

Reinhard Larsen Thomas Ziegenfuß

Pocket Guide Beatmung

Pocket Guide Beatmung

Reinhard Larsen Thomas Ziegenfuß

Pocket Guide Beatmung

Mit 25 Abbildungen

Reinhard Larsen Homburg/Saar

Thomas Ziegenfuß Moers

ISBN 978-3-662-46218-8 DOI 10 1007/978-3-662-46219-5 978-3-662-46219-5 (eBook)

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

© Springer-Verlag Berlin Heidelberg 2015

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen.

Umschlaggestaltung: deblik Berlin Fotonachweis Umschlag: Mathias Ernert, Deutsches Herzzentrum Berlin

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

 $Springer-Verlag \ ist Teil \ der Fachverlagsgruppe \ Springer Science+Business \ Media \ www.springer.com$

Vorwort

Dieses Taschenbuch ist eine evidenz- und leitlinienbasierte Darstellung der maschinellen Beatmung und Atemunterstützung für den Alltagsgebrauch. Dargestellt werden die verschiedenen Beatmungstechniken und deren differenzierte Anwendung bei den einzelnen Formen und Arten der respiratorischen Insuffizienz. Hierbei wird auf theoretische Grundlagen weitgehend verzichtet und stattdessen direkt und in aller Klarheit das praktische Vorgehen am Krankenbett beschrieben. Entsprechend wendet sich das Buch in erster Linie an Intensivmediziner und Intensivpflegekräfte, die Patienten mit respiratorischer Insuffizienz klinisch versorgen. Ihnen soll das Buch v. a. eine jederzeit verfügbare Entscheidungshilfe bei Ihrer Tätigkeit sein.

Reinhard Larsen Thomas Ziegenfuß

Homburg und Moers, im Januar 2015

Autoren

Larsen, Reinhard, Prof. Dr.

Fasanenweg 26 66424 Homburg/Saar

E-Mail: reinhard-larsen@t-online.de

Ziegenfuß, Thomas, Dr.

Asberger Str. 4

47441 Moers

E-Mail: an.ziegenfuss@st-josef-moers.de

Inhaltsverzeichnis

1	Respiratorische Insuffizienz	1
	Reinhard Larsen, Thomas Ziegenfuß	
1.1	Klassifizierung	2
1.2	Störungen der Ventilation	3
1.2.1	Störungen, die zur alveolären Hypoventilation	
	führen können	4
1.2.2	Restriktive und obstruktive Ventilationsstörungen	4
1.3	Störungen des Belüftungs-Durchblutungs-	
	Verhältnisses	5
1.4	Venöse Beimischung oder Shunt	5
1.4.1	Gesteigerte alveoläre Totraumventilation	7
1.4.2	Ventilatorische Verteilungsstörungen	9
1.5	Diffusionsstörungen	9
1.6	Veränderungen der funktionellen Residualkapazität	10
1.6.1	Abnahme der FRC	11
1.6.2	Zunahme der FRC	11
1.7	Veränderungen der Lungendehnbarkeit (Compliance)	12
1.8	Erhöhter Atemwegwiderstand (Resistance)	12
1.9	Ermüdung der Atemmuskulatur, »respiratory	
	muscle fatigue«	13
1.9.1	Erhöhtes Lungenwasser	14
1.10	Störungen des Lungenkreislaufs	15
	Literatur	15
2	Beatmungsformen	17
	Reinhard Larsen, Thomas Ziegenfuß	
2.1	Beatmungszyklus	18
2.2	Unterscheidung von Beatmungsformen	18
2.2.1	Auslösung der Inspiration	19
2.2.2	Durchführung der Inspiration: VCV und PCV	20
2.2.3	Beendigung der Inspiration	22
2.3	Atemtypen	22
2.3.1	Mandatorischer Atemtyp	23
2.3.2	Spontaner Atemtyp	23

VIII Inhaltsverzeichnis

2.4	Grundformen der Beatmung	23
2.4.1	Terminologische Erläuterungen zu VCV und PCV	25
2.5	Einteilung der Beatmungsformen nach	
	der Eigenleistung des Patienten	27
2.5.1	Augmentierende (unterstützende) Atemhilfen	28
2.5.2	Unkonventionelle Verfahren	30
	Literatur	30
3	Einstellparameter des Beatmungsgeräts	31
	Reinhard Larsen, Thomas Ziegenfuß	
3.1	O ₂ -Konzentration	32
3.2	Atemhubvolumen	32
3.3	Atemminutenvolumen	33
3.4	Atemfrequenz	34
3.5	Positiver endexspiratorischer Druck (PEEP)	34
3.5.1	Extrinsischer und intrinsischer PEEP	35
3.5.2	Wirkungen auf das intrapulmonale Gasvolumen und	
	den intrathorakalen Druck	35
3.5.3	Auswirkungen des PEEP auf die Lungenfunktion	36
3.5.4	Wirkungen auf das Herz-Kreislauf-System	36
3.5.5	Indikationen für PEEP	37
3.5.6	Zeitpunkt der PEEP-Anwendung	38
3.5.7	Wie hoch soll der PEEP gewählt werden?	38
3.6	Maximaler Inspirationsdruck (p _{max})	39
3.6.1	Druckkontrollierte Beatmung	40
3.6.2	Volumenkontrollierte Beatmung	40
3.7	Inspiratorische Druckunterstützung	41
3.8	Atemzeitverhältnis, Inspirationszeit	
	und Exspirationszeit	42
3.8.1	»Inspiratory hold«	43
3.8.2	Verringerung des I:E-Verhältnisses	43
3.8.3	Erhöhung des I:E-Verhältnisses	44
3.9	Inspiratorische Pause	45
3.9.1	Volumenkontrollierte Beatmung	45
3.9.2	Druckkontrollierte Beatmung	45
3.10	Inspirationsflow bzw. Gasgeschwindigkeit	46
3.10.1	Volumenkontrollierte Beatmung	46
3.10.2	Hoher Inspirationsflow	46

