
Symbian OS C++
for Mobile Phones
Volume 2
Programming with extended functionality and
advanced features

Richard Harrison

With
Alan Robinson, Arwel Hughes, Dominic Pinkman,
Elisabeth Måwe, Gregory Zaoui, Nick Johnson,
Richard Potter

Reviewed by

Alex Peckover, Alex Wilbur, Chris Trick, Dan Handley,
John Roe, Leon Bovett, Murray Read, Nick Tait,
Paul Hateley

Managing editor

Phil Northam

Assistant editor
Freddie Gjertsen

Innodata
0470871091.jpg

Symbian OS C++
for Mobile Phones
Volume 2

TITLES PUBLISHED BY SYMBIAN PRESS

• Wireless Java for Symbian Devices
Jonathan Allin
0471 486841 512pp 2001 Paperback

• Symbian OS Communications Programming
Michael J Jipping
0470 844302 418pp 2002 Paperback

• Programming for the Series 60 Platform and Symbian OS
Digia
0470 849487 550pp 2002 Paperback

• Symbian OS C++ for Mobile Phones, Volume 1
Richard Harrison
0470 856114 826pp 2003 Paperback

• Programming Java 2 Micro Edition on Symbian OS
Martin de Jode
0470 092238 498pp 2004 Paperback

• Symbian OS C++ for Mobile Phones, Volume 2
Richard Harrison
0470 871083 448pp 2004 Paperback

• Symbian OS Explained
Jo Stichbury
0470 021306 448pp 2004 Paperback

Symbian OS C++
for Mobile Phones
Volume 2
Programming with extended functionality and
advanced features

Richard Harrison

With
Alan Robinson, Arwel Hughes, Dominic Pinkman,
Elisabeth Måwe, Gregory Zaoui, Nick Johnson,
Richard Potter

Reviewed by

Alex Peckover, Alex Wilbur, Chris Trick, Dan Handley,
John Roe, Leon Bovett, Murray Read, Nick Tait,
Paul Hateley

Managing editor

Phil Northam

Assistant editor
Freddie Gjertsen

Copyright 2004 Symbian Software Ltd

Published by John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England
Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP,
UK, without the permission in writing of the Publisher, with the exception of any material supplied
specifically for the purpose of being entered and executed on a computer system for exclusive use by
the purchaser of the publication. Requests to the Publisher should be addressed to the Permissions
Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ,
England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The Publisher is not associated with any product or
vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject
matter covered. It is sold on the understanding that the Publisher is not engaged in rendering
professional services. If professional advice or other expert assistance is required, the services of a
competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario,
Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Harrison, Richard.
Symbian OS C++ for mobile phones / By Richard Harrison.
p. cm.
Includes bibliographical references and index.
ISBN 0-470-85611-4 (Paper : alk. paper)
1. Cellular telephone systems – Computer programs. 2. Operating
systems (Computers) I. Title.
TK6570.M6H295 2003
621.3845′6 – dc21

03006223

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-87108-3

Typeset in 10/12pt Optima by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Biddles Ltd, King’s Lynn
This book is printed on acid-free paper responsibly manufactured from sustainable
forestry in which at least two trees are planted for each one used for paper production.

http://www.wileyeurope.com
http://www.wiley.com

Contents

Foreword viii

About This Book xi

Innovation Through Openness xiii

About the Authors xvii

Acknowledgements xxi

1 Symbian OS Fundamentals 1
1.1 Object Creation and Destruction 1
1.2 Error Handling and Cleanup 6
1.3 Naming Conventions 19
1.4 Descriptors 23
1.5 Active Objects 38
1.6 Summary 51

2 Symbian OS User Interfaces 53
2.1 Introduction 53
2.2 The Common Framework 54
2.3 The Screen Layout 59
2.4 Common UI Components 65
2.5 UI-specific Components 86
2.6 Skins 90
2.7 Handling User Input 92
2.8 Summary 95

3 A Running Application 97
3.1 Introduction 97

vi CONTENTS

3.2 System Calls 99
3.3 Summary 124

4 Using Controls and Dialogs 125
4.1 What is a Control? 125
4.2 Simple Controls 126
4.3 Compound Controls 128
4.4 Control Layout 139
4.5 Handling Key and Pointer Events 141
4.6 Observing a Control 149
4.7 Drawing a Control 152
4.8 Dialogs 164
4.9 More Complex Dialogs 172
4.10 Interface Class Usage in Dialogs 178
4.11 Custom Controls in Dialogs 180

