MAKER INNOVATIONS SERIES

Internet of Things Using Single Board Computers

Principles of IoT and Python Programming

G. R. Kanagachidambaresan

Maker Innovations Series

Jump start your path to discovery with the Apress Maker Innovations series! From the basics of electricity and components through to the most advanced options in robotics and Machine Learning, you'll forge a path to building ingenious hardware and controlling it with cutting-edge software. All while gaining new skills and experience with common toolsets you can take to new projects or even into a whole new career.

The Apress Maker Innovations series offers projects-based learning, while keeping theory and best processes front and center. So you get hands-on experience while also learning the terms of the trade and how entrepreneurs, inventors, and engineers think through creating and executing hardware projects. You can learn to design circuits, program AI, create IoT systems for your home or even city, and so much more!

Whether you're a beginning hobbyist or a seasoned entrepreneur working out of your basement or garage, you'll scale up your skillset to become a hardware design and engineering pro. And often using low-cost and open-source software such as the Raspberry Pi, Arduino, PIC microcontroller, and Robot Operating System (ROS). Programmers and software engineers have great opportunities to learn, too, as many projects and control environments are based in popular languages and operating systems, such as Python and Linux.

If you want to build a robot, set up a smart home, tackle assembling a weather-ready meteorology system, or create a brand-new circuit using breadboards and circuit design software, this series has all that and more! Written by creative and seasoned Makers, every book in the series tackles both tested and leading-edge approaches and technologies for bringing your visions and projects to life.

More information about this series at https://link.springer.com/bookseries/17311

Internet of Things Using Single Board Computers

Principles of IoT and Python Programming

G. R. Kanagachidambaresan

Internet of Things Using Single Board Computers: Principles of IoT and Python Programming

G. R. Kanagachidambaresan Chennai, India

Copyright © G. R. Kanagachidambaresan 2022, corrected publication 2023

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr Acquisitions Editor: Aaron Black Development Editor: James Markham Coordinating Editor: Jessica Vakili

Copyeditor: Kim Burton

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a **Delaware** corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers on the Github repository: https://github.com/Apress/Internet-of-Things-Using-Single-Board-Computers. For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

To my family, students, dear friends, and scholars
I specially dedicate this to my son, Ananthajith K

Table of Contents

About the Authorx			
About the Technical Reviewer Acknowledgments Preface			
		Chapter 1: An Overview of the Internet of Things (Ioi and Sensors	
		Sensors	2
Energy-based	3		
Signal Output	4		
Mode of Operation	4		
Electronic Sensors	5		
Connectivity	7		
Bluetooth	8		
Zigbee	8		
Wi-Fi	9		
LoRa	10		
Wired Communication	10		
Machine Intelligence	12		
Active Management	14		
Cancar Fusion	15		

Smart Devices	16
Human-Computer Interaction	16
Context Awareness	17
Actuators	18
IoT and Smart City Applications	22
Automobile Sensors	22
Smart Home Sensors	23
Smart Transportation Sensors	25
Summary	28
References	28
Chapter 2: IoT Sensors and Their Interfacing Protocol	e 31
Vision and Imaging Sensors	
Light Rings	
Shop Floor and Production Line Inspections	
Line Scan Cameras	
3D Depth Cameras	
Event/Production Line Triggering	
Sensors That Measure Temperature	
Thermocouples	
Resistance Temperature Detector (RTD)	
Temperature Thermistor Sensors	
Semiconductor Temperature Sensors	
Thermometers	41
Radiation Sensors	42
Proximity Sensors	43
Inductive Field Sensors	44
Magnetic Field Sensors	44
Types of Photoelectric Sensors	

Ultrasonic Proximity Sensors	47
Pressure Sensors	48
Position Sensors	49
Photoelectric Sensors	50
Particle Sensors	50
Types of Particle Sensors	51
Metal Detectors	54
Level Sensors	54
Leak Detectors	55
Humidity Sensors	56
Gas and Chemical Sensors	56
Gas Detectors	57
Carbon Monoxide (MQ7) Detectors	58
Force Sensors	58
Force Sensor Types	59
Flow Sensors	60
Mass Flow Sensors	62
Velocity Flow Sensors	64
Flaw Sensors	66
Flame Detectors	66
Voltmeter and Ammeter Sensors	67
Contact Sensors	67
Non-Contact Sensors.	68
Sensor Communication Protocols	69
Summary	69
References	70

