
Getting a Job in Coding

Check out www.dummies.com/extras/gettingacodingjob for more great
content online.

http://www.dummies.com/extras/gettingacodingjob

In this part . . .
 ✓ Understand why coding matters

 ✓ Explore coding career paths

 ✓ Follow a coder on the job

 ✓ Learn key coding concepts

Seeing the Big Picture
In This Chapter

▶▶ Seeing the history of coding and where it’s headed

▶▶ Understanding different types of coding jobs and salaries

▶▶ Learning about companies that hire coders

If you just focus on the smallest details, you never get the big picture right.

—Leroy Hood

T
oday, many moments in your daily life are affected by code. Code runs
the mobile phone alarm that wakes you up in the morning, the word

 processing and spreadsheet software you use at work or in school to create
letters or projections, the games you play on a phone or console, and the
web browser you run to check your email and read the news. Many tasks in
our lives have remained the same — there will always be people who need
help waking up in the morning — but technology is increasingly influencing
the way we complete these tasks.

Because you’re reading this book, you understand coding’s pervasiveness,
but you may wonder about the industry’s size and future. Is getting a coding
job like becoming a horse and buggy driver just as Ford was starting to sell
the Model T?

In this chapter, you learn where coding came from, how fast it has grown,
and what the future might hold for those who can code. Additionally, you’ll
see the types of companies that hire coders and find out what recruiting
 professionals look for when hiring coders.

Chapter 1

8 Part I: Getting a Job in Coding

What Is Coding?
Computer code consists of a set of statements (like sentences in English);
each statement directs the computer to perform a single step or instruc-
tion. Each step is precise and followed to the letter. For example, if you’re
in a restaurant and ask a waiter to direct you to the restroom, he might say,
“head to the back, and try the middle door.” To a computer, these directions
are vague and therefore unusable. Instead, if the waiter gave instructions to
you as if you were a computer program, he might say, “From this table, walk
northeast for 40 paces. Then turn right 90 degrees, walk 5 paces, turn left
90 degrees, and walk 5 paces. Open the door directly in front of you, and
enter the restroom.”

One rough way to measure a program’s complexity is to count its statements
or lines of code. Basic applications such as Pong have 5,000 lines of code,
while more complex applications such as Facebook currently have over
10 million lines of code. Whether few or many lines of code, the computer
follows each instruction exactly and effortlessly, never tiring like the waiter
might when asked for the 100th time for the location of the restroom.

Figure 1-1 shows lines of code from the popular game Pong. Don’t worry
about trying to understand what every single line does.

Be careful when using the number of lines of code as a measure of a program’s
complexity. Just like when writing in English, 100 well‐written lines of code can
perform the same functionality as 1,000 poorly written lines of code.

This book describes the ins and outs of careers in coding but will not teach
you a programming language. In Part III, you can read about the different
ways you can learn to code: by yourself, in a coding boot camp, in college,
and on the job.

Figure 1-1:
Computer
code from
the game

Pong.

9 Chapter 1: Seeing the Big Picture

Why Coding Matters:
Past, Present, Future

Today, programs written with code power so many different activities, and
the work they do can almost seem like magic. With a few mouse clicks or
finger taps, you can see your current location on a map, have groceries deliv-
ered to your door, or video chat with someone in another country. Although
the research and development to make these advancements possible has
been massive — billions of dollars invested and millions of hours worked —
it has been worthwhile. In this section, I briefly describe a history of code
and possibilities for the future.

Coding in the past
Unveiled in 1946 at the University of Pennsylvania, ENIAC was the first
 general‐purpose computer. See Figure 1-2. It was the size of a large room, and
programmers punched holes in paper cards to code programs that could
take hours to complete. Sometimes bugs would crawl inside these large com-
puters, causing the circuits to malfunction and resulting in errors. Removing
these bugs from the computer was called debugging, which is the name used
even today.

Figure 1-2:
ENIAC was

the size of a
large room.

10 Part I: Getting a Job in Coding

Gradually, with advances in hardware, computers became smaller and more
powerful. Whereas the ENIAC’s tens of thousands of resistors and capacitors
took up almost 2,000 square feet, later microprocessors could fit all these
electronics onto a chip the size of a postage stamp. Eventually, these micro-
processors would be built using silicon, which is both cheap and plentiful.

Increased computing power from powerful microprocessors allowed pro-
grammers to write more complicated and resource‐intensive programs. For
example, computer games became faster, used more complex graphics, and
displayed on‐screen smoothly and realistically. Writing code, or software
programming, depends on and is constrained by the underlying hardware on
which the code runs. As computing power increases, code is written to pro-
vide more features at a faster speed to users.

