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Preface

For us, mathematical theorems and their proofs

are like gold nuggets to a prospector.

The authors

We encounter integer numbers daily, and they are literally everywhere around
us. It is not possible to avoid them, ignore them, or to be indifferent to them. So
let us take together a journey through the world of integers, to get acquainted with
their fascinating and sometimes magic properties. We will discover some surprising
connections between number theory and geometry (see, e.g., Chaps. 1, 4, 7, and 8).
We shall see which laws are followed by integers. We will also show that number
theory has many practical applications without which we could not imagine the
modern technical world. It has a big influence on everything we do.

This treatise on integer numbers is based on ourmore than 70works on elementary
and algebraic number theory that we published between the years 2001 and 2021
mostly in prestigious international journals such as Journal of Number Theory, Inte-
gers, The Fibonacci Quarterly, Discrete Mathematics, Journal of Integer Sequences,
Proceedings of the AmericanMathematical Society, andCzechoslovakMathematical
Journal (see, e.g., dml.cz). Most of our results were reported at many international
conferences on number theory and also the regular Friday seminarCurrent Problems
in Numerical Analysis,which takes place at the Institute ofMathematics of the Czech
Academy of Sciences in Prague [426].

The book is intended for a general mathematical audience—especially for those
who can appreciate the beauty of both abstract and applied mathematics. We only
assume that the reader is familiar with the basic rules of arithmetic and has no
problem with adjustments of algebraic formulas. Only very rarely it is necessary to
understand some relationships from linear algebra or calculus. Most chapters can
be read independently from one another. Some parts are quite simple, others more
complicated. If some part is too difficult, there is no problem in skipping it.

At the endof the book, there are several tables and a fairly extensive bibliography to
attract attention to some important works in number theory. For inspiration, there are
also several links to websites, although we are well aware that they are not subjected
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to any review and change quite frequently. Newly defined terms are highlighted in
italics in the text for the convenience of the reader. They can also be found in the
Index.

In order to read the individual chapters, it is not necessary that the reader under-
stands all theorems. There are 230 of them. Mathematicians formulate their ideas in
the form of mathematical theorems that contain only what is relevant in the problem
in question.We provide proofs ofmost statements so that one can verify their validity.
For more complicated proofs, we only give a reference to the corresponding litera-
ture. The most beautiful feature of number theory is that the main ideas of proofs of
every statement usually differ from each other. Formulations of mathematical theo-
rems presented in this book often take only one or two lines, whichmakes it relatively
easy to understand what a particular theorem says.

Mathematical theorems are valid forever. They are independent of position and
time. Parliament does not decide about their validity by voting, nor the religious
or political system in some country, nor does it depend on cultural customs. For
example, the famous Pythagorean Theorem is valid on Earth as well as on the distant
Andromeda galaxy M31, and it will also be valid after millions of years. Defini-
tions of mathematical terms do not allow a double meaning. Also absolutely accu-
rate formulations of mathematical problems do not allow more interpretations. The
vague expressions we witness in daily life lead to a number of misunderstandings.
Only a small percentage of our population is able to express their ideas accurately
and perceive the beauty of mathematics. This was aptly stated by the well-known
Hungarian mathematician Cornelius Lanczos (1893–1974) as follows:

Most of the arts, as painting, sculpture, and music, have emotional appeal to the general
public. This is because these arts can be experienced by one or more of our senses. Such
is not true of the art of mathematics; this art can be appreciated only by mathematicians,
and to become a mathematician requires a long period of intensive training. The community
of mathematicians is similar to an imaginary community of musical composers whose only
satisfaction is obtained by the interchange among themselves of the musical scores they
compose.

There are many books on number theory. Let us mention, e.g., [6, 9, 28, 56, 82,
85, 91, 127, 132, 137, 138, 176, 235, 284, 291, 321–324, 327, 333, 344, 347, 350,
395, 413, 424]. However, our book contains some nonstandard topics. For instance,
we will see how triangular numbers are related to the bell-work machinery of the
Prague Astronomical Clock, what kind of mathematics is hidden in the traditional
Chinese calendar, how the Fundamental Theorem of Arithmetic was used to design
a message to extraterrestrial civilizations, how number theory is related to chaos,
fractals, and graph theory. We will construct a 3× 3× 3 magic cube containing only
prime numbers. We will also get acquainted with the latest results from the hunt for
the largest prime numbers and what prime numbers are good for. We shall present a
number of their various real-life technical applications in completely different areas.
We shall see how identification numbers of Czech organizations or bank account
numbers are protected against possible errors with the help of prime numbers and
error-detecting codes. We also discuss the so-called error-correcting codes, which
automatically correct errors and we shall see how they are constructed. Further, we
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show how large prime numbers are used to transmit secret messages, to generate
pseudorandom numbers, and what is their significance for digital signatures. We
also demonstrate how congruences can be applied in scheduling sport tournaments.
We give other examples, where number theory is useful and charming at the same
time.