Chapter 3: Programming SBCs	75
Arduino Programming	76
Raspberry Pi	77
Introduction to Raspberry Pi GPIO Access	78
Interfacing DHT	82
Interfacing Pi cam to Raspberry Pi zero w	84
Pi Camera Specifications	85
Pi Camera Access	85
Interfacing PIR Sensor	86
Python	88
File Concepts	90
Spreadsheet Concepts	92
Communication Concepts	95
Wired and Wireless Programming Concepts	99
Wired Programming Concepts	101
Node-RED	103
Node-RED Features	103
Node-RED Architecture	104
Node-RED Applications	104
MQTT Protocols	105
Google Sheets Programming (gspread)	106
Firebase Programming	107
Matplotlib	108
Getting Started	110
Bar Graphs	117
Scatter Plot	124
Spectrum Representation	126

Coherence of Two Signals	129
Cross-Correlation Graph	132
Autocorreleation Graph	133
Changing Figure Size in Different Units	135
Scale	136
Pie Charts	138
Style Sheets	145
FiveThirtyEight Style Sheet	145
Solarized Light Style Sheet	146
3D Graphs	148
Plotting 2D Data on a 3D Plot	148
Creating 2D Bar Graphs in Different Planes	150
Creating a 3D Histogram of 2D Data	152
3D Surfaces	154
Animation	155
Live Line Graph	155
Oscilloscope Live	157
References	161
Chapter 4: Wireless Connectivity in IoT	163
Introduction	
Low-Power Wide-Area Networks (LPWANs)	164
RFID Protocol	
XBEE Radios with Arduino	173
Bluetooth with Arduino	
Arduino with a GSM Modem	
Arduino with Firebase Cloud Connectivity	
References	184

Chapter 5: The Internet of Things Through the Raspberry Pi	187
Introduction	187
Cluster Computing with Raspberry Pi Zero W	189
Message Passing Interface (MPI)	189
Networking with RPis for Simple MPI Scripts	189
Simple MPI Programming	191
Types of Communication in Cluster Computing	192
Persistent Communication	193
Broadcasting	193
Scattering	195
Gathering	196
A Simple Web Service-Based Home Automation Using a Flask Server	197
References	199
Chapter 6: Home Electrification and Node-RED	201
References	
	200
Chapter 7: Supply Chain Management: Industry 4.0 and MQTT Applications	209
Introduction	
Working Principle	
Publisher Source Code	
Subscriber Source Code	
Summary	
References	
Chapter 8: Raspberry Pi-Based Go/No-Go Kit Design Using the RPi Camera and Image Processing Algorithms	225
Introduction	
References	220

Chapter 9: Programming Water-Quality Sensors	24 1
Introduction	24 ⁻
References	264
Chapter 10: IoT-Based Shrimp Farming	265
References	278
Correction to: Internet of Things Using Single Board Com	puters C1
Index	281

About the Author

G. R. Kanagachidambaresan completed his PhD in Information and Communication Engineering from Anna University, Chennai, in 2017. He is currently an associate professor in the CSE Department at Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology. He is also a visiting professor at the University of Johannesburg.

His main research interest includes the Internet of Things, Industry 4.0, body sensor network, and fault-tolerant wireless sensor

network. He has published several reputed articles and undertaken several consultancy activities for leading MNC companies. He has guest-edited several special issue volumes and books and served as an editorial review board member for peer-reviewed journals. He is TEC committee member in DBT, GOI, India.

He is presently working on several government-sponsored research projects like ISRO, DBT, and DST. He is Wiley's editor-in-chief of the Next Generation Computer and Communication Engineering Series. He is also the managing director for Eazythings Technology Private Limited.

About the Technical Reviewer

Massimo Nardone has more than 22 years of experience in security, web/mobile development, cloud, and IT architecture. His true IT passions are security and Android.

He has been programming and teaching how to program with Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL for more than 20 years.

He has a master of science degree in computing science from the University of Salerno, Italy.

He has worked as a project manager, software engineer, research engineer, chief security architect, information security manager, PCI/SCADA auditor, and senior lead IT security/cloud/SCADA architect for many years.

Acknowledgments

My heartfelt thanks to Apress, especially Jessica Vakili and Susan McDermott, for helping me throughout this project.

I sincerely thank the Department of BioTechnology (DBT-India) for their funding (BT/PR38273/AAQ/3/980/2020) on the smart aquaculture project.