5 Views and the View Architecture 185
5.1 Controlling Your Application with Views 185
5.2 View Architecture Components 187
5.3 Implementing Views 190
5.4 Creating Views 190
5.5 Registering Views 193
5.6 Switching Between Views 195
5.7 Deregistering Views 197
5.8 More on Views 198
5.9 View-specific Behavior on UIQ and Series 60 Platforms 201
5.10 Summary 205

6 Files and the Filing System 207
6.1 Filing System Services 207
6.2 Streams 213
6.3 Stores 219
6.4 Using .ini Files 231
6.5 Resource Files and Bitmaps 233

7 Multimedia Services 249
7.1 The Multimedia Component Architecture 249
7.2 The Multimedia Framework (MMF) 251
7.3 Using the MMF 257
7.4 Using Audio 257
7.5 Using Video 283
7.6 Controller Framework API 291
7.7 Using the ICL 296
7.8 Using ECam 309

CONTENTS vii

8 Comms and Messaging 315
8.1 Introduction 315
8.2 Overview of Symbian OS Comms Architecture 318
8.3 Protocol Support 327
8.4 MMS 338
8.5 Summary 346

9 Testing on Symbian OS 347
9.1 Code Coverage Analysis 347
9.2 Binary Compatibility Tool 351
9.3 Test Driver 352
9.4 Network Emulator 360
9.5 Sampling Profiler 363
9.6 Countloc – Measuring Source Code Size 368
9.7 Summary 370

Appendix 1 Example Projects 373

Appendix 2 Symbian OS System Model 375

Appendix 3 Writing Good Symbian OS Code 377

Appendix 4 Developer Resources 385

Appendix 5 Build Process Overview 393

Appendix 6 Specifications of Symbian OS Phones 397

Index 413

Foreword

David Wood, Executive Vice President, Research, Symbian

Less than eighteen months have passed since the appearance of the
first volume of Symbian OS C++ for Mobile Phones. These eighteen
months have seen giant strides of progress for the Symbian ecosystem.
In 2003 alone, the number of commercially available add-on appli-
cations for Symbian OS phones tripled. In the fourth quarter of that
year, an unprecedented number of distinct new Symbian OS phone
models – eight – reached the market. And in December of that year, for
the first time, over a million phones running Symbian OS shipped in
a single month. Looking ahead, five different 3G Symbian OS phones
have recently reached shops around the world, underscoring Symbian’s
leadership position for the emerging generation of mobile phones. New
licensing deals have been announced with premier companies in Japan,
China, Korea and Taiwan, highlighting the global interest in the capabili-
ties of the Symbian ecosystem. Last but not least, the Symbian Enterprise
Advisory Council has been formed, in which leading providers of mobile
business solutions are actively collaborating to promote the rapid take-up
of Symbian OS phones for business use.

The good news for Symbian OS developers is that, despite these
dramatic changes, the basics of the Symbian development world remain
the same. Applications written to run on Symbian OS phones in 2003 will

FOREWORD ix

also run on Symbian OS phones reaching the market in 2004 and 2005,
in most cases with very few changes and optimizations (and in many
cases with no changes required at all). Symbian OS is written in a style
of C++ that holds consistently throughout all levels of the software, and
throughout all versions of the operating system. Once you learn the rules,
you find they apply far and wide. Symbian OS was deliberately designed
to be future-proof – to ‘expect the unexpected’. As the first waves of the
3G future reach us, it is reassuring to see how well the programming
framework thrives despite all the changes.

Over the last eighteen months, Symbian’s 500-strong team of in-house
software engineers has considerably extended the scope and functionality
of Symbian OS. Volume 2 of Symbian OS C++ for Mobile Phones is your
chance to boost your own understanding of the resulting prodigious
software suite. This book builds on the foundations of its predecessor,
covering some of the pivotal features of Symbian OS in more detail,
and goes on to describe the key new software features which are now
appearing in the latest breakthrough phones.

Symbian provides the platform that enables innovation through open-
ness; developers such as the readers of this book provide the ingenuity
and the diverse domain knowledge to create myriad solutions. It is my
fervent wish that software which you write, with this book as your guide,
becomes dear to millions of users of Symbian OS phones.