In a number of discussions, many researchers helped us to improve the content
of this book, in particular, L’ubomíra Balková, Jan Brandts, Karel Břinda, Yann
Bugeaud, Pavel Burda, Walter Carlip, Antonín Čejchan, Karl Dilcher, Petr Golan,
Václav Holub, Jan Chleboun, František Katrnoška, Petr Klán, Martin Klazar, Michal
Kliment, Kurt Koltko, Sergey Korotov, Pavel and Filip Křížek, František Kuřina,
Florian Luca, Attila Mészáros, Karel Micka, Jaroslav Mlýnek, Vladimír Novotný,
Pavla Pavlíková, Edita Pelantová, Jan Pernička, Štefan Porubský, Andrzej Schinzel,
Bangwei She, Ladislav Skula, László Szalay, Bedřich Šofr, Jakub Šolc, Pavel
Trojovský, Jiří Tůma, Tomáš Vejchodský, and Václav Vopravil. We really appreciate
their help, and they deserve our great thanks. Furthermore, we are deeply grateful to
Hana Bílková and Eva Ritterová for their technical assistance in the final typesetting
of the manuscript.

Finally, we are indebted to Ms. Elena Griniari, Ms. Tooba Shafique, Mrs. Kay
Stoll, Mr. Vijayakumar Selvaraj, andMs. Sindhu Sundararajan from Springer-Verlag
for helpful cooperation in the preparation of this book. Our great thanks go to the
Springer Publishing House for its care in the graphical design of the book and to the
referees for valuable suggestions. We are also grateful to our families for patience
and understanding.

The work on this book was supported by RVO 67985840 of the Czech Republic.
Chapter 12 was partly supported also by Grant No. 20-01074S of the Grant Agency
of the Czech Republic. These supports are gratefully acknowledged.

Prague, Czech Republic
Washington, DC, USA
Prague, Czech Republic
May 2021

Michal Křížek
Lawrence Somer
Alena Šolcová
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n �≡ k(modm) n is not congruent to k modulo m
m|n m divides n
m � n m does divides n
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m j‖n m j exactly divides n for 1 < m ≤ n
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sgn Signum
orddn Order of n modulo d
n! Product 1 · 2 · · · n, n-factorial
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s(n) Sum of all positive divisors of n less than n
φ Euler totient function
λ Carmichael lambda function(
a
p

)
Legendre symbol for an odd prime p(

a
m

)
Jacobi symbol for an odd number m(
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∀ For all
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Chapter 1
Divisibility and Congruence

1.1 Introduction

According to ancient Chinese philosophy,
all phenomena arose from the dusty axis,
which split into two complete opposites,

yin and yang.

In one of the oldest Chinese books I-Ching (Book of Changes), which dates approx-
imately from the 8th century bc, there is a picture (so-called hexagram) containing
8 × 8 boxes. Each box contains 6 broken or full horizontal lines (see Fig. 1.1). The
broken line indicates the old Chinese principle yin and the full principle of yang,
which are in opposition. Yin is associated with the Moon, humidity, darkness, Earth,
woman, and passivity, yang on the other hand with the Sun, drought, light, heaven,
man, and activity.

The prominent German mathematician Gottfried Wilhelm Leibniz (1646–1716)
associated this hexagram with the discovery of a binary system. Considering zero
instead of the broken line and one instead of the full line, the symbols in particular
boxes from left to right (starting from the top line) can be interpreted as the numbers
0, 1, 2, 3, . . . written in the binary system. The first number in the upper left corner
is therefore zero, even though this notation was not used for operations with numbers
in the 8th century bc. The last number in the lower right corner corresponds to 63,
which is written as 111111 in the binary system. The use of zero nowadays seems
completely natural, but its discovery and in particular, its symbolic representation
signified great progress in mathematics over the entire world (cf. Fig. 1.2).

Although the ancient Chinese did not perform with the symbols yin–yang any
arithmetic operations, we cannot deny they were the first to represent numbers by
the binary system. The discovery of the binary system found practical application
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Fig. 1.1 The first depiction
of a binary system from the
8th century bc

Fig. 1.2 Symbols yin–yang
can be found on the current
South Korean flag

only in today’s computer age, i.e. almost three thousand years later. Computers
display and process all information (including numbers) in the binary system. This
is the easiest way in electronic circuits of a computer to process data. Thus, the
functioning of e-mail, scanners, copiers, digital cameras, compact disks CD and
DVD, cell phones, and the worldwide network of Internet is actually based on the
ancient Chinese principles of yin (= 0) and yang (= 1).

