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Preface

When I started writing this book in 1987 it never occurred to me that it would still
be of interest nearly a quarter of a century later, but it appears that it is, and I am de-
lighted to introduce a fourth edition. The subject moves ever onwards, with increasing
emphasis on Monte-Carlo based techniques. With this in mind, Chapter 9 entitled
‘The Gibbs sampler’ has been considerably extended (including more numerical ex-
amples and treatments of OpenBUGS, R2WinBUGS and R2OpenBUGS) and a new
Chapter 10 covering Bayesian importance sampling, variational Bayes, ABC (Ap-
proximate Bayesian Computation) and RJMCMC (Reversible Jump Markov Chain
Monte Carlo) has been added. Mistakes and misprints in the third edition have been
corrected and minor alterations made throughout.

The basic idea of using Bayesian methods has become more and more popular,
and a useful accessible account for the layman has been written by McGrayne (2011).
There is every reason to believe that an approach to statistics which I began teaching
in 1985 with some misgivings because of its unfashionability will continue to gain
adherents. The fact is that the Bayesian approach produces results in a comprehensible
form and with modern computational methods produces them quickly and easily.

Useful comments for which I am grateful were received from John Burkett,
Stephen Connor, Jacco Thijssen, Bo Wang and others; they, of course, have no
responsibility for any deficiencies in the end result.

The website associated with the book

http://www-users.york.ac.uk/∼pml1/bayes/book.htm

(note that in the above pml are letters followed by the digit 1) works through all the
numerical examples in R as well as giving solutions to all the exercises in the book
(and some further exercises to which the solutions are not given).

Peter M. Lee
19 December 2011

http://www-users.york.ac.uk/%E2%88%BCpml1/bayes/book.htm
http://www-users.york.ac.uk/%E2%88%BCpml1/bayes/book.htm
http://www-users.york.ac.uk/%E2%88%BCpml1/bayes/book.htm




Preface to the First Edition

When I first learned a little statistics, I felt confused, and others I spoke to confessed
that they had similar feelings. Not because the mathematics was difficult – most
of that was a lot easier than pure mathematics – but because I found it difficult to
follow the logic by which inferences were arrived at from data. It sounded as if the
statement that a null hypothesis was rejected at the 5% level meant that there was
only a 5% chance of that hypothesis was true, and yet the books warned me that this
was not a permissible interpretation. Similarly, the statement that a 95% confidence
interval for an unknown parameter ran from −2 to +2 sounded as if the parameter
lay in that interval with 95% probability and yet I was warned that all I could say was
that if I carried out similar procedures time after time then the unknown parameters
would lie in the confidence intervals I constructed 95% of the time. It appeared that
the books I looked at were not answering the questions that would naturally occur to
a beginner, and that instead they answered some rather recondite questions which no
one was likely to want to ask.

Subsequently, I discovered that the whole theory had been worked out in very
considerable detail in such books as Lehmann (1986). But attempts such as those
that Lehmann describes to put everything on a firm foundation raised even more
questions. I gathered that the usual t test could be justified as a procedure that was
‘uniformly most powerful unbiased’, but I could only marvel at the ingenuity that led
to the invention of such criteria for the justification of the procedure, while remaining
unconvinced that they had anything sensible to say about a general theory of statistical
inference. Of course Lehmann and others with an equal degree of common sense were
capable of developing more and more complicated constructions and exceptions so
as to build up a theory that appeared to cover most problems without doing anything
obviously silly, and yet the whole enterprise seemed reminiscent of the construction
of epicycle upon epicycle in order to preserve a theory of planetary motion based on
circular motion; there seemed to be an awful lot of ‘adhockery’.

I was told that there was another theory of statistical inference, based ultimately
on the work of the Rev. Thomas Bayes, a Presbyterian minister, who lived from
1702 to 1761 whose key paper was published posthumously by his friend Richard
Price as Bayes (1763) [more information about Bayes himself and his work can be



xxii PREFACE TO THE FIRST EDITION

found in Holland (1962), Todhunter (1865, 1949) and Stigler (1986a)].1 However,
I was warned that there was something not quite proper about this theory, because
it depended on your personal beliefs and so was not objective. More precisely, it
depended on taking some expression of your beliefs about an unknown quantity
before the data was available (your ‘prior probabilities’) and modifying them in the
light of the data (via the so-called ‘likelihood function’) to arrive at your ‘posterior
probabilities’ using the formulation that ‘posterior is proportional to prior times
likelihood’. The standard, or ‘classical’, theory of statistical inference, on the other
hand, was said to be objective, because it does not refer to anything corresponding
to the Bayesian notion of ‘prior beliefs’. Of course, the fact that in this theory, you
sometimes looked for a 5% significance test and sometimes for a 0.1% significance
test, depending on what you thought about the different situations involved, was said
to be quite a different matter.