3.10.3	Niedriger inspirationshow	40
3.10.4	Druckkontrollierte Beatmung	47
3.11	Inspirationsflow (Profil)	47
3.11.1	Volumenkontrollierte Beatmung	47
3.11.2	Druckkontrollierte Beatmung	48
3.12	Trigger und Triggerempfindlichkeit	48
3.13	Seufzer	49
3.14	Alarme	49
	Literatur	50
4	CMV – kontrollierte Beatmung	51
	Reinhard Larsen, Thomas Ziegenfuß	
4.1	Prinzip der CMV	52
4.2	Volumenkontrollierte CMV	53
4.2.1	Grundeinstellung bei volumenkontrollierter	
	Beatmung (VC-CMV)	53
4.2.2	Vorteile gegenüber PC-CMV	53
4.2.3	Nachteile gegenüber PC-CMV	54
4.3	Druckkontrollierte CMV	54
4.3.1	Grundeinstellung bei druckkontrollierter	
	Beatmung (PC-CMV)	55
4.3.2	Vorteile gegenüber VCV	55
4.3.3	Nachteile gegenüber VCV	55
4.4	Druck- oder volumenkontrollierte Beatmung	
	bei schwerer Lungenschädigung?	56
4.5	Indikationen für die kontrollierte Beatmung	56
4.6	»Dual-control modes«: PRVC und VAPS	56
4.7	Druckbegrenzte Beatmung (PL-VCV)	57
	Literatur	58
5	IMV und MMV – partielle mandatorische Beatmung	59
	Reinhard Larsen, Thomas Ziegenfuß	
5.1	Intermittierende kontrollierte Beatmung (IMV)	60
5.1.1	Grundeinstellung der SIMV	61
5.1.2	Vorteile der IMV im Vergleich mit CMV und A/C	61
5.1.3	Nachteile der IMV im Vergleich mit CMV und A/C	62
5.1.4	Klinische Bewertung der SIMV	62
5.2	Mandatorische Minutenbeatmung (MMV)	62

X Inhaltsverzeichnis

5.2.1	Grundeinstellung bei MMV	63
5.2.2	Nachteile der MMV	64
	Literatur	64
6	PSV/ASB – druckunterstützte Spontanatmung	65
	Reinhard Larsen, Thomas Ziegenfuß	
6.1	Druckunterstützte Beatmung (»pressure support«)	66
6.1.1	Grundeinstellung von PSV/ASB	67
6.1.2	Vorteile der PSV	68
6.1.3	Nachteile der PSV	69
6.1.4	Klinische Bewertung der PSV	69
6.2	Volumenunterstützte Beatmung (»volume support«)	70
6.2.1	Klinische Bewertung	70
6.2.2	AutoMode	71
6.2.3	Volume assured pressure support (VAPS)	71
	Literatur	71
7	BIPAP – biphasische positive Druckbeatmung	73
	Reinhard Larsen, Thomas Ziegenfuß	
7.1	Prinzip des BIPAP	74
7.2	Einstellgrößen des BIPAP	74
7.2.1	Grundeinstellung des BIPAP	75
7.2.2	Bewertung des BIPAP	77
7.3	Beatmungsmodi	77
7.3.1	Kontrollierte Beatmungsmodi	77
7.3.2	Partielle Beatmungsmodi	78
7.3.3	Spontanatmungsmodus (CPAP)	78
	Literatur	79
8	APRV – Beatmung mit Druckentlastung	
	der Atemwege	81
	Reinhard Larsen, Thomas Ziegenfuß	
8.1	Prinzip der APRV	82
8.2	Einstellung der APRV	83
8.3	Vorteile der APRV	84
8.4	Nachteile der APRV	84
8.5	Klinische Bewertung der APRV	85
	Literatur	85