However, nature has discovered the binary (or if you wish quartic base 4) system
in the course of evolution more than three billion years ago. On the double helix of
deoxyribonucleic acid (DNA), which is contained in each cell, there are four bases:
adenine A, cytosine C , guanine G, and thymine T . If we replace them by the pairs
00, 01, 10, and 11, then each strand of DNA will correspond to a sequence of zeros
and ones that actually represents genetic information recorded in the binary system.
Note that the genetic code is nearly universal for animals and plants [290] with a few
exceptions, see [193].

By means of the replication R(A) = T , R(C) = G, R(G) = C , and R(T ) = A
one gets the second strand of DNA, thereby forming a double helix (see [162]).
Nature thus actually discovered a simple logical operation: negation. For example,



1.1 Introduction 3

G

C

T

A G

C C

G A

T
A

T

Fig. 1.3 Schematic illustration of DNA structure. Nucleotides are denoted by A, C , G, and T .
Molecules of deoxyribose sugar (marked by pentagons) and phosphoric acid (marked by circles)
are connected by strong covalent bonds. In thisway, theyprotect genetic information against damage.
The whole DNA molecule is actually twisted into a double helix

the nucleotides . . . AGT CCT . . . on the upper strand (see Fig. 1.3) corresponding
to the sequence of bits

. . . 001011010111 . . .

pass during DNA replication on . . . T C AGG A . . . corresponding to the comple-
mentary sequence

. . . 110100101000 . . . ,

where A = 00, C = 01, G = 10, and T = 11. The human genome in one cell is 750
MB (1 Byte = 8 bits).

Putting A = 0, C = 1, G = 2, and T = 3, the entire genetic information is trans-
ferred to the base 4 system. The sum of these numerical values is for all permissible
pairs A − T , C − G, G − C , and T − A always equal to 3. According to George
Gamow, number theory could be used to elucidate the functioning of genes.

Here allow us a small detour. When designing the model for the structure of DNA
in 1953, the fact that one of the authors Francis H.C. Crick was a physicist with
abstract mathematical-physical thinking, played an important role. Already in 1950
Crick realized that if we connect the same molecules exactly in the same way, they
will lie on a space helix (or especially on a circle or a straight line), see [73]. He
received the Nobel Prize together with James D. Watson for the discovery of the
double helix of DNA. Similarly, the founder of genetics Johann Gregor Mendel was
a mathematician. His precise work with statistical data from crossing peas allowed
him to discover laws of heredity (see [163, 269]). We further note that there are deep
connections between the structure and function of DNA and topology and other areas
of mathematics (see Benham et al. [29]).

In antiquity and the Middle Ages, number systems of different bases were used.
For example, it is documented that the ancient Babylonians used a system with a
base of 60. The origin of the words dozen (12) and pile (60) also illustrates that not
only the decimal system was not used.
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Recall that a positive integer n in a system of base b can be uniquely written in
the form

n = ckbk + ck−1bk−1 + · · · + c1b + c0,

where ci ∈ {0, 1, . . . , b − 1} are its digits, i.e., the set of digits has exactly b elements
and ck �= 0. (The existence of such an expression can be proved by induction and the
uniqueness can be obtained similarly as in Theorem2.2.) If b ≥ 10, then letters can
play the role of other digits. For instance, in the hexadecimal system the following
digits are used: 0, 1, 2, . . . , 9, A, B, C, D, E, F. In this book, however, we will mostly
use the decimal or binary system.

We set out on a journey to find secrets of integer numbers and will introduce
some of their literally magical and unexpected features. In particular, we want to
convey that numbers are not just for fun, but that number theory also has a huge
number of practical applications. In the past, Euclid, Fermat, Euler, and many others
actually only “played” with numbers, proved various statements about them, without
knowing what a huge amount of their results would appear and what practical use
their mathematical theorems would have. Moreover, the same result can often be
used in a number of completely different situations. In this book, we will see this,
for example, in the Chinese Remainder Theorem or Fermat’s Little Theorem. Most
statements from number theory wait for their practical use and many of them will
never find applications. But this does not diminish their beauty.

Humanity has been dealing with investigation of prime numbers and their some-
times surprising properties for several millennia. But not until the 20th century was it
discovered that prime numbers also have a number of useful applications. For exam-
ple, since 1986 birth numbers (≈ social security numbers) in the Czech Republic are
formed to be divisible by the prime number 11. This is because the computer imme-
diately detects an error as soon as you type a given birth number wrongly in one of
its digits. If we are wrong in more than one digit, then there is a large probability that
the computer is also able to detect an error. This is one example of a so-called error-
detecting code. A somewhat more complicated code based on the prime 11 protects
against a possible error appearing in bank account numbers, identification numbers
of organizations, ISSN numbers of journals, and ISBN numbers of publications.