About This Book

Symbian OS C++ for Mobile Phones Volume 2 provides information in
three main areas:

1. It provides a comprehensive review of the basic techniques needed
to program a Symbian OS application. The descriptions are supple-
mented by many straightforward and easy-to-follow examples, which
range from code snippets to full applications.

2. It promotes further understanding of Symbian OS, by describing
the interaction between an application and the underlying system
code. This theme pervades the whole book, but a particular example
is Chapter 3, which provides an illuminating walk-through of the
lifecycle of a typical application, from startup to closedown.

3. It describes some of the significant new features that are introduced
in Symbian OS v7.0s. This aspect is particularly significant in the
discussion of multimedia services in Chapter 7, and in Chapter 8,
which provides an up-to-date description of the use of Symbian OS
communications and messaging services.

Symbian OS is used in a variety of phones with widely differing screen
sizes. Some have full alphanumeric keyboards, some have touch-sensitive
screens and some have neither. As far as possible, the material in this
book is independent of any particular user interface. However, real
applications run on real phones so, where necessary, we have chosen to
use the Series 60 user interface and the Nokia 6600 phone as concrete
examples. Wherever relevant, the text explains the principal differences
between the Series 60 and UIQ user interfaces. This kind of information
is invaluable for anyone who wishes to create versions of an application
to run on a variety of Symbian OS phones.

Symbian OS C++ for Mobile Phones Volume 2 complements the
Symbian OS software development kits. When you’ve put this book

xii ABOUT THIS BOOK

down, the exclusive Symbian OS v7.0s TechView SDK supplied will
be your first resource for reference information on the central Symbian
OS APIs. For more specialized and up-to-date information relating to a
specific mobile phone, you will need to refer to a product-specific SDK,
available from the relevant manufacturer.

These SDKs contain valuable guide material, examples and source
code, which together add up to an essential developer resource. As a
general rule, if you have a query, look first at the SDK: you’ll usually
find the additional information you need that takes things further than we
could in just one book.

Conventions

To help you get the most from the text and keep track of what’s happening,
we’ve used a number of conventions throughout the book.

These boxes hold important, not-to-be-forgotten information that is
directly relevant to the surrounding text.

While this style is used for asides to the current discussion.

We use several different fonts in the text of this book:

• When we refer to words you use in your code, such as variables,
classes and functions, or refer to the name of a file, we use this style:
iEikonEnv, ConstructL(), or e32base.h.

• URLs are written like this: www.symbiandevnet.com.

• And when we list code, or the contents of files, we’ll use the follow-
ing convention:

Lines that show concepts directly related to the surrounding text are
shown on a gray background

But lines which do not introduce anything new, or which we have seen
before, are shown on a white background.

• We show commands typed at the command line like this:

abld build winscw udeb

Innovation Through Openness

The success of an open operating system for smartphones is closely linked
to the degree to which the functionality of lower levels of software and
hardware can be accessed, modified, and augmented by add-on software
and hardware. As Symbian OS smartphones ship in volume, we are
witnessing the arrival of a third wave of mobile phones.

The first wave was voice-centric mobile phones. Mobile phone man-
ufacturers have performed wonders of optimization on the core feature
of these phones – their ability to provide great voice communications.
Successive generations of products improved their portability, battery life,
reliability, signal handling, voice quality, ergonomics, price, and usabil-
ity. In the process, mobile phones became the most successful consumer
electronics product in history.

The second wave was rich-experience mobile phones. Instead of just
conveying voice conversations between mouth and ear, these phones
provided a much richer sensory experience than their predecessors.
High-resolution color screens conveyed data vividly and graphically.
High-fidelity audio systems played quality music through such things
as ringtones and audio files. These phones combined multimedia with
information and communications, to dramatic effect.

But the best was still to come. The primary characteristic of the third
wave of mobile phones is their openness. Openness is an abstract concept,
but one with huge and tangible consequences for developers. The key
driver is that the growing on-board intelligence in modern phones – the
smartness of the hardware and software – can now be readily accessed
by add-on hardware and software. The range of applications and services
that can be used on a phone is not fixed at the time of manufacture,
meaning new applications and services can be added afterwards. The
phone can be tailored by an operator to suit its customers and these
customers can then add further customizations, reflecting specific needs
or interests.

xiv INNOVATION THROUGH OPENNESS

The Symbian Ecosystem

Open phones allow a much wider range of companies and individuals
to contribute to the value and attractiveness of smartphones. The attrac-
tiveness of a phone to an end-user is no longer determined only by
the various parties involved in the creation of that phone. Over-the-air
downloads and other late-binding mechanisms allow software engineers
to try out new ideas, delivering their applications and services directly
to end-users. Many of these ideas may seem unviable at time of man-
ufacture. However, the advantage of open phones is that there is more
time, and more opportunity, for all these new and innovative ideas to
mature into advantageous, usable applications that can make a user’s life
easier – whether it be over-the-air synchronization with a PC, checking
traffic or having fun with 3D games or photo editing.