9	rAV/rr3 - proportional didekunterstutzte	
	Spontanatmung	87
	Reinhard Larsen, Thomas Ziegenfuß	
9.1	Prinzip der PAV	88
9.2	Funktion der PAV	89
9.3	Einstellung der PAV	89
9.4	Vorteile der PAV	90
9.5	Nachteile der PAV	91
9.6	Bewertung der PAV	91
	Literatur	91
10	ASV und NAVA – komplexe Beatmungsformen	93
	Reinhard Larsen, Thomas Ziegenfuß	
10.1	ASV – angepasste unterstützende Beatmung	94
10.1.1	Grundeinstellung der ASV	94
10.1.2	Regeln für Lungenschutz	95
10.1.3	Klinische Bewertung der ASV	96
10.2	NAVA – proportional druckunterstützter Spontan-	
	atmungsmodus	96
	Literatur	96
11	CPAP – Spontanatmung bei kontinuierlichem	
	positivem Atemwegdruck	97
	Reinhard Larsen, Thomas Ziegenfuß	
11.1	Prinzip des CPAP	98
11.2	Continuous-Flow-CPAP	98
11.2.1	Nachteile	98
11.3	Demand-Flow-CPAP	99
11.3.1	Vorteile gegenüber Continuous-Flow-CPAP	99
11.4	Wirkungen des CPAP	99
11.5	Einsatz des CPAP	100
	Literatur	101
12	ATC – automatische Tubuskompensation	103
	Reinhard Larsen, Thomas Ziegenfuß	
12.1	Wirkung der ATC	104
12.1.1	Wirkungen während der Inspiration	104
12.1.2	Wirkungen während der Exspiration	105

XII Inhaltsverzeichnis

12.2	Einstellung von ATC	106
12.3	Probleme mit ATC	107
12.4	Klinische Bewertung von ATC	107
	Literatur	107
13	IRV – Beatmung mit umgekehrtem	
	Atemzeitverhältnis	109
	Reinhard Larsen, Thomas Ziegenfuß	
13.1	Einfluss der IRV auf den pulmonalen Gasaustausch	110
13.2	Einstellung der IRV	110
13.3	Volumenkontrollierte IRV (VC-IRV)	111
13.4	Druckkontrollierte IRV (PC-IRV)	111
13.5	IRV und PEEP	111
13.6	Vorteile der IRV	113
13.7	Nachteile der IRV	113
13.8	Anwendung der IRV	114
	Literatur	115
14	Permissive Hyperkapnie	117
	Reinhard Larsen, Thomas Ziegenfuß	
14.1	Auswirkungen der Hyperkapnie	118
14.1.1	Ungünstige Auswirkungen und Gefahren	118
14.1.2	Günstige Auswirkungen	119
14.2	Indikationen der permissiven Hyperkapnie	119
14.3	Kontraindikationen der permissiven Hyperkapnie	119
14.3.1	Begrenzung des Atemwegdrucks	120
14.4	Begleitende Maßnahmen	120
14.5	Klinische Bewertung der permissiven Hyperkapnie	120
	Literatur	121
15	Lung-Recruitment-Manöver und	
	Open-Lung-Konzept	123
	Reinhard Larsen, Thomas Ziegenfuß	
15.1	Durchführung der Recruitmentmanöver	124
15.2	Open-Lung-Konzept	125
15.3	Klinische Bewertung der Recruitmentmanöver	126
	Literatur	127

16	Beatmung in Bauchlage	129
	Reinhard Larsen, Thomas Ziegenfuß	120
16.1	Wirkung der Bauchlagerung	130
16.2	Indikationen der Bauchlagerung nach	4.04
	der DGAI/BDA-Leitlinie	130
16.3	Kontraindikationen der Bauchlagerung	131
16.4	Risiken der Bauchlagerung	131
16.5	Sicherheitsmaßnahmen bei Bauchlagerung	131
16.6	Klinische Bewertung der Bauchlagerung	132
	Literatur	133
17	HFV – Hochfrequenzbeatmung	135
	Reinhard Larsen, Thomas Ziegenfuß	
17.1	Prinzip der HFV	136
17.2	Indikationen der HFV	136
17.3	Beatmungsformen der HFV	136
17.3.1	HFV mit positivem Druck (»high frequency positive	
	pressure ventilation«, HFPPV)	137
17.3.2	Hochfrequenzjetbeatmung (»high frequency jet	
	ventilation«, HFJV)	137
17.3.3	Hochfrequenzoszillationsbeatmung (»high frequency	
	oscillation«, HFO)	138
17.4	Vorteile der HFV	139
17.5	Nachteile der HFV	140
	Literatur	140
18	ECMO – extrakorporale Lungenunterstützung	143
	Reinhard Larsen, Thomas Ziegenfuß	
18.1	Prinzip der ECMO (extrakorporale Membran-	
10.1	oxygenierung)	144
18.2	Formen der ECMO	144
18.2.1	Venovenöse ECMO	144
18.2.2	Arteriovenöse ECMO	146
18.3	Verfahrensaspekte der ECMO	148
18.4	Beatmung unter ECMO	148
18.5	Indikationen der ECMO	148
18.6	Kontraindikationen der ECMO	149
18.7	Komplikationen der ECMO	149