Larger primes having more than a hundred of digits, are used in modern crypto-
graphic systems with public encryption key (for instance in the RSA method for the
transmission of secret messages). Also, a digital signature is based on large primes.
Efficient pseudo-randomgenerators or algorithms for very fastmultiplication of large
numbers can be constructed using prime numbers. Prime numbers have a number
of applications in signal analysis as well as in image processing using various the-
oretical transformations, such as when filtering data obtained from radars, sonar,
modems, and radiotelescopes.

With the publication of the fundamental work Disquisitiones arithmeticae [118]
by Gauss at the beginning of the 19th century, number theory established itself as a
systematic mathematical discipline whose main subject is the study of properties of
integers. Then in the 20th century it has found wide application in various fields of
human activities.
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It is used in a number of software products, in information security, in data com-
pression, mathematical genetics, in physics, astronomy, robotics, and crystallogra-
phy. Bar codes are commonly encountered in the commercial sphere today thanks
to the enormous advances of optoelectronics. Their introduction in stores increases
the speed of sales up to 400%. Error-correcting codes are used in data transmission
from interplanetary probes or on railways to ensure their reliable operation. Also
the functioning of digital cameras, telecommunication satellites, and music players
is based on number theory. These modern achievements of civilization would never
have been possible without number theory. Although they were not here in the 19th
century, we would hardly give them up at present. Unfortunately, the general public
does not realize this and considers them to be obvious. It is often underestimated
how much human ingenuity, intellectual effort, and mathematical results are hid-
den in these technical equipments. For example, computer tomographs would not
work without complex numbers. The reason is that the fast Fourier transform relies
on complex arithmetic and it is needed for a fast calculation of the Radon inverse
transformation in real time (see [185]).

In the following chapters, we will focus on geometric imagination, which can to a
large extent facilitate the understanding of some algebraic statements, relations and
basic concepts of number theory, such as the famous algebraic identities (a ± b)2 =
a2 ± 2ab + b2, a2 − b2 = (a + b)(a − b), the Pythagorean Theorem (see Fig. 2.1)
and the relation for the sum of an arithmetic sequence (see Fig. 1.4). In total, there
are about 70 pictures in this book and it contains notes on the historical background
of some concepts and methods.

Finally, let us mention that in solving equations we must exactly specify the set
of admissible solutions. For example, the equation

a

b

a

b

Fig. 1.4 Geometric interpretation of the well-known Gaussian relation for the sum of the first n
members of an arithmetic sequence a + (a + d) + (a + 2d) + · · · + b = 1

2n(a + b), where d is
the difference of two neighboring terms and b = a + (n − 1)d
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x2 + y2 = 2

has no solution in the set of even numbers. It has only one solution (x, y) = (1, 1) in
the set of natural numbers N and exactly four solutions (±1,±1) in the set of integer
numbers Z. There are countably many solutions in the set of rational numbers Q,
e.g., ( 15 ,

7
5 ), (

7
13 ,

17
13 ), (

7
17 ,

23
17 ), and there are uncountably many solutions in the set of

real numbers R or complex numbers C.

1.2 Natural Numbers

From ancient times people used the numbers 1, 2, 3, . . . to express the number of
some objects. The oldest use of zero was recorded in India. For a long time, zero
was not even considered to be a number. Moreover, at present historians still do not
have a year zero (but it is used by astronomers).

Sometimeswe encounter the question ofwhether zero is or is not a natural number.
Unfortunately, it is not possible to give a clear answer to this question of the YES/NO
type, since whether or not we consider zero to be a natural number is a matter of
definition. It is advisable to include zero in the set of natural numbers, for example,
when determining the number of elements of finite sets, because the number of
elements of the empty set is zero.

On the other hand, there are good reasons why it is sometimes advantageous not
to include zero in the set of natural numbers. This is, for example, to avoid division
by zero or when raising natural numbers to a natural power. In particular, the symbol
00 cannot be unambiguously assigned to one value that would naturally correspond
to standard arithmetical operations with real numbers. For example, for n = 1, 2, . . .
we have 0n = 0, while n0 = 1. Archimedes’ axiom presented below could not be
applied if 0 would be a natural number. It is also not possible to define reasonably
the least common multiple of, for example, the numbers 0 and 3, as we shall see in
Sect. 1.4. Therefore, more often zero is not considered to be a natural number.

The set of natural numbers (positive integers) will be denoted by

N = {1, 2, 3, . . . }.