I went on to discover that this theory could lead to the sorts of conclusions that
I had naı̈vely expected to get from statistics when I first learned about it. Indeed,
some lecture notes of Lindley’s [and subsequently his book, Lindley (1965)] and
the pioneering book by Jeffreys (1961) showed that if the statistician had ‘personal
probabilities’ that were of a certain conventional type then conclusions very like those
in the elementary books I had first looked at could be arrived at, with the difference
that a 95% confidence interval really did mean an interval in which the statistician
was justified in thinking that there was a 95% probability of finding the unknown
parameter. On the other hand, there was the further freedom to adopt other initial
choices of personal beliefs and thus to arrive at different conclusions.

Over a number of years I taught the standard, classical, theory of statistics to
a large number of students, most of whom appeared to have similar difficulties
to those I had myself encountered in understanding the nature of the conclusions
that this theory comes to. However, the mere fact that students have difficulty with
a theory does not prove it wrong. More importantly, I found the theory did not
improve with better acquaintance, and I went on studying Bayesian theory. It turned
out that there were real differences in the conclusions arrived at by classical and
Bayesian statisticians, and so the former was not just a special case of the latter
corresponding to a conventional choice of prior beliefs. On the contrary, there was
a strong disagreement between statisticians as to the conclusions to be arrived at
in certain standard situations, of which I will cite three examples for now. One
concerns a test of a sharp null hypothesis (e.g. a test that the mean of a distribution
is exactly equal to zero), especially when the sample size was large. A second
concerns the Behrens–Fisher problem, that is, the inferences that can be made about
the difference between the means of two populations when no assumption is made
about their variances. Another is the likelihood principle, which asserts that you
can only take account of the probability of events that have actually occurred under
various hypotheses, and not of events that might have happened but did not; this

1 Further information is now available in Bellhouse (2003) and Dale (2003). Useful information can
also be found in Bellhouse et al. (1988–1992), Dale (1999), Edwards (1993, 2004) and Hald (1986, 1998,
2007).
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principle follows from Bayesian statistics and is contradicted by the classical theory.
A particular case concerns the relevance of stopping rules, that is to say whether
or not you are entitled to take into account the fact that the experimenter decided
when to stop experimenting depending on the results so far available rather than
having decided to use a fixed sample size all along. The more I thought about all
these controversies, the more I was convinced that the Bayesians were right on these
disputed issues.

At long last, I decided to teach a third-year course on Bayesian statistics in the
University of York, which I have now done for a few years. Most of the students who
took the course did find the theory more coherent than the classical theory they had
learned in the first course on mathematical statistics they had taken in their second
year, and I became yet more clear in my own mind that this was the right way to view
statistics. I do, however, admit that there are topics (such as non-parametric statistics)
which are difficult to fit into a Bayesian framework.

A particular difficulty in teaching this course was the absence of a suitable book
for students who were reasonably well prepared mathematically and already knew
some statistics, even if they knew nothing of Bayes apart from Bayes’ theorem. I
wanted to teach them more, and to give more information about the incorporation of
real as opposed to conventional prior information, than they could get from Lindley
(1965), but I did not think they were well enough prepared to face books like Box and
Tiao (1973) or Berger (1985), and so I found that in teaching the course I had to get
together material from a large number of sources, and in the end found myself writing
this book. It seems less and less likely that students in mathematics departments will
be completely unfamiliar with the ideas of statistics, and yet they are not (so far)
likely to have encountered Bayesian methods in their first course on statistics, and
this book is designed with these facts in mind. It is assumed that the reader has a
knowledge of calculus of one and two variables and a fair degree of mathematical
maturity, but most of the book does not assume a knowledge of linear algebra. The
development of the text is self-contained, but from time to time the contrast between
Bayesian and classical conclusions is pointed out, and it is supposed that in most cases
the reader will have some idea as to the conclusion that a classical statistician would
come to, although no very detailed knowledge of classical statistics is expected. It
should be possible to use the book as a course text for final year undergraduate or
beginning graduate students or for self-study for those who want a concise account
of the way in which the Bayesian approach to statistics develops and the contrast
between it and the conventional approach. The theory is built up step by step, rather
than doing everything in the greatest generality to start with, and important notions
such as sufficiency are brought out of a discussion of the salient features of specific
examples.