XIV Inhaltsverzeichnis

18.8	Klinische Bewertung der ECMO	150
	Literatur	150
19	NIV – nichtinvasive Beatmung	151
	Reinhard Larsen, Thomas Ziegenfuß	
19.1	Heimbeatmung	152
19.1.1	Indikationen	152
19.2	NIV in der Intensivmedizin	153
19.2.1	Indikationen der NIV	153
19.2.2	Kontraindikationen der NIV	154
19.2.3	Unterschiede zwischen NIV und invasiver Beatmung	154
19.3	NIV mit positivem Druck: NIPPV	156
19.3.1	Voraussetzungen für NIPPV	157
19.3.2	Beatmungsformen für die NIPPV	157
19.3.3	Erfolgsbeurteilung der NIPPV	158
19.4	Misserfolg, Abbruchkriterien und Gefahren	158
19.4.1	Abbruch der NIV	159
19.4.2	Gefahren der NIV	160
19.5	NIV beim akuten Atemversagen	161
19.5.1	Klinische Bewertung der NIV bei akutem Atemversagen	161
	Literatur	162
20	Beatmungsindikationen und	
	Wahl der Atemunterstützung	163
	Reinhard Larsen, Thomas Ziegenfuß	
20.1	Ziele der Atemtherapie	164
20.1.1	Physiologische Ziele der Beatmung	164
20.1.2	Klinische Ziele der Beatmung	165
20.1.3	Kurzzeit- und Langzeitbeatmung	166
20.2	Indikationen für die maschinelle Beatmung	166
20.2.1	Grunderkrankung	166
20.2.2	Schwere der Gasaustauschstörung	167
20.2.3	Klinische Zeichen der respiratorischen Insuffizienz	168
20.2.4	Wann soll mit der Beatmung begonnen werden?	168
20.3	Durchführung der Beatmung	169
20.3.1	Wahl der Beatmungsmodi und Beatmungsmuster	170
20.3.2	Differenziertes Vorgehen bei Störungen	
	der Oxygenierung und Ventilation	171

20.4	Störungen der Oxygenierung	172
20.4.1	Ursachen	172
20.4.2	Behandlung	173
20.5	Störungen der Ventilation	174
20.5.1	Behandlung	174
20.6	Akzidentelle Hyperventilation	175
	Literatur	175
21	Überwachung der Beatmung	177
	Reinhard Larsen, Thomas Ziegenfuß	
21.1	Respiratorisches Monitoring	178
21.2	Monitoring am Beatmungsgerät	179
21.2.1	Maschinenmonitoring	179
21.2.2	Inspiratorische O ₂ -Konzentration	180
21.2.3	Atemwegdrücke	180
21.3	Pulmonaler Gasaustausch	185
21.3.1	Arterielle Blutgasanalyse	186
21.3.2	Pulsoxymetrie	191
21.3.3	Kapnometrie	191
21.4	Überwachung von Lunge und Thorax	193
21.4.1	Klinische Untersuchung	193
21.4.2	Röntgenbild des Thorax	196
21.4.3	Computertomografie	198
21.4.4	Messung des extravasalen Lungenwassers	198
21.4.5	Mikrobiologische Untersuchungen	198
21.4.6	Cuffdruckmessung	199
21.5	Überwachung der Herz-Kreislauf-Funktion	199
	Literatur	200
22	Auswirkungen und Komplikationen	
	der Beatmung	201
	Reinhard Larsen, Thomas Ziegenfuß	
22.1	Auswirkungen und Komplikationen	
	der maschinellen Beatmung	202
22.2	Herz-Kreislauf-Funktion	202
22.3	Nierenfunktion und Flüssigkeitsgleichgewicht	203
22.4	Gehirn	204
22.5	Beatmungsassoziierte Lungenschädigung (VALI).	205

XVI Inhaltsverzeichnis

22.5.1	Klinische Manifestationen des pulmonalen Barotraumas	
	(»Makrotrauma«)	205
22.5.2	Barotrauma mit Luftaustritt: Herkunft	
	der extraalveolären Luft	206
22.5.3	Mechanismen des pulmonalen Barotraumas	206
22.5.4	Behandlung des pulmonalen Barotraumas	208
22.5.5	Prävention des pulmonalen Barotraumas	211
22.6	Pulmonale O ₂ -Toxizität	212
22.7	Verschlechterung des pulmonalen Gasaustausches	213
22.8	Beatmungsgerätassoziierte Pneumonie	215
22.8.1	Häufigkeit und Letalität	216
22.8.2	Erreger und Risikofaktoren	216
22.8.3	Pathogenese	217
22.8.4	Diagnose	217
22.8.5	Behandlung	218
22.8.6	Prophylaxe der beatmungsgerätassoziierten Pneumonie	220
	Literatur	225
23	Weaning – Entwöhnung von der Beatmung	227
	Reinhard Larsen, Thomas Ziegenfuß	
23.1	Wann soll mit der Entwöhnung begonnen werden?	228
23.2	Welche Kriterien sollten erfüllt sein?	228
23.2.1	Entwöhnungsindizes	229
23.3	Einfache Entwöhnung: Spontanatmungsversuch .	230
23.3.1	Maßnahmen nach der Extubation	231
23.4	Schwierige und prolongierte Entwöhnung	232
23.4.1	Prolongiertes Weaning (Gruppe 3)	233
23.4.2	Kontinuierliches Weaning	233
23.4.3	Diskontinuierliches (intermittierendes) Weaning	234
23.4.4	Nichtinvasive Beatmung	234
23.4.5	Begleitende Therapiemaßnahmen bei schwieriger	
	und prolongierter Entwöhnung	235
	Literatur	236
24	Akutes Lungenversagen (ARDS)	237
	Reinhard Larsen, Thomas Ziegenfuß	
24.1	Begriffsbestimmung	238
24.2	Häufigkeit	239