It took a long time for mathematicians to figure out how in fact, natural numbers
should be introduced. Among several options, the following four axioms formu-
lated around 1891 by the Italian mathematician Giuseppe Peano (1858–1939) were
defined. They use a special function “successor”, truthfully characterize the set of
natural numbers and are called Peano’s axioms after him:

(A1) There exists a unique natural number that is not a successor of any natural
numbers. We will denote this number by the symbol 1.

(A2) Each natural number has exactly one successor.
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(A3) Each natural number is a successor of at most one natural number.
(A4) Any set that contains the natural number 1 and for each natural number also

contains its successor, is the set of natural numbers.

Themain idea of the principle ofmathematical induction is based on these axioms.
If we want to prove that some property V (n) holds for all natural numbers n, then
first we prove that V (n) is valid for n = 1. Then we prove that if the property V (n)

holds for some natural number n, then V (n + 1) also holds for the successor n + 1
of the number n.

The set of integer numbers is denoted by

Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

This set therefore consists of natural numbers, numbers opposite to them (i.e. with
minus sign), and zero. It is closed under the addition and multiplication operations,
i.e., for any m, n ∈ Z we have m + n ∈ Z and m · n ∈ Z. The following relations =,
<, >, ≤, and ≥ are also established on the set Z.

Convention. Integer numbers in this book will mostly denoted by i , j , k, �, m, n, p,
q, r , s, t ,. . . , unless otherwise specified.

The set of natural numbers N is well ordered, which means that an arbitrary
nonempty subset has a least element. The sets of integers Z, rational numbers Q, and
real numbers R do not have a similar property.

The fact that the set of natural numbers is well ordered is equivalent to the prin-
ciple of mathematical induction (see e.g. [395, p. 40]). It is actually an axiom, i.e., a
statement which is accepted without proof, because it does not contradict our intu-
ition.

Already in antiquity, Archimedes (287–212 bc) realized that the set of natural
numbers is well ordered.

Archimedes’ axiom. For any natural numbers j and k there exists a natural number
n such that n j ≥ k.

Archimedes’ axiom can be proved. So it is a mathematical theorem, but for histor-
ical reasons, it is called an axiom. If it were not true, then there would exist j, k ∈ N

such that nj < k for each n ∈ N. Since the set N is well ordered, there exists a small-
est element k − mj of the subset M = {k − nj ; n ∈ N} ⊂ N However, the element
k − (m + 1) j is also in M and satisfies

k − (m + 1) j = (k − mj) − j < k − mj,

which contradicts the minimality of the element k − mj from the set M .
Archimedes’ axiom has a nice geometric interpretation. It says, in fact, howmany

line segments of length j cover a line of length k.
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1.3 Simple Criteria of Divisibility

We say that d divides (without remainder) a natural number n, if there exists k ∈ N

such that n = d · k. In this case we shall write

d | n,

for instance, 3 | 6. The number d is called a divisor of the number n and the numbers
1 and n are called trivial divisors of n. If 1 < d < n, then d is called a nontrivial
divisor, and if d < n, then d is called a proper divisor of n. If m does not divide n,
we shall write m � n, for instance, 5 � 6. Similar definitions can also be introduced
for integer numbers when m �= 0. An integer divisible by 2 is called even, otherwise
odd.

Theorem 1.1 A natural number n written in the decimal system is divisible by

(a) two, if its last digit is even,
(b) three, if the sum of all its digits is divisible by 3,
(c) four, if the number formed by the last two digits of n is divisible by 4,
(d) five, if its last digit is 0 or 5,
(e) six, if it is even and divisible by 3,
(f) seven, if twice the number of hundreds increased by the number formed by the

last two digits is divisible by 7,
(g) eight, if the number formed by the last three digits of n is divisible by 8,
(h) nine, if the sum of all its digits is divisible by 9,
(i) ten, if its last digit is 0.

Proof Let n be an arbitrary natural number. In the decimal system it can be uniquely
written in the form

n = ck10
k + · · · + c210

2 + c110 + c0, (1.1)

where its digits ck, . . . , c2, c1, c0 are from the set {0, 1, 2, . . . , 9} and ck �= 0. From
(1.1) we immediately get (a), (c), (d), (g), and (i).

Denote by s the sum of all digits of the number n, i.e.,

s = ck + · · · + c2 + c1 + c0.

Then
n − s = ck(10

k − 1) + · · · + c299 + c19,

where each term on the right-hand side is divisible by nine. That is why, n is divisible
by three (respectively nine) exactly when s is divisible by three (respectively nine).
Hence, (b) and (h) hold.
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We observe that (e) follows immediately from (a) and (b). It remains to prove (f).
The next proof of this criterion comes from Václav Holub. Twice the number of
hundreds of n increased by the number formed by the last two digits is equal to

m = 2ck10
k−2 + · · · + 2c2 + 10c1 + c0.