I am indebted to Professor RA Cooper for helpful comments on an earlier draft
of this book, although of course he cannot be held responsible for any errors in the
final version.

Peter M. Lee
30 March 1988
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Preliminaries

1.1 Probability and Bayes’ Theorem

1.1.1 Notation

The notation will be kept simple as possible, but it is useful to express statements
about probability in the language of set theory.You probably know most of the symbols
undermentioned, but if you do not you will find it easy enough to get the hang of this
useful shorthand. We consider sets A, B, C, . . . of elements x, y, z, . . . and we use
the word ‘iff’ to mean ‘if and only if’. Then we write

x ∈ A iff x is a member of A;

x /∈ A iff x is not a member of A;

A = {x, y, z} iff A is the set whose only members are x, y and z (and similarly for
larger or smaller sets);

A = {x ; S(x)} iff A is the set of elements for which the statement S(x) is true;

∅ = {x ; x �= x} for the null set, that is the set with no elements;

x /∈ ∅ for all x;

A ⊂ B (i.e. A is a subset of B) iff x ∈ A implies x ∈ B;

A ⊃ B (i.e. A is a superset of B) iff x ∈ A is implied by x ∈ B;

∅ ⊂ A, A ⊂ A and A ⊃ A for all A;

A ∪ B = {x ; x ∈ A or x ∈ B} (where ‘P or Q’ means ‘P or Q or both’) (referred
to as the union of A and B or as A union B);

AB = A ∩ B = {x ; x ∈ A and x ∈ B} (referred to as the intersection of A and B
or as A intersect B);

A and B are disjoint iff AB = ∅;

A\B = {x ; x ∈ A, but x /∈ B} (referred to as the difference set A less B).

Bayesian Statistics: An Introduction, Fourth Edition. Peter M. Lee.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Let (An) be a sequence A1, A2, A3, . . . of sets. Then
⋃∞

n=1 An = {x ; x ∈ An for one or more n};
⋂∞

n=1 An = {x ; x ∈ An for all n};
(An) exhausts B if

⋃∞
i=1 An ⊃ B;

(An) consists of exclusive sets if Am An = ∅ for m �= n;

(An) consists of exclusive sets given B if Am An B = ∅ for m �= n;

(An) is non-decreasing if A1 ⊂ A2 ⊂ . . . , that is An ⊂ An+1 for all n;

(An) is non-increasing if A1 ⊃ A2 ⊃ . . . , that is An ⊃ An+1 for all n.

We sometimes need a notation for intervals on the real line, namely

[a, b] = {x ; a � x � b};
(a, b) = {x ; a < x < b};
[a, b) = {x ; a � x < b};
(a, b] = {x ; a < x � b}

where a and b are real numbers or +∞ or −∞.

1.1.2 Axioms for probability

In the study of probability and statistics, we refer to as complete a description of the
situation as we need in a particular context as an elementary event.

Thus, if we are concerned with the tossing of a red die and a blue die, then a typical
elementary event is ‘red three, blue five’, or if we are concerned with the numbers of
Labour and Conservative MPs in the next parliament, a typical elementary event is
‘Labour 350, Conservative 250’. Often, however, we want to talk about one aspect of
the situation. Thus, in the case of the first example, we might be interested in whether
or not we get a red three, which possibility includes ‘red three, blue one’, ‘red three,
blue two’, etc. Similarly, in the other example, we could be interested in whether
there is a Labour majority of at least 100, which can also be analyzed into elementary
events. With this in mind, an event is defined as a set of elementary events (this has
the slightly curious consequence that, if you are very pedantic, an elementary event
is not an event since it is an element rather than a set). We find it useful to say that
one event E implies another event F if E is contained in F. Sometimes it is useful
to generalize this by saying that, given H, E implies F if E H is contained in F. For
example, given a red three has been thrown, throwing a blue three implies throwing
an even total.

Note that the definition of an elementary event depends on the context. If we were
never going to consider the blue die, then we could perfectly well treat events such
as ‘red three’ as elementary events. In a particular context, the elementary events in
terms of which it is sensible to work are usually clear enough.