The real power of open phones arises when add-on services developed
for a phone are reused for add-on services on other phones. This allows
an enormous third-party development ecosystem to flourish. These third
parties are no longer tied to the fortunes of any one phone, or any
one phone manufacturer. Moreover, applications that start their lives
as add-ons for one phone can find themselves incorporated at time of
manufacture in subsequent phones, and be included in phones from
other manufacturers. Such opportunities depend on the commonality of
the underlying operating system. Open standards drive a virtuous cycle
of research and development: numerous companies that can leverage the
prowess, skills, experience and success of the Symbian ecosystem.

Symbian OS Phones

This book focuses on Symbian OS v7.0s, and the additional technologies
it brings to mobile phones, as well as expanding on the core programming
techniques explored in Symbian OS C++ for Mobile Phones Volume 1.
We use the first Symbian OS v7.0s phone, the Nokia 6600, to illustrate
most of the examples in the text, but these should also be demonstrable in
Symbian OS v7.0 as well as other Version 7.0s phones. Phones following
on from the Nokia 6600 include the Nokia 7700, 7610 and 9500,
Panasonic X700 and Samsung SGH-D710.

Symbian OS phones are currently based on the following user inter-
faces open to C++ and Java programmers: the Series 80 Platform (Nokia
9200/9500 Communicator series), the Series 90 Platform (Nokia 7700),
the Series 60 Platform (Nokia 7610, 6600, 6620, 7650, 3650, 3660,
3620, N-Gage, Siemens SX1, Sendo X, Panasonic X700 and Samsung
SGH-D710), and UIQ (Sony Ericsson P800, P900, BenQ P30, Motorola
A920, A925, A1000). The Nokia 6600 was the first smartphone to include

INNOVATION THROUGH OPENNESS xv

Java MIDP 2.0. Read on for a brief summary of the user interface families
now available.

Mobile Phones with a Numeric Keypad

These phones are designed for one-handed use and require a flexible
UI that is simple to navigate with a joystick, softkeys, jogdial, or any
combination of these. Examples of this come from the Series 60 Platform.
Fujitsu produces a user interface for a range of phones including the
F2102v, F2051 and F900i for NTT DoCoMo’s FOMA network. Pictured
is the Siemens SX1.

Mobile Phones with Portrait Touch Screens

These mobile phones tend to have larger screens than those in the previous
category and can dispense with a numeric keypad altogether. A larger
screen is ideal for viewing content or working on the move, and pen-
based interaction gives new opportunities to users and developers. The
best current example of this form factor is UIQ, which is the platform for
the Sony Ericsson P800 and P900, as well as BenQ P30 and Motorola’s
A920, A925 and A1000. The P800, P900 and P30 actually combine
elements of full screen access and more traditional mobile phone use by
including a numeric keypad, while the Motorola smartphones dispense
with a keypad altogether. Pictured is the Sony Ericsson P900.

Mobile Phones with Landscape Screens

These mobile phones have the largest screens of all Symbian OS phones
and can have a full keyboard and could also include a touch screen. With
this type of mobile phone developers may find enterprise applications
particularly attractive. A current example of the keyboard form factor is the

xvi INNOVATION THROUGH OPENNESS

Series 80 Platform. This UI is the basis of the Nokia 9200 Communicator
series, which has been used in the Nokia 9210i and Nokia 9290 and will
be used in the Nokia 9500. Based on Series 90, the Nokia 7700 is an
example of a touch screen mobile phone without keyboard aimed more
at high multimedia usage.

When you’re ready to use the Symbian OS C++ programming skills
you’ve learned in this book, you’ll want an up-to-the-minute overview of
available phones, user interfaces and tools. For the latest information, start
at www.symbian.com/developer for pointers to partner websites, other
books, white papers and sample code. If you’re developing technology
that could be used on any Symbian OS phone, you can find more infor-
mation about partnering with Symbian at www.symbian.com/partners.