Programming languages were also invented to take advantage of this new
computing power. You may remember languages such as Basic, Fortran,
Pascal, C++, and Java. Like spoken languages, programming languages were
created to fill a need. If other programmers coded using the language, the
programming language would survive and thrive; otherwise, it would die.

Popular programming languages can decline in popularity or die, but this
can take a long time if the language is used for core processes. For example,
Fortran is not nearly as popular as it was 30 years ago, but it continues to be
used in the scientific community and in the financial sector, where it powers
applications for some of the biggest banks in the world.

Coding today
In 2011, Marc Andreessen, creator of Netscape Navigator and now a venture
capitalist, noted that “software is eating the world.” He predicted that soft-
ware companies would rapidly disrupt existing companies. Traditionally,
software was used on desktops and laptops. The software had to be installed,
and the installation process at a minimum varied by computer type and
might not even work or might be incompatible with your computer hardware
and software. After the software was installed, you had to supply data to
the program.

Four trends have dramatically increased the use of code in everyday life:

▶✓ Web‐based software: This software operates in the browser without
requiring installation. For example, if you want to check email, you
previously had to install an email client by downloading the software
or from a CD‐ROM. Issues arose when the software was not available
for your operating system or conflicted with your operating system

11 Chapter 1: Seeing the Big Picture

version. Hotmail, a web‐based email client, rose to popularity in part
because it allowed users visiting www.hotmail.com to instantly check
email without worrying about installation or software compatibility. Web
applications increased consumer appetite to try more applications, and
developers in turn were incentivized to write more applications.

▶✓ Internet broadband connectivity: Broadband connectivity has
increased, providing a fast Internet connection to more people in the last
few years than in the previous decade. Today, more than 2 billion people
can access web‐based software, up from approximately 50 million only a
decade ago.

▶✓ Coding repositories: Anyone can publish code for others to view and
use. Popular coding repositories, such as Github, are making coding
a more collaborative, open, and public process than ever before.
Programmers publish code to show others what they can build, to
solicit feedback to increase functionality or find vulnerabilities, and to
quickly spread software to other programmers.

▶✓ Mobile phones: Today’s smartphones bring programs with you wherever
you go and help supply data to programs. Many software programs
became more useful when accessed on the go than when limited to a
desktop computer. For instance, the use of maps apps greatly increased
thanks to mobile phones because users need directions the most when
lost not just when at home on the computer planning a trip. In addition,
mobile phones are equipped with sensors that measure and supply data
such as orientation, acceleration, and current location through GPS.
Now instead of having to input all the data to programs yourself, mobile
devices can help. For instance, a fitness application such as RunKeeper
automatically tracks your distance, speed, and time.

The combination of these trends has resulted in software companies that
have upended incumbents in almost every industry, especially ones typically
immune to technology. Some notable examples include the following:

▶✓ Airbnb: A peer‐to‐peer lodging company that owns no rooms, yet books
more nights than the Hilton and Intercontinental, the largest hotel chain
in the world. See Figure 1-3.

▶✓ Uber: A car transportation company that owns no vehicles but books
more trips and has more drivers in 200 cities than any other car or
taxi service.

▶✓ Groupon: A daily deals company that generated almost $1 billion after
just two years in business, growing faster than any other company in
history, let alone any other traditional direct marketing company.

http://www.hotmail.com

12 Part I: Getting a Job in Coding

Coding in the future
The one constant in technology and coding is change. Improvements in
existing computer architecture will lead to the creation of newer, faster, and
smaller hardware devices, and developers will then write code to operate
and control those hardware devices.

Moore’s Law, a rule of thumb used in the computer hardware industry,
 predicts that the number of transistors per square inch on an integrated
 circuit will double every year. The prediction has proved to be true for the
last 50 years, although some experts doubt whether it will continue to hold
true for the next 50 years.

The following technology developments are increasing in popularity and
should remain relevant at least for the next five years:

▶✓ Internet of Things (IOT): Computing power is transforming dumb hard-
ware devices into smart, connected, self‐regulated devices. For example,
the Nest thermostat uses a motion detector to record when people are
present, and then heats and cools homes when people are expected to
be at home instead of all day. Similarly, Lockitron makes a device that
allows you to lock and unlock your front door with your smartphone.

Figure 1-3:
Airbnb

booked
5 million

nights after
three and a
half years,

and its next
5 million

nights six
months

later.

13 Chapter 1: Seeing the Big Picture

Other connected devices, such as the FitBit fitness tracker and the
Apple Watch, need coders to add functionality and connect people
in new ways.