By (1.1) we see that the difference

n − m = 98ck10
k−2 + · · · + 98c2

is divisible by seven, since 7 | 98. Now if 7 divides m, then 7 also divides the sum
m + (n − m) = n. �

Example By Theorem1.1 we have 7 | 1239, since 7 divides 2 · 12 + 39 = 63.

Example For larger numbers it is usually necessary to apply an appropriate rule
several times. For instance,

3 | 188887777788885,

whose sum of digits 105, which is divisible by 3, since 3 | (1 + 5).

We will deal with divisibility by 11 in Theorem11.1. Let us further introduce
rules for divisibility by the numbers 13, 17, and 19.

Remark Let n be a given natural number, let k be the number of tens in n, and let
c0 ∈ {0, 1, . . . , 9} be the last digit of n. Then

n = 10k + c0.

A natural number n is divisible by 13 if four times the last digit added to the number
of tens is divisible by 13. To see this we set m = k + 4c0. Then

13 | n = 10k + c0 = 10(m − 4c0) + c0 = 10m − 39c0 ⇔ 13 | 10m ⇔ 13 | m.

For instance, 13 | 507, since 13 divides 4 · 7 + 50 = 78.

A natural number n is divisible by 17, if five times the last digit subtracted from
the number of tens is divisible by 17. To prove this we put m = k − 5c0. Then

17 | n = 10k + c0 = 10(m + 5c0) + c0 = 10m + 51c0 ⇔ 17 | 10m ⇔ 17 | m.

For example, 17 | 357, since 17 divides 35 − 5 · 7 = 0.
A natural number n is divisible by 19, if double the last digit added to the number

of tens is divisible by 19. We set m = k + 2c0. Then

19 | n = 10k + c0 = 10(m − 2c0) + c0 = 10m − 19c0 ⇔ 19 | 10m ⇔ 19 | m.
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For instance, 19 | 1026, since 19 divides 2 · 6 + 102 = 114 and 19 divides 11 + 2 ·
4 = 19.

The divisibility tests by 13 and 19 are applications of a theorem by Carl Fredrik
Liljevalch in 1838 (see [176, p. 283]).

Recall that the binomial coefficient
(n

m

)
(read n over m) is defined by

(
n

m

)
= n!

m!(n − m)! for integers n ≥ m ≥ 0,

where
n! = 1 · 2 · . . . · (n − 1) · n for n ∈ N, 0! = 1.

The symbol n! is called n factorial.

Remark Let k = n − m be a natural number. Then we have

k!
(

n

m

)
= k! n!

m!k! = n!
m! = (m + 1)(m + 2) · · · (m + k).

Thus we see that the product of k consecutive numbers on the right-hand side is
always divisible by k!. Moreover, it can be proved that (m + 1)(m + 2) · · · (m + k)

for k ≥ 2 and m ≥ 2 is never equal to the power � j for some j ≥ 2 and � ≥ 2 (see
Erdős and Selfridge [105]).

1.4 The Least Common Multiple and the Greatest
Common Divisor

Let m and n be arbitrary natural numbers. Denote by M ⊂ N a subset of all common
multiples of m and n. The set M is clearly nonempty, because it contains e.g. the
product mn. Since N is well ordered, M must contain a smallest element, which we
denote by [m, n] and call the least common multiple of the numbers m, n ∈ N. Thus,
it is the smallest natural number divisible by both m and n.

Similarly, the greatest common divisor of two integer numbers m and n, which
are not zero at the same time, is the largest integer that divides both m and n. The
greatest common divisor of numbers m and n will be denoted by (m, n).

A basic property of the largest common divisor and least common multiple is
obviously

(m, n) = (n, m), [m, n] = [n, m].

For k, m, n ∈ N the following distributive properties hold

[k, (m, n)] = ([k, m], [k, n]) and (k, [m, n]) = [(k, m), (k, n)].
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Theorem 1.2 For any natural numbers m and n we have

mn = (m, n)[m, n]. (1.2)

Proof Denote by d ≥ 1 an arbitrary common divisor of m and n. Then m
d and n

d are
natural numbers, m

d n is an integer multiple of the number n, and n
d m is an integer

multiple of the number m. Therefore, mn
d is a common multiple of the numbers m

and n. Now if d is the greatest common divisor of the numbers m and n, then mn
d has

to be the least common multiple m and n. �

Example For m = 18 and n = 27 we have (m, n) = 9, [m, n] = 54, and hence
18 · 27 = 9 · 54.