24.3	Schweregrad	239
24.4	Ätiologie	239
24.5	Pathogenese und pathologische Anatomie	241
24.6	Pathophysiologie	242
24.6.1	Hypoxämie	242
24.6.2	Pulmonale Hypertonie	244
24.7	Klinische Stadien	244
24.8	Diagnose	245
24.8.1	Klinische Stadien	245
24.8.2	Blutgasanalyse	246
24.8.3	Röntgenbild des Thorax	246
24.8.4	CT der Lunge	246
24.8.5	Pulmonalarteriendruck und Wedge-Druck	247
24.8.6	Extravasales Lungenwasser	247
24.8.7	Lungencompliance	247
24.8.8	Differenzialdiagnose	248
24.9	Therapie	248
24.9.1	Beatmungstherapie	248
24.9.2	Lungenprotektive Beatmung	251
24.9.3	Positiver endexspiratorischer Atemwegdruck (PEEP) .	253
24.9.4	Beatmungsverfahren	254
24.9.5	Muskelrelaxanzien	256
24.9.6	Beatmung in Bauchlage	256
24.9.7	Inhalation von Vasodilatatoren	257
24.9.8	Unkonventionelle Atemunterstützung	258
24.9.9	Medikamente	258
24.9.10	Flüssigkeitstherapie	259
24.9.11	Prognose des ARDS	260
	Literatur	261
25	Akute respiratorische Insuffizienz bei chronisch-	
	obstruktiver Lungenerkrankung (COPD)	263
	Reinhard Larsen, Thomas Ziegenfuß	
25.1	Begriffsbestimmung	264
25.2	Pathophysiologie	265
25.3	Akute respiratorische Insuffizienz bei COPD	266
25.3.1	Auslöser	266
25.3.2	Klinisches Bild	266

XVIII Inhaltsverzeichnis

25.4	Diagnose der akuten Dekompensation	267
25.4.1	Differenzialdiagnose	267
25.4.2	Lungenfunktionsprüfungen und arterielle Blutgasanalyse	268
25.5	Behandlung der akuten Dekompensation	268
25.5.1	Maschinelle Beatmung	270
25.5.2	Indikationen	272
25.5.3	Formen der Beatmung	274
25.5.4	Einstellung des Beatmungsgeräts	275
25.5.5	Entwöhnung von der Beatmung	277
25.5.6	Komplikationen der Beatmungstherapie	279
25.6	Prognose	279
	Literatur	280
26	Status asthmaticus	281
	Reinhard Larsen, Thomas Ziegenfuß	
26.1	Begriffsbestimmung	282
26.2	Pathophysiologie	282
26.2.1	Atemwegobstruktion	282
26.3	Klinik und Diagnostik	283
26.3.1	Klinisches Bild	283
26.3.2	Diagnostik	284
26.3.3	Stadieneinteilung	285
26.4	Therapie	285
26.5	Atemunterstützung und maschinelle Beatmung .	287
26.5.1	Nichtinvasive Beatmung (NIV)	287
26.5.2	Invasive maschinelle Beatmung	288
26.5.3	Praxis der Beatmung	289
26.5.4	Komplikationen der Beatmung	291
26.5.5	Entwöhnung von der Beatmung	292
	Literatur	292
27	Thoraxtrauma	295
	Reinhard Larsen, Thomas Ziegenfuß	
27.1	Wichtige Thoraxverletzungen in der Intensivmedizin	296
27.2	Klinisches Bild und Diagnose	296
27.2.1	Klinische Untersuchung beim Thoraxtrauma	297
27.2.2	Wichtige diagnostische Maßnahmen bei Verdacht	
	auf ein Thoraxtrauma	298