We wish you an enjoyable experience programming with Symbian OS
and lots of success.

About the Authors

Richard Harrison, Lead Author

Richard joined Symbian (then known as Psion) in 1983 after several
years teaching maths, physics and computer science. During that time he
wrote a Forth language implementation for Acorn Computers, and wrote
accompanying user manuals for the Acorn Atom and BBC Micro.

He has spent the majority of his time in system integration (SI),
building and leading the SI team. He has produced user documentation
for software for the Sinclair QL, the PC application software for the Psion
Organiser I and the source code translator for the original version of OPL.
Joint author of the Organiser II spreadsheet and principal designer and
author of the Psion Series 3 and 3a word processors, he was also lead
author of the Psion SIBO SDK team.

Educated at Balliol College, Oxford, with an MA in Natural Science
(Physics), Richard also graduated from Sussex University with an MSc in
Astronomy, and spent a further two years of postgraduate research in the
Astronomy Group at Imperial College.

Alan Robinson

Alan Robinson joined Symbian shortly after its formation in 1998 and has
mostly worked on documentation and examples in messaging and com-
munications. Alan previously contributed to Wireless Java for Symbian
Devices (Wiley, 2001) and Symbian OS C++ for Mobile Phones Vol 1
(Wiley, 2003).

A graduate of Cambridge University with a BA in literature and
philosophy, he became interested in applying logical theory and took a
Computing MSc at Middlesex University. He has worked on developer
kits for a startup company’s messaging middleware platform, and for
IBM’s MQ Series.

xviii ABOUT THE AUTHORS

Arwel Hughes

Arwel joined Symbian (then Psion) in 1993, working on documentation
for the Series 3a and also some software development. Since the formation
of Symbian, he has contributed documentation and examples for Symbian
OS. This is rather like painting the famous Forth Bridge: just when you
think you can see the end . . .

Arwel previously worked on IBM mainframes in roles including pro-
grammer and systems programmer for a number of companies including
GKN, Prudential Assurance, Shell and Chase Manhattan Bank. He has a
BSc in Applied Mathematics from Sheffield University.

Dominic Pinkman

Dominic joined Psion in October 1995 as a technical author. He has
written and maintained documentation for APIs throughout Symbian OS,
and was a co-author of the book Symbian OS C++ for Mobile Phones
Vol 1 (Wiley, 2003).

He has an MSc in Computer Science from the University of Kent and
a BA in Modern Language studies from Leicester University.

Elisabeth Måwe

Elisabeth joined the system documentation team in 2000 and has since
been designing and writing the Symbian Developer Library, specializing
in operating system customization, kits, emulators, test, build and release
tools. She has also been involved in training and usability management.

Elisabeth has a BA in Technical Communication/Information Design
from Mälardalens Högskola and Coventry University, as well as an
MA in Contemporary English Language and Linguistics from Reading
University. After graduating in 1996 she worked as a technical author,
information designer and web editor for various IT companies in the
UK, producing documentation for both network management and market
research software. She would like to thank Alex Peckover and Murray
Read for providing both example code and technical expertise.

Greg Zaoui

Gregory Zaoui first joined Symbian in 1998, as a graduate software engi-
neer with a ‘Licence de Mathématiques’ from the University of Strasbourg.
He has been working on various projects for System Integration on build
tools and release management. He then joined the newly created Test
Solutions group in 2002, as a technical architect for TechView and other
test tools.

His interests range from skiing and windsurfing to talmudic studies.
Gregory would like to thank Richard Harrison and Paul Treacy for their

ABOUT THE AUTHORS xix

excellent mentoring, as well as Clare Oakley (Test Solutions manager)
without whom it would be impossible to talk consistently about test tools
for Symbian OS. He also would like to acknowledge Elisabeth Måwe
for her very active participation to the chapter, Konstantin Michaelov
for his very useful example cases, Andrew Thoelke for the profiler bits,
and all Test Solutions developers for their contribution. Gregory would
also like to add special thanks to his dear wife Tamar for her constant
encouragement and most precious help.

Nick Johnson

Since joining Symbian, Nick worked for a year in the Multimedia team
helping implement next-generation Multimedia APIs and frameworks on
Symbian OS and then subsequently transferred to Symbian’s Marketing
department, where he is now working as a developer consultant assisting
Symbian partners with their Multimedia troubles.