The greatest common divisor and the least common multiple of more than two
numbers can be defined by induction similarly as for two numbers. For k > 2 and
integer numbers n1, . . . , nk we set

(n1, . . . , nk−1, nk) = (
(n1, . . . , nk−1), nk

)
if n1 �= 0,

[n1, . . . , nk−1, nk] = [[n1, . . . , nk−1], nk
]

if n1n2 · · · nk �= 0.

1.5 Coprime Numbers

Natural numbers m and n are called coprime, if (m, n) = 1. An interesting real-life
technical application of coprime numbers is depicted in Fig. 1.5. It shows two gear
ratios. In the left part of the figure, the larger wheel has 20 teeth and the smaller
one 10 teeth. If there is one tooth slightly damaged on the larger wheel (it is marked
with a dot in Fig. 1.5), then it fits into exactly the same gap in the smaller wheel after
each turn of the larger wheel. Just at this gap, the smaller wheel will be very quickly
worn out. In the right part of Fig. 1.5 we see two wheels with 25 and 12 teeth. Since
(25, 12) = 1, there will be completely uniform wear. Let us still note that the ratio
of the teeth is actually almost the same in both cases: 2 and 2.083.

Here is another practical use of coprime numbers. The fixed part of the caliper
is equipped with a scale in which each centimeter is divided into 10mm. On the
moving part, the so-called vernier is divided into 10 equally long pieces, which
together have 9mm (see Fig. 1.6). The fact that 9 and 10 are coprime allows us to
determine the dimensions of small objects with precision to the nearest tenth of a
millimeter. When measuring, we determine which line of the vernier merges with
some line on the millimeter scale of the caliper. So many tenths of a millimeter is
then added to the measured millimeters (i.e. to their largest integer value). If we were
to choose instead of 9mm another length that divides 10mm, then several lines could
merge so we would not know which data applies.
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Fig. 1.5 For the number of teeth on the left and right gears we have (20, 10) = 10 and (25, 12) = 1,
respectively

Fig. 1.6 Vernier on a caliper

The author of this elegant idea is a Portuguese royal mathematician and cosmog-
rapher Pedro Nunes (1502–1578), who first used it for accurate angle measurements.
At present, a vernier-like device is used also in micrometers and is called the nonius
in his honor.

1.6 Euclidean Algorithm

To calculate the greatest common divisor (m, n) of two large natural numbers m ≥ n
the well-known Euclidean algorithm is often used. It can be briefly characterized as
follows:
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Fig. 1.7 Geometric illustration of the reduction of input data during the use of the Euclidean
algorithm for calculating the greatest common divisor (54, 16)

If n divides m, then (m, n) = n, otherwise we have

(m, n) = (n, z),

where z ≥ 1 is the remainder when dividing the number m by the number n. Since
z < m, larger problem is thus converted to a smaller one. The next steps of the
algorithm then proceed similarly. The original problem is thus reduced to smaller
and smaller parts until we get the remainder 0.

For instance, if m = 54 and n = 16, then by the Euclidean algorithm we get

(54, 16) = (16, 6) = (6, 4) = (4, 2) = 2.

Now let us imagine that we have a squared paper with dimensions 54 × 16 (see
Fig. 1.7). From this we will gradually cut off squares as large as possible and we
will perform this as long as possible (see [188]), i.e., in the first step we cut off 3
squares 16 × 16, in the next step we cut 2 squares 6 × 6, etc. The length of the side
of the square that we have left, is the result of the Euclidean algorithm, i.e. the largest
common divisor of numbers 54 and 16.

If the numbers m and n are coprime, the Euclidean algorithm ends with the least
possible square 1 × 1. For example, two consecutive natural numbers are always
coprime.

To calculate the least common multiple of [m, n], it is also useful to apply the
Euclidean algorithm first, because (m, n) ≤ [m, n], and then use the relation (1.2).
We return to the Euclidean algorithm in Theorem7.7.

1.7 Linear Diophantine Equations

The nameDiophantine equation is derived from the nameof theGreekmathematician
Diophantus, who lived in Alexandria in the 3rd century ad and dealt with solving
various problems in number theory. Diophantine equations are equations with integer
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coefficients, whose solution is sought in integers. In solving systems of Diophantine
equations we usually have more unknowns than equations. In this section we shall
deal only with one linear Diophantine equation with two integer unknowns.

Theorem 1.3 Let k = (m, n) for some integers m and n, which are not simultane-
ously zero. Then there exist integers x and y such that

mx + ny = k. (1.3)

Proof Let S be a set of all integers of the form ma + nb, where a and b are integers.
The numberm or n is not zero, and thus the set S contains nonzero integers. Since t =
ma + nb is in S, the number −t = m(−a) + n(−b) is also in S. Hence, S contains
natural numbers. SinceN is well ordered (see Sect. 1.2), there exists a smallest natural
number d in S of the form d = mx + ny. We claim that d = (m, n).