27.3	Rippenserienfrakturen und instabiler Thorax	298			
27.3.1	Instabilitätstypen	299			
27.3.2	Pathophysiologie	299			
27.3.3	Klinisches Bild und Diagnose	301			
27.3.4	Behandlung von Rippenserienfrakturen				
27.4	Lungenkontusion	303			
27.4.1	Pathophysiologie	305			
27.4.2	Klinisches Bild und Diagnose				
27.4.3	Behandlung	306			
	Literatur	307			
28	Schädel-Hirn-Trauma und erhöhter				
	intrakranieller Druck	309			
	Reinhard Larsen, Thomas Ziegenfuß				
28.1	Erhöhter intrakranieller Druck	310			
28.1.1	Atmung und Hirndruck	310			
28.1.2	Kontrollierte Hyperventilation	310			
28.1.3	Ausreichender zerebraler Perfusionsdruck (CPP)	312			
28.2	Beatmungstherapie beim Schädel-Hirn-Trauma . 3				
28.2.1	Ziele der Atem- und Beatmungstherapie				
	beim Schädel-Hirn-Trauma	313			
28.2.2	Entwöhnung und Extubation	314			
	Literatur	315			
29	Postoperative Beatmung	317			
	Reinhard Larsen, Thomas Ziegenfuß				
29.1	Atemfunktion in der unmittelbar				
	postoperativen Phase	318			
29.2	Postoperative respiratorische Insuffizienz	318			
29.2.1	Ursachen	318			
29.2.2	Risikofaktoren	319			
29.2.3	Therapie	319			
	Literatur	321			
30	Beatmung von Kindern	323			
	Reinhard Larsen, Thomas Ziegenfuß				
30.1	Atemphysiologische Besonderheiten	324			
30.2	Indikationen für eine Beatmung	324			

XX Inhaltsverzeichnis

30.2.1	Respiratorische Insuffizienz	324
30.2.2	Apnoe	326
30.3	Endotracheale Intubation	
	und Tracheotomie	327
30.4	Wahl des Beatmungsgeräts	327
30.5	Druckgesteuerte oder volumengesteuerte	
	Beatmung?	328
30.5.1	Neugeborene	328
30.5.2	Ältere Kinder	328
30.6	Wahl des Beatmungsmodus	328
30.6.1	Neugeborene	328
30.6.2	Ältere Kinder	332
30.7	Entwöhnung von der Beatmung	334
30.7.1	Vorgehen bei der Entwöhnung	334
30.7.2	Kriterien für die Extubation	334
30.7.3	Nach der Extubation	335
	Literatur	336
	Serviceteil	337
	Stichwortverzeichnis	338

Respiratorische Insuffizienz

Reinhard Larsen, Thomas Ziegenfuß

1.1	Klassifizierung – 2
1.2	Störungen der Ventilation – 3
1.3	Störungen des Belüftungs-Durchblutungs- Verhältnisses – 5
1.4	Venöse Beimischung oder Shunt – 5
1.5	Diffusionsstörungen – 9
1.6	Veränderungen der funktionellen Residual- kapazität – 10
1.7	Veränderungen der Lungendehnbarkeit (Compliance) – 12
1.8	Erhöhter Atemwegwiderstand (Resistance) – 12
1.9	Ermüdung der Atemmuskulatur, »respirator muscle fatigue« – 13
1.10	Störungen des Lungenkreislaufs – 15

Literatur - 15

1.1 Klassifizierung

Klinisch wird zwischen Störungen der Oxygenierung (Aufnahme von O₂ in das Blut der Lungenkapillaren) und Störungen der Ventilation (Belüftung der Lunge mit Frischgas und Ausatmung von CO₂) unterschieden:

- Oxygenierungsstörungen, auch als respiratorische Partialinsuffizienz bezeichnet, bewirken einen Abfall des arteriellen pO₂ bzw. eine Hypoxämie,
- Ventilationsstörungen führen (bei Raumluftatmung) zum Anstieg des arteriellen pCO₂ und sekundär zum Abfall des arteriellen pO₂, d. h. zur respiratorischen Globalinsuffizienz.

Die respiratorische Insuffizienz wird auch in folgender Weise klassifiziert:

- Typ II: Ventilationsversagen (pulmonales Pumpversagen, hyperkapnisches Atemversagen): Es besteht eine alveoläre Hypoventilation; der p_aCO₂ ist erhöht, der p_aO₂ (bei Atmung von Raumluft) erniedrigt; der alveoloarterielle O₂-Partialdruckgradient bleibt hingegen unverändert.
- Typ III: Kombination von Oxygenierungs- und Ventilationsversagen, d. h., es besteht ein niedriger p_aO₂ und ein erhöhter p_aCO₂ (Hypoxie und Hyperkapnie), der alveoloarterielle pO₂-Gradient ist erhöht, ebenso die

■ Tab. 1.1 Klassifizierung der respiratorischen Insuffizienz nach den arteriellen Blutgasen

	p _a O ₂	p _a CO ₂	p _A O ₂ -p _a O ₂
Typ I: Oxygenierungs- versagen	\	↓ (n)	1
Typ II: Ventilationsver- sagen	↓	↑	
Typ III: Kombiniertes Versagen	\	↑	↑

venöse Beimischung und der Totraumanteil des Atemzugvolumens.

Welche Art von Störung vorliegt, kann durch die arterielle Blutgasanalyse festgestellt werden (Tab. 1.1).

1.2 Störungen der Ventilation

Eine alveoläre Hypoventilation, auch als ventilatorisches Pumpversagen bezeichnet, führt zum Anstieg des $p_a CO_2$ und nachfolgend zum Abfall des $p_a O_2$. Bei einem Austauschverhältnis beider Gase von 1 fällt der $p_a O_2$ pro mm Hg $p_a CO_2$ -Anstieg um 1 mm Hg (133,3 Pa) ab.