Previous to this, Nick first spent three years studying Computer Science
and Cybernetics at Reading University before subsequently spending two
years working in 3D sound research at Sensaura Ltd. Here he spent
time both developing new 3D sound algorithms and implementing the
Xbox and GameCube ports of their cross-platform 3D audio middleware
library. After leaving Sensaura, Nick spent a few weeks in the games
industry working on ‘Microsoft Train Simulator 2’ before deciding that it
just wasn’t for him and instead joined Symbian.

Outside work, Nick enjoys learning Japanese and about Japanese
culture, is a home cinema/film enthusiast, enjoys collecting/drinking rare
liquors and vodkas and spends large amounts of time trying to convince
friends that LaserDiscs are still the way forward . . .

Richard Potter

Richard joined Symbian in the summer of 2002 as a technical author.
He works on documentation for the Security and Networking subsystems
and has also written some Perl and Python scripts to aid the team.

Richard’s unusual route to becoming a technical author includes
advertising photography, being a singer/guitarist in a rock band, an MSc
in Astrophysics, and an MPhil in Experimental Particle Physics working
at the Stanford Linear Accelerator Center, Palo Alto, California. Many
thanks to Jelte Liebrand for his advice.

Acknowledgements

Many thanks, in no particular order, to Marit Doving, Ian Weston, Omid
Rezvani, Jason Dodd, Ade Steward, Ski Club, Iain Dowie, Sander Siezen,
Nick ‘I, Robot’ Tait, Colin Turfus, Martin de Jode, Dave Jobling, Bart
Govaert, Phil ‘Ooc Clavdivs’ Spencer, Karen Mosman, Colin Anthony,
and System Management Group for the Symbian OS system model. Their
contributions and support have all been very much appreciated. Much
respect to the Laughing Gravy and Dingo Dave at the Stage Door for
providing vital fuel. Original cover concept by Jono Tastard.

About the Cover

The mobile phone has traditionally connected the mouth to the ear – at
Symbian’s Exposium 2003, Symbian introduced the concept of Symbian
OS enabling a new generation of connected communications devices by
connecting the mouth to the ear to the eye. To realize this vision, the
mobile phone industry is working together through Symbian to develop
the latest technologies, support open industry standards, and ensure
interoperability between advanced mobile phones as networks evolve
from 2.5G to 3G and beyond . . .

Symbian licenses, develops and supports Symbian OS, the platform for
next-generation data-enabled mobile phones. Symbian is headquartered
in London, with offices worldwide. For more information see the Symbian
website, http://www.symbian.com/. ‘Symbian’, ‘Symbian OS’ and other
associated Symbian marks are all trademarks of Symbian Software Ltd.
Symbian acknowledges the trademark rights of all third parties referred
to in this material. Copyright Symbian Software Ltd 2004. All rights
reserved. No part of this material may be reproduced without the express
written permission of Symbian Software Ltd.

1
Symbian OS Fundamentals

Before we head into the deeper aspects of Symbian OS, we need to spend
some time looking at some of the basic operations, programming patterns
and classes that are common to all applications, and indeed, to almost
all code that runs in the system.

What we are going to see here are the basic patterns that are used
over and over again: building blocks that allow you to build safe and
efficient code.

Symbian OS uses object-orientation, and is written in C++, with a tiny
bit of assembler thrown in at the lowest levels. This means that the vast
majority of applications are written in C++.

The use of C++ in Symbian OS is not exactly the same as C++ in other
environments:

• C++ does more than Symbian OS requires – for example, full-blown
multiple inheritance.

• C++ does less than Symbian OS requires – for example, it doesn’t
insist on the number of bits used to represent the basic types, and it
knows nothing about DLLs.

• Different C++ communities do things differently because their require-
ments are different. In Symbian OS, large-scale system design is
combined with focus on error handling and cleanup, and efficiency
in terms of ROM and RAM budgets.

1.1 Object Creation and Destruction

One of the fundamental characteristics about object-oriented systems is
the creation and destruction of objects. Objects are created, have a finite
lifetime, and are then destroyed.

Symbian OS C++ for Mobile Phones, Volume 2. Edited by Richard Harrison
 2004 Symbian Software Ltd ISBN: 0-470-87108-3

2 SYMBIAN OS FUNDAMENTALS

Object creation and destruction is intimately tied up with the issue
of cleanup, making sure that your applications are coded in such a way
that they do not leak memory – a real issue for systems that may not be
rebooted for long periods, if at all.