I would also like to extend thanks to my JRFs: Ms. Meenakshi KV, Mr. M. Akash, Ms. A. V. Anandhalekshmi, and Ms. V. Sowmiya.

I give special thanks to my son Mr. Ananthajith K, my wife, Dr. Mahima V, my parents, Mr. G. S. Ramasubramanian and Mrs. Lalitha, and Mrs. Chandra, Mr. Venkatraman, Mrs. V. Chitra, and Mr. V. Bharath for their timely support.

Preface

The rapid growth of technology and new smart, sustainable development initiatives has made the Internet of Things (IoT) and edge analytics an inevitable platform for all engineering domains. The need for a sophisticated and ambient environment has resulted in an exponential growth in automation and artificial intelligence. The right sensor or actuator, a specific processor, and the correct transmission unit can offer the best solution to any IoT problem. Lightweight machine learning or mathematical logic can bring a good solution to existing smart-city problems.

This book provides detailed information on sensors, their interfacing connections, programming with single-board computers, and creating integrated projects with a combination of sensors, processors, and actuators. A detailed introduction to Python and Arduino-based programming is also discussed to kindle interest in IoT programming. IoT products' wired and wireless connections are discussed, and programming examples are provided.

This is a completely new textbook that reflects recent developments while providing a comprehensive introduction to the fields of IoT, single-board computers, and Python programming. It is aimed at advanced undergraduates as well as researchers and practitioners. This book deals more with electronics and programming than simple text. It best suits outcome-based education systems and can aid industry-ready IoT engineers.

Funding Information

The part of this book is supported by the Department of Biotechnology funding information (BT/PR38273/AAQ/3/980/2020).

The original version of this book was revised. A correction to this book is available at $https://doi.org/10.1007/978-1-4842-8108-6_11$

CHAPTER 1

An Overview of the Internet of Things (IoT) and Sensors

Recent advancements in single-board computers (SBCs) [16] and boards have made the Internet of Things (IoT) more accessible and easier to use. The complete automation, information analysis from sensor data, and integration of individual components with IoT systems helps to build new Smart environment solutions. The scope of the areas is broadened with IoT components and sensors.

IoT uses existing and emerging technology for event detection and automation. IoT has the advantages of recent software advancements, reducing hardware prices and available technology options. It created a great change in product delivery and services and a major revolution in Industry 4.0. Figure 1-1 illustrates the key features of IoT.

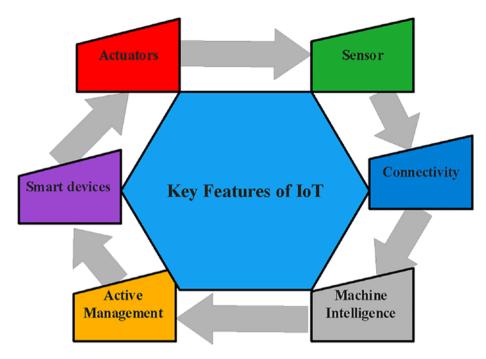


Figure 1-1. IoT feature and data flow

Sensors

Sensors are the main data acquisition and detection system, which converts any physical quantity (i.e., event) into a signal. In some sensors, direct conversion takes place; in others, multiple conversions take place to attain accuracy and quantification. Some of the sensors used in IoT and prototyping are shown in Figure 1-2. Sensors are collectively connected with an A/D converter to convert their signals to digital forms so that a processor understands and can program effectively. Figure 1-2 illustrates sensor classification (mode of operation, signal output, and energy-based).

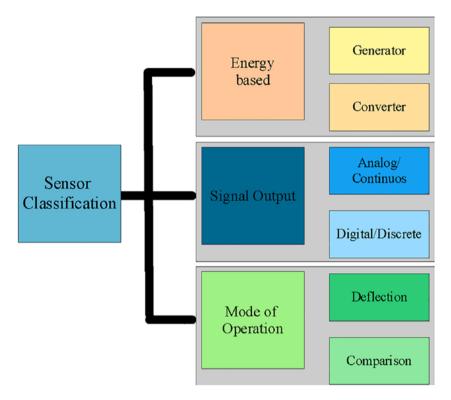


Figure 1-2. Sensor type classification

Next, let's further discuss sensor type classification.

Energy-based

Generator

Energy generation-based sensors provides conversion energy conversion, like voltage and current, on any physical event. For example, a piezoelectric sensor converts vibration energy to a proportional voltage. The seebeck metal junction converts the change in temperature to proportional energy conversion.