▶✓ Machine learning: For years, databases just stored data. Now, code is
finally being written to analyze the data and make intelligent predictions.
For example, mapping applications use real‐time and historical data to
predict traffic and the time your route will take to complete. 23andme, a
genetics company, compares your human genome against its database
to predict which diseases you are more likely to have. General Electric
has outfitted industrial machines such as hospital equipment and jet
engines with sensors, and uses historical data to repair machines before
they break, decreasing downtime and increasing revenue. Coders will
continue to write analytics programs to crunch large datasets and gener-
ate predictions with increasing accuracy.

▶✓ Interconnected applications: An application programming interface
(API) allows one program to talk to and request data from another exter-
nal program, which provides a response. Although APIs are powerful,
their functionality can be limited and they rarely talk to one another. For
example, Dropbox, the storage provider, has an API to allow third‐party
applications to back up data, and Facebook has an API that lets third‐
party applications retrieve a user’s photos. However, using just those
two APIs, you cannot automatically back up every Facebook photo to
Dropbox. Companies such as IFTTT (If This Then That) allows users to
create recipes that combine APIs.

▶✓ Virtual software containers: Traditionally, software programs could be
described as an interconnected web of your code and code written by
others. To incorporate someone else’s code into your own program, you
had to check that both programs were compatible and that any third‐
party code used by the external program, called a dependency, was also
compatible with your code. The process of resolving conflicts was fre-
quently time‐consuming and frustrating. One solution is to move away
from the current interconnected system of software programming to an
independent self‐contained system. Docker is one company that hosts
an open‐source project to help programmers package software and its
dependencies into a self‐contained program called a virtual container.
These virtual containers have standardized inputs and outputs, run on
many operating systems, and can connect to each other with little need
to check for compatibility. Just like standardized shipping cargo contain-
ers make it easier and faster to load and unload ships, so too do virtual
containers make it easier and faster to package programs to work easily
with other programs.

14 Part I: Getting a Job in Coding

Tracking the Explosion of Coding Jobs
Creating applications and making computer programs work seamlessly
requires many people working many hours because every instruction
must be explicit. The Bureau of Labor Statistics estimates that across all
industries, about 140,000 jobs in computing are being created every year that
pay approximately $80,000. In some industries, computing jobs are growing
by over 20 percent, which is two to four times the average growth rate across
all occupations.

The demand is great, but computer programmers are in short supply.
Colleges train the most computer programmers and graduate about 40,000
computer scientists per year. Using current estimates, by 2020 there will
be 1,000,000 more jobs than qualified students, representing a $500 billion
opportunity. See Figure 1-4.

Table 1-1 shows some of the coding occupations contributing to this boom.
Each job is unique, and generally there is not a great deal of switching
between jobs. For example, mobile developers don’t suddenly become data
scientists, or vice versa. When people do switch between these positions,
there is usually a training period.

Web developers are typically self‐taught; according to census data, less than
40 percent have earned a four‐year college degree. Many developers also
enter the profession as a quality assurance analyst and then move into a
junior web developer role.

Figure 1-4:
By 2020,

1,000,000
coding

jobs will go
unfilled due

to a lack
of skilled
workers.

15 Chapter 1: Seeing the Big Picture

Companies Hiring Coding Professionals
There’s no way around it — all industries are experiencing a massive short-
age of talent who can code. Employers are looking for talent wherever they
can find it. People with traditional and nontraditional backgrounds, and
those who want to work in an office or work remotely are all finding compa-
nies that need help.

The two general types of coding jobs are full‐time positions in companies and
contract or freelance work.

Table 1-1 Entry‐Level Coding Occupations

Occupation Job Summary Average Salary
Mobile developer Code applications that run on

mobile devices such as phones
and tablets. Also responsible for
app performance and user inter-
actions that are easy to complete
on a mobile device.

$95,000

Software developer Develop programs and write code
for hardware, software, and net-
work systems.

$93,350

Database administrator Use specialized software to store
and organize data, such as finan-
cial information and customer
shipping records. Make sure that
data is available to users and is
secure from unauthorized access.

$77,080

Web developer Design and create websites.
Responsible for both the look and
feel of the site, and for technical
aspects, such as the website’s
speed and traffic capacity.

$62,500

Data analyst Analyze big data using statistics
and machine‐learning techniques
to generate insights and future
predictions.

$60,000

Quality assurance analyst Test programs to ensure that
f eatures perform according to
specification, and document bugs.