We’ll first just look at the very basics of object creation and destruction
in Symbian OS. In some ways this may give a misleading picture – the
full picture will only emerge once we’ve looked at error handling and
cleanup. This is because object creation, object destruction, error han-
dling and cleanup are all intimately tied together with the aim of
ensuring that objects, once created, are always destroyed when no
longer needed.

There are two places in Symbian OS where you can create objects:
the heap and the program stack.

1.1.1 The Heap (Dynamic Objects)

All threads have an associated heap, termed the default heap, from
which memory can be allocated at runtime. This is where you put
large objects, and objects that can only be built at runtime, including
dynamic variable length strings. This is also where you put objects whose
lifetimes don’t coincide with the function that creates them – typically
such objects become data members of the parent or owning object,
with the relationship expressed as a pointer from owning object to
owned object.

Memory is allocated from the thread’s default heap, as and when
required, using the C++ operator new and, very rarely, using user library
functions such as User::Alloc(). If there is insufficient free memory,
then an allocation attempt fails with an out-of-memory error.

In Symbian OS, classes that are intended to be instantiated on the heap
are nearly always derived from the CBase class. This class gives you
two things:

• zero initialization, so that all data members, member pointers and
handles are initially zero

• a virtual destructor, so that the object can be properly destroyed.
This is an important point when we come to look at cleanup
issues later.

Strictly speaking, CBase is a base class for all classes that own
resources, for example other bits of heap, server sessions, etc. What this
means is that all CBase derived classes must be placed on the heap, but
that not all heap objects are necessarily CBase derived.

The following code fragment shows a simple way of creating a heap-
based object:

OBJECT CREATION AND DESTRUCTION 3

class CMyClass : public CBase
{

public:
CMyClass();
~CMyClass();
void Foo();

private:
TInt iNumber;
TBuf<32> iBuffer;
}

CMyClass* myPtr = new CMyClass;
if (myPtr)

{
myPtr->Foo(); // can safely access member data & functions
}

delete myPtr;

If there is insufficient memory to allocate the CMyClass object, then
myptr is NULL. If allocation succeeds, myPtr points to the new CMy-
Class object, and further, the data members iNumber and iBuffer
are guaranteed to be binary zeroes. Conversely, the delete operator
causes the object’s destructor to be called before the memory for the
object itself is released back to the heap.

There’s one very important variation on this. Take a look at the
following code:

CMyClass* myPtr = new (ELeave) CMyClass;
myPtr->Foo(); // can safely access member data & functions
...
delete myPtr;

The main difference here is that we have specified ELeave as part of
the new operation. What this means is that instead of returning a NULL
value when there isn’t enough memory in which to create the CMyClass
object, the operation ‘leaves’. We’ll explore what leaving means in
more detail later when we investigate error handling and cleanup, but
for the moment, think of it as an operation where the function returns
immediately.

If the new operation doesn’t leave, then it means that memory alloca-
tion for the new object has succeeded, the object has been created, and
program control flows to the next C++ instruction, that is, the instruction
myPtr->Foo(). It also means that there’s no need to check the value of
myPtr – the fact that the new operation returns means that myPtr will
have a sensible value.

4 SYMBIAN OS FUNDAMENTALS

1.1.1.1 Ownership of Objects

In a typical object-oriented system such as Symbian OS, where objects are
created dynamically, the concept of ownership is important. All objects
need to be unambiguously owned so that it is clear who has responsibility
for destroying them.

Use a destructor to destroy objects that you own.

1.1.1.2 Don’t Forget About Objects – Even by Accident

Don’t allocate objects twice. It sounds obvious, but allocating an object
a second time, and putting the address into the same pointer variable
into which you put the address of the first allocated object, means that
you lose all knowledge of that first object. There is no way that a class
destructor – or any other part of the C++ system – can find this object,
and it represents a memory leak.

1.1.1.3 Deleting Objects

As we’ve seen, deleting an object is simply a matter of using the delete
operator on a pointer to the object to be deleted. If a pointer is already
zero, then calling delete on it is harmless. However, you must be
aware that delete does not set the pointer itself to zero. While this
does not matter if you are deleting an object from within a destructor, it
is very important if the deletion occurs anywhere else. Double deletion
doesn’t always cause an immediate crash, and sometimes it leaves
side-effects that only surface a long time after the real problem – the
double delete – occurred. As a result, double deletes are very hard
to debug.