Events are referred to above as possible future occurrences, but they can also de-
scribe present circumstances, known or unknown. Indeed, the relationship which
probability attempts to describe is one between what you currently know and
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something else about which you are uncertain, both of them being referred to as
events. In other words, for at least some pairs of events E and H there is a number
P(E |H ) defined which is called the probability of the event E given the hypothesis
H. I might, for example, talk of the probability of the event E that I throw a red three
given the hypothesis H that I have rolled two fair dice once, or the probability of the
event E of a Labour majority of at least 100 given the hypothesis H which consists
of my knowledge of the political situation to date. Note that in this context, the term
‘hypothesis’ can be applied to a large class of events, although later on we will find
that in statistical arguments, we are usually concerned with hypotheses which are
more like the hypotheses in the ordinary meaning of the word.

Various attempts have been made to define the notion of probability. Many early
writers claimed that P(E |H ) was m/n where there were n symmetrical and so equally
likely possibilities given H of which m resulted in the occurrence of E. Others have
argued that P(E |H ) should be taken as the long run frequency with which E happens
when H holds. These notions can help your intuition in some cases, but I think
they are impossible to turn into precise, rigourous definitions. The difficulty with
the first lies in finding genuinely ‘symmetrical’ possibilities – for example, real dice
are only approximately symmetrical. In any case, there is a danger of circularity in
the definitions of symmetry and probability. The difficulty with the second is that we
never know how long we have to go on trying before we are within, say, 1% of the
true value of the probability. Of course, we may be able to give a value for the number
of trials we need to be within 1% of the true value with, say, probability 0.99, but this
is leading to another vicious circle of definitions. Another difficulty is that sometimes
we talk of the probability of events (e.g. nuclear war in the next 5 years) about which
it is hard to believe in a large numbers of trials, some resulting in ‘success’ and some
in ‘failure’. A good, brief discussion is to be found in Nagel (1939) and a fuller, more
up-to-date one in Chatterjee (2003).

It seems to me, and to an increasing number of statisticians, that the only satis-
factory way of thinking of P(E |H ) is as a measure of my degree of belief in E given
that I know that H is true. It seems reasonable that this measure should abide by the
following axioms:

P1 P(E |H ) � 0 for all E, H.
P2 P(H |H ) = 1 for all H.
P3 P(E ∪ F |H ) = P(E |H ) + P(F |H ) when E F H = ∅.
P4 P(E |F H ) P(F |H ) = P(E F |H ).

By taking F = H\E in P3 and using P1 and P2, it easily follows that

P(E |H ) � 1 for all E , H,

so that P(E |H ) is always between 0 and 1. Also by taking F = ∅ in P3 it follows
that

P(∅|H ) = 0.
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Now intuitive notions about probability always seem to agree that it should be a
quantity between 0 and 1 which falls to 0 when we talk of the probability of something
we are certain will not happen and rises to 1 when we are certain it will happen (and
we are certain that H is true given H is true). Further, the additive property in P3
seems highly reasonable – we would, for example, expect the probability that the red
die lands three or four should be the sum of the probability that it lands three and the
probability that it lands four.

Axiom P4 may seem less familiar. It is sometimes written as

P(E |F H ) = P(E F |H )

P(F |H )

although, of course, this form cannot be used if the denominator (and hence the
numerator) on the right-hand side vanishes. To see that it is a reasonable thing to
assume, consider the following data on criminality among the twin brothers or sisters
of criminals [quoted in his famous book by Fisher (1925b)]. The twins were classified
according as they had a criminal conviction (C) or not (N) and according as they were
monozygotic (M) (which is more or less the same as identical – we will return to this
in Section 1.2) or dizygotic (D), resulting in the following table:

C N Total

M 10 3 13
D 2 15 17
Total 12 18 30

If we denote by H the knowledge that an individual has been picked at random from
this population, then it seems reasonable to say that

P(C |H ) = 12/30,

P(MC |H ) = 10/30.

If on the other hand, we consider an individual picked at random from among the
twins with a criminal conviction in the population, we see that

P(M |C H ) = 10/12

and hence

P(M |C H )P(C |H ) = P(MC |H ),

so that P4 holds in this case. It is easy to see that this relationship does not depend
on the particular numbers that happen to appear in the data.

In many ways, the argument in the preceding paragraph is related to derivations
of probabilities from symmetry considerations, so perhaps it should be stressed that