First we show that d is a common divisor of m and n. Let u = ma0 + nb0 be an
arbitrary element in S. By division we find that u = qd + r , where 0 ≤ r < d is the
remainder. Thus we have

ma0 + nb0 = q(mx + ny) + r,

i.e.,
r = m(a0 − qx) + n(b0 − qy)

and r ∈ S. Since r ≥ 0 and r < d, it follows that r = 0 due to the choice of d.
Therefore, d divides u for all u ∈ S. However, m = m · 1 + n · 0 ∈ S and n = m ·
0 + n · 1 ∈ S, which means that d divides both m and n.

Finally, let e be an arbitrary common divisor of m and n. Then e divides
mx + ny = d, and thus d = (m, n) = k. �

Theorem1.3 has a very nice geometric interpretation (seeBurton [56, p. 22]). Each
line mx + ny = k passes through the grid points (x, y), which are solutions of the
linear Diophantine equation (see Fig. 1.8 for m = 2, n = −3, and k = 1). Relation
(1.3) is called Bézout’s identity.

Example Let us show how to solve the following Diophantine equation

8x − 27y = 1

by a method similar to the Euclidean algorithm. Since (8, 27) = 1, this equation has
by Theorem1.3 a solution and we have

x = 3y + 3y + 1

8
.
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Fig. 1.8 A straight line
corresponding to the linear
Diophantine equation
2x − 3y = 1 passes through
points with coordinates
. . . , (−1,−1), (2, 1), (5, 3),
(8, 5), (11, 7), . . .

To get an integer solution, 3y + 1 must be a multiple of 8, i.e., there exists an integer
v such that

3y + 1 = 8v, and thus y = 2v + 2v − 1

3
.

Hence, we can choose v = 2 and by backward substitution we get that the pair y = 5
and x = 17 is a solution. For v = 5, 8, 11, . . . and v = −1,−4,−7, . . . we obtain
further pairs of solutions.

1.8 Congruence

In this section we will discuss the concept of congruence, introduced by the German
mathematician Carl Friedrich Gauss. He used it for various calculations, such as
which day falls on Easter Sunday (see Remark below). Congruences have many
other practical applications in cryptography, in astronomy when creating calendars
(see [56, p. 122]), in generating pseudorandom numbers, etc., as we shall see in
Sects. 11.2–11.5.

Let n, z be integers and m ∈ N. Then we say that n is congruent to z modulo m
and write

n ≡ z (mod m),

if n − z is divisible by m. The number m is called the modulus.
The notion congruence modulo 12 can be clearly demonstrated on the dial of a

classical clock.
We now derive some practical rules for calculating congruences. Obviously a≡a

(mod m) for any integer a. If a ≡ b (mod m), then for arbitrary integers a, b, c and
k ≥ 0 we easily find that
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b ≡ a (mod m),

a ± c ≡ b ± c (mod m),

ac ≡ bc (mod m),

ak ≡ bk (mod m), (1.4)

where the last congruence follows from the equality

ak − bk = (a − b)
(
ak−1 + ak−2b + · · · + bk−1

)
, k > 1.

From the above relationships, it is clear that the relation “≡” modulo m is reflexive
and symmetric. Since transitivity holds as well, it is actually an equivalence relation
on the set of integers.

If (c, m) = 1, then the congruence ac ≡ bc (mod m) can be canceled by c, i.e.,
a ≡ b (mod m). If a ≡ b (mod m) and c ≡ d (mod m), then obviously

a + c ≡ b + d (mod m),

a − c ≡ b − d (mod m),

and moreover,
ac ≡ bd (mod m). (1.5)

For a = b + im and c = d + jm it indeed holds that ac = bd + ( jb + id + i jm)m,
and thus congruence (1.5) is satisfied. Moreover, by (1.4) we also get that

f (a) ≡ f (b) (mod m)

for an arbitrary polynomial f with integer coefficients.

Remark The Gaussian algorithm on which day of the year y is Easter Sunday
proceeds as follows:

For the period 1900–2099 we set m = 24 and n = 5. Let a, b, c, d, e be the
smallest nonnegative numbers satisfying the congruences

a ≡y (mod 19),

b ≡y (mod 4),

c ≡y (mod 7),

d ≡(m + 19a) (mod 30),

e ≡(n + 2b + 4c + 6d) (mod 7).

Here a + 1 is called golden number (the ordinal number of the year in the Metonic
cycle having a period of 19 years in which there are 235 lunations). If d + e < 10
then the Easter Sunday will be on the (22 + d + e)th March, if d + e = 35 it will
be on the (d + e − 16)th April and otherwise it will be on the (d + e − 9)th April.