On the other hand, double deletes are easy to avoid – just follow this
little discipline:

C++ delete does not set the pointer to zero. If you delete any
member object from outside its class’s destructor, you must set the
member pointer to NULL.

1.1.2 The Program Stack (Automatic Objects)

The stack is used to hold the C++ automatic variables for each function.
It is suitable for fixed size objects whose lifetimes coincide with the
function that creates them. In Symbian OS, the stack is a limited resource.
A thread’s stack cannot grow after a thread has been launched; the thread
is panicked – terminated abruptly – if it overflows its stack. This means
that stack objects in Symbian OS shouldn’t be too big, and they should

OBJECT CREATION AND DESTRUCTION 5

only be used for small data items – for example, strings of a few tens of
characters, say. Taking string data as an example, a good rule of thumb is
to put anything larger than a file name on to the heap. However, it’s quite
acceptable to put pointers (and references) onto the stack – even pointers
to very large objects.

You can control the stacksize in a .exe, through the use of the
epocstacksize keyword of the .mmp file used to create the .exe.
However, this only applies to console programs, servers or programs
with no GUI – and not to GUI programs as they are launched with
apprun.exe. GUI programs have a small program stack, of the order of
20k, and must be considered a valuable resource.

You can control the stacksize when you launch a thread explicitly
from your program. However, avoid the temptation to create a large stack
as this will eat into valuable resources.

We put built-in types, or classes that don’t need a destructor, on to
the program stack. They don’t need a destructor because they own no
data. This means that they can be safely discarded, without the need
for any kind of cleanup. You simply exit from the function in which the
automatic variable was declared. The type of objects that can go on to
the stack are:

• any built-in type: these are given typedefs, such as TInt for a
signed integer.

• any enumerated type, such as TAmPm, which indicates whether a
formatted time-of-day is am or pm. Note that all enumeration types
have names starting with a T, though enumerated constants such as
EAm or EPm begin with E.

• class types that do not need a destructor, such as TBuf<40> (a buffer
for a maximum of 40 characters) or TPtrC (a pointer to data, or to a
string of any number of characters). TPtrC contains a pointer, but it
only uses (rather than has) the characters it points to, and so it does
not need a destructor.

For example, given a function Foo() in class CMyClass, we can create
a TInt and a TBufC<16> type as automatic variables, use them in the
body of the function, and then simply discard them, without doing any
kind of cleanup when the function exits.

void CMyClass::Foo()
{
TInt myInteger;
TBufC<16> buffer;
...
// main body of the function
} // variables are ’lost’ on exit from the function.

6 SYMBIAN OS FUNDAMENTALS

1.2 Error Handling and Cleanup

In machines with limited memory and resources, such as those that
Symbian OS is designed for, error handling is of fundamental impor-
tance. Errors are going to happen, and you can’t afford not to handle
them correctly.

Symbian OS provides a framework for error handling and cleanup and
is a vital part of the system with which you need to become familiar.
Every line of code that you write – or read – will be influenced by thinking
about cleanup. No other Symbian OS framework has so much impact;
cleanup is a fundamental aspect of Symbian OS programming. Because
of this, we’ve made sure that error handling and cleanup are effective
and very easy to do.

1.2.1 What Kinds of Error?

The easiest way to approach this is by focusing on out-of-memory errors.
These days, desktop PCs come with at least 256 MB of RAM, virtual

memory swapping out on to 20 GB or more of hard disk, and users who
expect to perform frequent reboots. In this environment, running out of
memory is rare, so you can be quite cavalier about memory and resource
management. You try fairly hard to release all the resources you can, but
if you forget then it doesn’t matter too much: things will get cleaned up
when you close the application, or when you reboot. That’s life in the
desktop world.

By contrast, Symbian OS phones have as little as 4 MB of RAM, and
often no more than 16 MB, although there are now devices with 32 MB.
Nevertheless, by comparison with a PC, this is small; there is no disk-
backed virtual memory. Remember that your users are not used to having
to reboot frequently.

You have to face some key issues here – issues that don’t trouble
modern desktop software developers:

• You have to program efficiently, so that your programs don’t use RAM
unnecessarily.

• You have to release resources as soon as possible, because you can’t
afford to have a running program gobble up more and more RAM
without ever releasing it.

• You have to cope with out-of-memory errors. In fact, you have to
cope with potential out-of-memory for every single operation that can
allocate memory, because an out-of-memory condition can arise in
any such operation.