Hyperkapnie und Hypoxämie sind die Kennzeichen der alveolären Hypoventilation.

Eine Hypoxämie durch Hypoventilation tritt nur bei Atmung von Raumluft auf; wird Sauerstoff zugeführt, kann der p_aO_2 trotz Hyperkapnie normal oder sogar erhöht sein.

1.2.1 Störungen, die zur alveolären Hypoventilation führen können

- Dämpfung der Atemregulationszentren:
 - Medikamente: Opioide, Barbiturate, Tranquilizer
 - Zerebrale Schädigung: Schädel-Hirn-Trauma, Hirninfarkt, Blutung, Tumor, zentrales Schlafapnoesyndrom
- Neuromuskuläre Störungen und Muskelerkrankungen bzw. Funktionsstörungen:
 - Medikamentös: Muskelrelaxanzien, Streptomycin, Polymycin, Kanamycin, Neomycin
 - Hohe Querschnittlähmung, Poliomyelitis, Guillain-Barré-Syndrom, Landry-Paralyse, multiple Sklerose, Botulismus, Myasthenia gravis, Muskeldystrophie, Ermüdung der Atemmuskulatur

1.2.2 Restriktive und obstruktive Ventilationsstörungen

- Restriktive Ventilationsstörungen:
 - Störungen der Lungenausdehnung: Pneumothorax, Hämatothorax, Pleuraerguss, interstitielle Fibrose
 - Einschränkung der Thoraxbeweglichkeit: Kyphoskoliose
 - eingeschränkte Zwerchfellbeweglichkeit, z. B. bei Peritonitis, Ileus, extremer Adipositas, Oberbaucheingriffen
- Obstruktive Ventilationsstörungen:
 - Asthma, Bronchitis, Emphysem, Verlegung der Atemwege

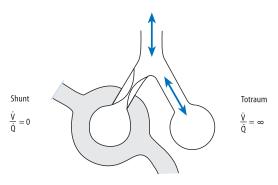


Abb. 1.1 Totraum und Shunt, die Extreme des Ventilations-Perfusions-Verhältnisses

1.3 Störungen des Belüftungs-Durchblutungs-Verhältnisses

Das Ventilations-Perfusions-Verhältnis (\dot{V}_A/\dot{Q}) beschreibt die Beziehung zwischen alveolärer Ventilation und Durchblutung der Lungenkapillaren. In Ruhe beträgt \dot{V}_A/\dot{Q} 0,8; bei diesem Wert sind Belüftung und Durchblutung der Lunge optimal aufeinander abgestimmt. Störungen des Ventilations-Perfusions-Verhältnisses, d. h. erhöhte oder erniedrigte Ventilations-Perfusions-Verhältnisse, wirken sich funktionell als Zunahme des alveolären Totraums oder als intrapulmonaler Rechts-links-Shunt oder als Kombination beider Faktoren aus (\blacksquare Abb. 1.1).

1.4 Venöse Beimischung oder Shunt

Werden Alveolen nicht belüftet, aber noch durchblutet, wird das Blut in dieser Region nicht oxygeniert. Es vermischt sich als weiterhin venöses Blut mit dem oxygenierten Blut anderer Regionen und setzt dessen O_2 -Gehalt herab – sog. venöse Beimischung oder intrapulmonaler Rechts-links-Shunt. Die Elimination von CO_2 wird durch den Shunt nicht beeinträchtigt, da andere Alveolarbereiche kompensatorisch hyperventiliert werden. Betroffen ist somit nur die Oxygenierung. Klinisch ist Folgendes wichtig:

Eine Erhöhung der inspiratorischen O₂-Konzentration hat keinen wesentlichen Einfluss auf den Rechtslinks-Shunt und bewirkt daher auch keinen Anstieg des paO₂.

Auswirkungen

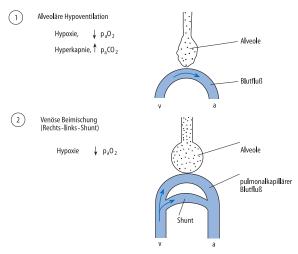
- Durch den intrapulmonalen Shunt wird der Gasaustausch beeinträchtigt. Bei hohem Rechts-links-Shunt fällt der p_aO₂ ab.
- Der p_aCO₂ wird durch den Shunt wegen des Verlaufs der CO₂-Bindungskurve nur wenig verändert. Meist fällt er aufgrund der kompensatorischen Hyperventilation sogar ab. Eine Hyperkapnie beruht daher nur selten auf einem intrapulmonalen Rechts-links-Shunt!
- Steigt das Herzzeitvolumen an, nimmt in der Regel auch der Shunt zu. Fällt das Herzzeitvolumen ab, nimmt auch der Shunt meist ab, der p_aO₂ ändert sich nur geringfügig.