Conversion

Sensors convert one mode of physical quantity to another; for example, an anemometer converts air velocity to rotational motion, which is further converted to electrical voltage for measurement. These sensors are operated in a proportional zone for calibration and stable operation. Most sensors provide linear data conversion.

Signal Output

Analog

Sensors such as anemometers provide analog conversion of data. Analog signal from annemometer is converted to digital data with the help of an analog-to-digital converter. The sensor's frequency of operation should be far greater than the frequency of the physical quantity to get clear information after digital conversion.

Discrete

Cameras and tile-based sensors provide discrete and digital information directly to the processor. This makes the sensor easy to integrate with any digital processor.

Mode of Operation

Sensors are deflection- or comparison-based. Deflection happens when sensing a physical event. This is normally an angular-based movement between two points. Comparison-based meters normally work with standard available data. GPS sensors provide comparison-based sensing.

- Deflection (e.g., voltage meters and current meters)
- Comparison (e.g., GPS sensors)

Electronic Sensors

Figure 1-3 illustrates sensor classification based on the field of operation, such as mechanical, optical, electrical, acoustic, thermal, chemical, radiation, biological, and magnetic.

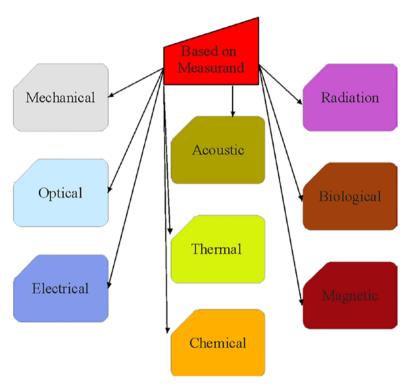


Figure 1-3. Sensor classification based on measurand

Mechanical

- Linear and angular position
- Velocity of the subject
- Acceleration

CHAPTER 1 AN OVERVIEW OF THE INTERNET OF THINGS (IOT) AND SENSORS

- Force
- Viscosity, rigidness, and roughness
- Pressure and stress
- Strain
- · Mass and density measurement

Optical

- Wave velocity
- · Polarization and spectrum
- Wave amplitude

Electrical

- Conductivity
- Potential difference
- Charge and current density
- Field

Thermal

- Heat flux
- Thermal conductivity

Chemical

- · States and identifies
- Color change
- Change in voltage

Radiation

- Energy
- Intensity

Biological

- Mass
- Concentration
- States
- Magnetic
- Magnetic field
- Magnetic flux
- Permeability

Connectivity

Figure 1-4 illustrates the connectivity features of IoT communication.

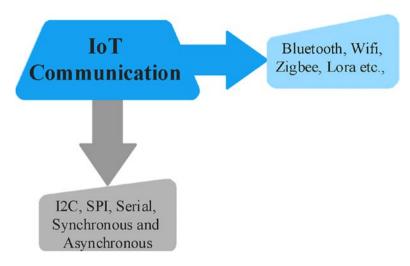


Figure 1-4. IoT connectivity features

Bluetooth Low Energy, Zigbee, LoRa, and Wi-Fi are the most common types of connectivity in an IoT environment. I2C, SPI, and Rx-Tx serial communication protocols are examples of wired connectivity.

Bluetooth

Bluetooth network technology creates a personal area network (PAN) by wirelessly connecting mobile devices over a short distance. The Bluetooth architecture has its own independent model with a stack of protocols; it does not follow the standard OSI or TCP/IP models.

Zigbee

The Zigbee 3.0 protocol [1] is an IEEE 802.15.4 specification that supports a 2.4 GHz frequency band. The following are some of the features of Zigbee 3.0.

- Low power: Devices that comply with Zigbee 3.0
 consume less power and transmit data at a slower rate.
 For IoT devices, long-lasting batteries are required. As a
 result, the Internet of Things (IoT) network extensively
 uses this standard.
- Reliable and robust: The mesh topology of the Zigbee
 3.0 network eliminates single points of failure and ensures packet delivery reliability.
- Scalable: Devices can be added to a Zigbee 3.0 network anytime.
- It is a secure network because it employs AES-128 encryption.
- Global standard: Zigbee 3.0 devices use the 2.4 GHz frequency band, which is widely used worldwide. As a result, it has become the industry standard around the world.