$53,000

Sources: Bureau of Labor Statistics, Indeed.com, Glassdoor.com

16 Part I: Getting a Job in Coding

Full‐time jobs
Companies of various sizes hire people who have just learned how to code
for full‐time positions. The size of the company can have pros and cons when
it comes to hiring people who have just learned how to code:

▶✓ Large companies: Companies with more than 1,000 employees, such
as Fortune 500 companies and large tech companies including Yahoo!,
Google, and Facebook have high standards for hiring employees. Given
the number of applications they receive for each open position, recruit-
ers at these companies usually use a strict screening process and
grant interviews only to people who have a computer science, math,
or engineering‐related major. However, for those people who do pass
the hiring screen and are eventually hired, there are many resources,
both formal programs and people who can help coach and train you to
increase your skills.

Almost every large company has an online application. Send in your
application online, and then find an advocate, someone at the company
who believes in your candidacy, to help your application pass to the
interview stage.

▶✓ Medium‐sized companies: Of the three types of companies, getting hired
at a medium‐sized company can be hardest. With their large recruiting
departments, candidates have to interview with as many people as in
large companies. In addition, medium‐sized companies typically do not
spend as much money on training as large companies.

One successful strategy to getting hired permanently in a medium‐sized
company is to freelance first, which helps you build up your reputation
and allows the company to assess your skills in a low risk way.

▶✓ Startups: With less than 20 employees, startups often desperately need
coding talent and are small enough to make hiring decisions quickly.
They don’t have a formal recruiting staff, so you should develop a per-
sonal connection with the person doing the hiring. Startups don’t have
extensive training programs, and you are expected to contribute imme-
diately. However, the small company size should help you form personal
relationships with your engineering coworkers, who can help answer
questions and informally train you.

In the beginning, successful startups often have so much work and are
so short staffed that having anyone do the work is better than having no
one. For this reason, startups decide on candidates quickly, rather than
wait for the best person for each role.

▶✓ Government: City, state, and federal governments and their agen-
cies have thousands of internship and full‐time job openings for
coders. Depending on the agency, the application process can be time

17 Chapter 1: Seeing the Big Picture

 consuming, and require proof of U.S. citizenship, extensive background
checks, and completion of qualifying exams. Applicants can use www.
usajobs.gov to search across all federal opportunities, and individual
state government websites for opportunities in a specific state or city
 government.

From the source: Tips from a tech recruiter
Yoonie Kim has been a recruiter for technology
companies for almost 15 years. She has held
recruiting roles at Codecademy, Ning, Meetup,
Google, Amazon, and Microsoft. I asked her the
following questions:

▶✓ Can you share a little about your work
 experiences?

▶ I’ve worked at tech companies of all sizes
and stages. I started my career at Microsoft,
and worked at large established compa-
nies like Amazon and Google, all the way to
small and early‐stage companies like Ning
and Codecademy. I also cofounded my own
recruiting company to help smaller startups
build out their initial engineering teams. In
2014, I joined Dropbox to help build out the
New York and Seattle presence and offices.

▶✓ How do you attract and screen candidates?

▶ People use and have heard of your prod-
uct, that helps, but I also reach out to can-
didates when employees refer them to me,
and when I see candidates’ work online in
a blog post, open source project, or talk.
When I screen candidates, I’m usually
looking for what they’ve accomplished,
and whether they have actually built some-
thing meaningful or just maintained a prod-
uct. Most interview processes start with a
phone screen and then on‐site interviews,
but I try to personalize the interview as
much as possible for the candidate. If you
have less coding experience, you might be
asked about something you just built, while

more experienced candidates will jump into
a hard problem the company is currently
solving.

▶✓ What do you screen for?

▶ At the resume stage, I’m always looking
for something interesting that will excite
the team and make people want to have
a conversation with the candidate. In the
actual interview, I’d say 70 percent of the
evaluation is technical ability, and the rest
of the evaluation is a combination of soft
skills and cultural contribution. I used to
look for a specific candidate profile, usu-
ally a computer science degree and previ-
ous tech experience, but I’ve become more
open to people without college degrees,
career switchers, and people who have
taught themselves to code. I have recruited
a few self‐taught programmers, and they
have gone on to have incredibly successful
careers within companies.

▶✓ What is a mistake everyone makes in the
recruiting process?

▶ Have a story both about what you have
done previously and what you want to do
at the company where you are now inter-
viewing. Sometimes candidates don’t have
much to say about a topic they should know
a lot about — themselves! Also, have a
product or a feature you want to work on
if you’re given an offer. It can be hard to
advocate for candidates who don’t express
any preferences.

http://www.usajobs.gov
http://www.usajobs.gov

18 Part I: Getting a Job in Coding

Freelancing and contract jobs
Companies of all sizes hire freelancers to do discrete projects that are not
overly complex and have a definite end date. For example, freelancers often
build a website with a few defined pages, create mobile apps, or scrape and
store data from websites into databases. Getting some of the initial work
performed by a freelancer helps a company see how much time and money a
project will cost and whether there is a need to hire a full‐time employee.