Ursachen eines intrapulmonalen Rechts-links-Shunts

- Funktioneller Rechts-links-Shunt:
 - Atelektasen
 - ARDS (»acute respiratory distress syndrome«)
 - Pneumothorax
 - Hämatothorax
 - Pleuraerguss

7

- Lungenödem
- Pneumonie
- Anatomischer Rechts-links-Shunt:
 - Normaler Shunt über bronchiale, pleurale und thebesische Venen
 - Pathologischer Shunt über arteriovenöse Fistel
 - Intrakardialer Shunt


1.4.1 Gesteigerte alveoläre Totraumventilation

Werden Alveolen nicht mehr durchblutet, aber weiter belüftet ($\dot{V}_A/\dot{Q}=\infty$), so findet im betroffenen Bereich (= physiologischer Totraum) kein Gasaustausch statt (\odot Abb. 1.2): Der arterielle CO_2 steigt an, der arterielle pO_2 bleibt aber unverändert, weil die Oxygenierung kompensatorisch über die nicht betroffenen Alveolareinheiten erfolgt. Allerdings führt eine vermehrte alveoläre Totraumventilation nur selten zu einer respiratorischen Insuffizienz bzw. Hyperkapnie, da in der Regel kompensatorisch das Atemminutenvolumen gesteigert und hierdurch die CO_2 -Elimination aufrechterhalten wird.

Eine Zunahme des arterioendexspiratorischen pCO₂-Gradienten um mehr als 15 mm Hg weist auf eine gesteigerte alveoläre Totraumventilation hin.

Eine gesteigerte alveoläre Totraumventilation findet sich v. a. bei der Lungenembolie, weiterhin bei pulmonaler Hypotension.

Wentilations-/Perfusions-Ungleichgewicht (Störungen von \dot{V}/\dot{Q})

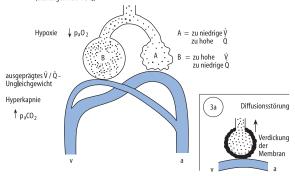


Abb. 1.2 Ursachen der arteriellen Hypoxie

1.4.2 Ventilatorische Verteilungsstörungen

Nimmt regional der Atemwegwiderstand (Resistance) zu oder die Dehnbarkeit der Lunge (Compliance) ab, so treten Verteilungsstörungen der Ventilation auf, die sich ungünstig auf den O_2 -Austausch in der Lunge auswirken und eine Hypoxämie hervorrufen. Klinisch sind v. a. die obstruktiven ventilatorischen Verteilungsstörungen von Bedeutung.

Eine ventilatorische Verteilungsstörung beeinträchtigt die Oxygenierung und führt zur Hypoxämie, es sei denn, andere Bezirke werden kompensatorisch hyperventiliert oder die Durchblutung der ungenügend ventilierten Bezirke entsprechend gedrosselt. Eine Hyperkapnie tritt nicht in jedem Fall auf. Die Oxygenierungsstörung kann durch Erhöhung der inspiratorischen O_2 -Konzentration bzw. des pO_2 im betroffenen Alveolargebiet kompensiert werden.

1.5 Diffusionsstörungen

Diffusionsstörungen der Atemgase im eigentlichen Sinn beruhen auf einer Verlängerung der Diffusionsstrecke zwischen Alveolen und Erythrozyten. Betroffen ist praktisch nur der Sauerstoff bzw. die Oxygenierung, während die Diffusion von CO_2 selbst bei schweren Schädigungen der Lunge nicht beeinträchtigt wird. Diffusionsstörungen können durch folgende Veränderungen entstehen:

- Verdickung der Alveolarwand
- Verdickung der Kapillarwand
- Verlängerung der Strecke zwischen beiden Membranen

Störungen der Diffusion führen zur Abnahme der Diffusionskapazität. Zu den Diffusionsstörungen im erweiterten Sinn werden häufig auch andere Mechanismen gerechnet,

die mit einer Einschränkung der Diffusionskapazität einhergehen:

- Verkleinerung der Diffusionsfläche durch Abnahme des Alveolarraums oder der Kapillaren
- Verkürzung der kapillären Transitzeit bzw. Kontaktzeit (normal 0,8 s)
- Veränderungen des Lungenkapillarblutes
- Eine echte Diffusionsstörung beeinträchtigt nur selten oder nie den Transport von Sauerstoff aus den Alveolen in die Lungenkapillaren.

Fast immer liegen der Hypoxämie andere Ursachen zugrunde, z. B. ventilatorische Verteilungsstörungen oder intrapulmonaler Shunt. In der Intensivmedizin spielen Diffusionsstörungen nach heutigem Kenntnisstand keine wesentliche Rolle.

1.6 Veränderungen der funktionellen Residualkapazität

Die funktionelle Residualkapazität (FRC) ist das Ruhevolumen der Lunge am Ende einer normalen Exspiration, also die Summe aus Residualvolumen und exspiratorischem Reservevolumen. Sie wirkt als Puffer gegen stärkere Schwankungen der alveolären und arteriellen O_2 - und CO_2 -Partialdrücke während des Atemzyklus.

- Bei zu niedriger FRC kollabieren die Alveolen und werden nicht mehr ventiliert, aber noch durchblutet.
- Bei zu hoher FRC werden die Alveolen überdehnt und dadurch die Lungenkapillaren komprimiert. Der pulmonale Gefäßwiderstand steigt an.