Wi-Fi

Wi-Fi [2] is a technology that transfers data through radio waves that can make small gadgets exchange data connected within a small router. Wi-Fi uses the Institute of Electrical and Electronics Engineers' (IEEE) 802.11 standards for effective data transmission.

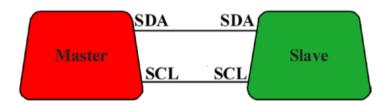
IEEE 802.11 devices have the primary benefit of making it easier to deploy local area networks (LANs) at a lower cost. They can host wireless LANs in outdoor areas and airports, where running cables to every device isn't practical.

LoRa

LoRa [3] is a long-range wireless communication technology derived from the CSS chirp-based spread spectrum. The chirp pulses communicate information, similar to BATS communication.

Wired Communication

I²C


I²C (Inter-Integrated Circuit) [4] is a two-wired communication protocol (see Figure 1-5). It is a bus interface, serial communication protocol built into devices. It has recently become a popular protocol for short-distance communication.

Only two bidirectional open-drain lines—SDA (Serial Data) and SCL (Serial Clock)—are used for data communication. Both lines are cranked up. The SDA pin sends and receives data. SCL carries the clock signal.

I2C has two modes of operation: master and slave. Master mode is the most advanced mode.

Slave mode obeys the command from the master and transmits or receives data accordingly.

Each clock's high to low pulse on the SCL line synchronizes each data bit transferred on the SDA line. Figure 1-5 shows I^2C communication protocols.

*Figure 1-5. I*²*C communication protocols*

SPI

The data communication module uses SDA and SCL dual connection lines. SDA receives and transmits data. Serial Peripheral Interface (SPI) communication is mainly used by components such as RTC, A-to-D converters, and other computer peripherals. SPI [5] communication uses a full duplex synchronous communication protocol that works in serial mode between the master and slave devices. Figure 1-6 illustrates SPI communication protocols.

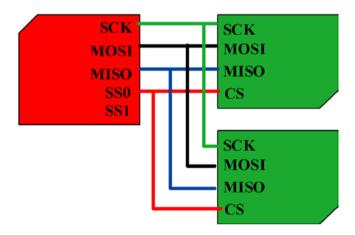


Figure 1-6. SPI communication protocols

Serial Communication

Serial communication is a straightforward and dependable way to send data over long distances. RS-232 is a widely used serial communication protocol. The data in this standard is sent in serial format at a preset speed (called a *baud rate/number*) of bits communicated between the sender and receiver. Common baud rates are 4800, 9600, 19200, and 38400. Figure 1-7 shows the connection diagram for the UART communication scheme.

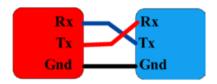


Figure 1-7. UART data communication

Machine Intelligence

Machine intelligence [14] attempts to program a computer to perform previously human-only tasks. In general, the learning process in intelligent machines entails gathering information about their environment, deploying that information to build knowledge about it, and then generalizing that knowledge base to deal with environmental uncertainty.

Two machine intelligence techniques—imitation learning and reinforcement learning—have been developed to help machines learn. The learning algorithms are opted based on consideration of tasks and their characteristics. Intelligent systems are an option to collect data from the agents and acquire knowledge about its surrounding, and the computation is adapted for the environment. To maintain control over a society of autonomous agents, the agents' learning process requires a self-organizing mechanism. It should be noted that imbuing intelligent machines with the capacity to learn is a difficult task; however, the capacity to learn is what defines a machine as intelligent. Figure 1-8 illustrates machine learning classification based on input data.

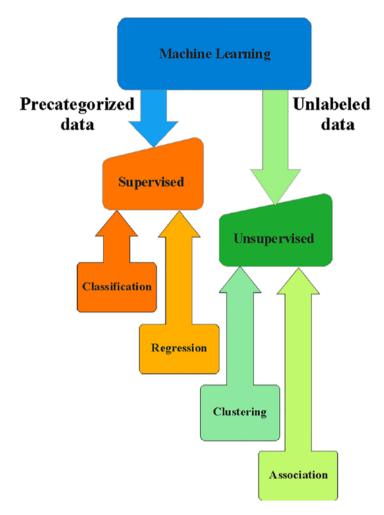


Figure 1-8. Classical machine learning domains

The supervised learning module predicts category (classification module) and number (regression module). Unsupervised learning provides clustering, dimension reduction, and association modules.