Contract work also provides freelancers with some valuable benefits. Even
for full‐time coders, doing some contract work is a great way to build up
skills in a new programming language or framework. Also, because coding
work can be done from anywhere, freelancers have a good deal of flexibility
and don’t necessarily have to sit behind a desk in an office. For example,
some freelancers travel often for pleasure, and can be found working in cities
such as Boston one month and Bali the next month. Finally, some coders
freelance full‐time, and build their business by doing work for existing clients
and pitching new work to client referrals.

One issue with freelancing is that you are always looking for the next job.
A few websites, such as Freelancer (www.freelancer.com) and Upwork (www.
upwork.com), formerly odesk.com, help provide freelancers with steady work
by creating communities that connect employers and freelancers. See Figure 1-5.

These sites create online reputations for both freelancers and companies,
which helps each side feel more confident that the work will be completed
and the agreed upon amount will be paid.

Figure 1-5:
Upwork

helps
 freelancers
find and bid
on contract
coding jobs.

http://www.freelancer.com
http://www.upwork.com
http://www.upwork.com

Exploring Coding Career Paths
In This Chapter

▶▶ Improving your existing job

▶▶ Exploring entry‐level full‐time coding roles

▶▶ Understanding skills and tasks in various coding roles

We shall not cease from exploration, and the end of all our exploring will be
to arrive where we started and know the place for the first time.

—T.S. Elliot

F
or many people, the words “coding career” evoke an image of a person
sitting in a dimly lit room typing incomprehensible commands into a

computer. The stereotype has persisted for decades — just watch actors
such as Matthew Broderick in War Games (1983), Keanu Reeves in The Matrix
(1999), or Jesse Eisenberg in The Social Network (2010). Fortunately, these
movies are not accurate representations of reality. Just like a career in medi-
cine can lead to psychiatry, gynecology, or surgery, a career in coding can
lead to an equally broad range of options.

In this chapter, you see how coding can augment your existing job across
a mix of functions, and you explore increasingly popular careers based
 primarily on coding.

Augmenting Your Existing Job
Many people find coding opportunities in their existing job. It usually starts
innocently enough, and with something small. For example, you may need
a change made to the text on the company’s website, but the person who
would normally do that is unavailable before your deadline. If you knew how
to alter the website’s code, you could perform your job faster or more easily.
This section explores how coding might augment your existing job.

Chapter 2

20 Part I: Getting a Job in Coding

Creative design
Professionals in creative design include those who

▶✓ Shape how messages are delivered to clients

▶✓ Create print media such as brochures and catalogs

▶✓ Design for digital media such as websites and mobile applications

Traditionally, digital designers, also known as visual designers, created
 mockups, static illustrations detailing layout, images, and interactions, and
then sent these mockups to developers who would create the web or mobile
product. This process worked reasonably well for everyday projects, but
feedback loops started becoming longer as mockups became more complex.
For example, a designer would create multiple mockups of a website, and
then the developer would implement them to create working prototypes,
after which the winning mockup would be selected. As another example,
the rise of mobile devices has led to literally thousands of screen variations
between mobile phones and tablets created by Apple, Samsung, and others.
Project timelines increased because designers had to create five or more
mockups to cover the most popular devices and screen sizes.

As a designer, one way to speed up this process is to learn just enough code
to create working prototypes of the initial mockups that are responsive, which
means one prototype renders on both desktop and mobile devices. Then
project managers, developers, and clients can use these early prototypes to
decide which versions to further develop and which to discard. Additionally,

Choosing a career path
Coding career paths are extremely varied. For
some people, the path starts with using code
to more efficiently perform an existing job. For
others, coding is a way to transition to a new
career. As varied as the career path is, so too
are the types of companies that need coders.

As more people carry Internet‐capable mobile
phones, businesses of every type are turning
to coders to reach customers and to optimize
existing operations. No business is immune. For
example, FarmLogs is a company that collects
data from farm equipment to help farmers

increase crop yields and forecast profits.
FarmLogs needs coders to build the software
that collects and analyzes data, and farmers
with large operations may need coders to
customize the software.

To build or customize software, you’ll need
to learn new skills. Surprisingly, the time
required to learn and start coding can range
from an afternoon of lessons to a ten‐week
crash course to more time‐intensive options,
such as a four‐year undergraduate degree in
computer science.

