

Algebra II Essentials

The "must-know" formulas and equations

What you need to know to master Algebra II

Core topics in quick, focused lessons

Mary Jane Sterling

Emerita Instructor of Mathematics

Algebra II Essentials

by Mary Jane Sterling

Algebra II Essentials For Dummies®

Published by: **John Wiley & Sons, Inc.,** 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com Copyright © 2019 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written permission. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE, FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2019932997

ISBN: 978-1-119-59087-3 (pbk); ISBN: 978-1-119-59085-9 (ePDF); ISBN: 978-1-119-59092-7 (ePub)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents at a Glance

Introd	uction	1
CHAPTER 1:	Making Advances in Algebra	5
CHAPTER 2:	Lining Up Linear Equations	15
CHAPTER 3:	Making Quick Work of Quadratic Equations	23
CHAPTER 4:	Rolling Along with Rational and Radical Equations	35
CHAPTER 5:	Forging Function Facts	47
CHAPTER 6:	Graphing Linear and Quadratic Functions	61
CHAPTER 7:	Pondering Polynomials	75
CHAPTER 8:	Being Respectful of Rational Functions	91
CHAPTER 9:	Examining Exponential and Logarithmic Functions	107
CHAPTER 10:	: Getting Creative with Conics	121
CHAPTER 11:	: Solving Systems of Equations	135
CHAPTER 12:	: Taking the Complexity Out of Complex Numbers	155
CHAPTER 13:	: Ten (or So) Special Formulas	163
Index		167

Table of Contents

INTRO	DUCTION	1
	About This Book	1
	Conventions Used in This Book	2
	Foolish Assumptions	2
	Icons Used in This Book	
	Where to Go from Here	
CHAPTER 1:	Making Advances in Algebra	5
	Bringing Out the Best in Algebraic Properties	5
	Making short work of the basic properties	
	Organizing your operations	
	Enumerating Exponential Rules	
	Multiplying and dividing exponents	
	Rooting out exponents	
	Powering up exponents	
	Working with negative exponents	
	Assigning Factoring Techniques	
	Making two terms factor	
	Factoring three terms	
	Factoring four or more terms by grouping	
CHAPTER 2:	Lining Up Linear Equations	15
	Getting the First Degree: Linear Equations	15
	Solving basic linear equations	
	Eliminating fractions	16
	Lining Up Linear Inequalities	17
	Solving basic inequalities	18
	Introducing interval notation	
	Absolute Value: Keeping Everything in Line	
	Solving absolute value equations	20
	Seeing through absolute value inequality	
CHAPTER 3:	Making Quick Work of Quadratic Equations	
	Using the Square Root Rule When Possible	
	Solving Quadratic Equations by Factoring	
	Factoring quadratic binomials	25
	Factoring quadratic trinomials	26

	The Quadratic Formula to the Rescue	
	Realizing rational solutions	
	Investigating irrational solutions	
	Promoting Quadratic-like Equations	
	Solving Quadratic Inequalities	
	Keeping it strictly quadratic	
	Signing up for fractions	
	Increasing the number of factors	33
CHAPTER 4:	Rolling Along with Rational and	
CHAPTER 4:	Radical Equations	25
	•	
	Rounding Up Rational Equations and Eliminating Fractions	
	Making your least common denominator work for you	
	Proposing proportions for solving rational equations	
	Reasoning with Radicals	
	Squaring both sides of the equation	
	Taking on two radicals	
	Dealing with Negative Exponents	42
	Factoring out a negative exponent as a greatest common factor	42
	Solving quadratic-like trinomials	
	Fiddling with Fractional Exponents	
	Solving equations by factoring fractional exponents	
	Promoting techniques for working with	
	fractional exponents	44
	Forging Function Facts	47
CHAPTER 5:		
	Describing Function Characteristics	
	Denoting function notation	
	Using function notation to evaluate functions	
	Determining Domain and Range	
	Delving into domain	
	Wrangling with range	
	Counting on Even and Odd Functions	
	Determining whether even or odd	
	Using even and odd functions in graphs	
	Taking on Functions One-to-One	
	Defining which functions are one-to-one	
	Testing for one-to-one functions	
	Composing Functions	
	Composing yourself with functions	
	COLLIDOSILIS MICH CHE CHITELEUCE CHOLLEUL	56

	Getting into Inverse Functions	57
	Finding which functions are inverses	58
	Finding an inverse of a function	
CHAPTER 6:	Graphing Linear and Quadratic Functions	61
	Identifying Some Graphing Techniques	
	Finding x- and y-intercepts	
	Reflecting on a graph's symmetry	
	Mastering the Graphs of Lines	
	Determining the slope of a line	
	Describing two line equations	
	Identifying parallel and perpendicular lines	
	Coming to Terms with the Standard Form of a Quadratic	67
	Starting with "a" in the standard form	
	Following "a" with "b" and "c"	69
	Eyeing a Quadratic's Intercepts	
	Finding the one and only y-intercept	
	Getting at the x-intercepts	
	Finding the Vertex of a Parabola	
	Computing vertex coordinates	
	Linking up with the axis of symmetry	
	Sketching a Graph from the Available Information	72
CHAPTER 7:	Pondering Polynomials	75
	Sizing Up a Polynomial Equation	75
	Identifying Intercepts and Turning Points	
	Interpreting relative value and absolute value	76
	Dealing with intercepts and turning points	77
	Solving for y-intercepts and x-intercepts	
	Determining When a Polynomial Is Positive or Negative	
	Incorporating a sign line	
	Recognizing a sign change rule	
	Solving Polynomial Equations	
	Factoring for roots	
	Taking sane steps with the rational root theorem	
	Putting Descartes in charge of signs	
	Finding Roots Synthetically	
	Using synthetic division when searching for roots	
	Synthetically dividing by a binomial	88

Examining Rational Functions
Investigating intercepts
Assigning Roles to Asymptotes
Validating vertical asymptotes
Finding equations for horizontal asymptotes
Taking vertical and horizontal asymptotes to graphs
Getting the scoop on oblique (slant) asymptotes
Discounting Removable Discontinuities
Finding removable discontinuities by factoring
Evaluating the removals
Looking at Limits of Rational Functions
Determining limits at function discontinuities
Finding infinity
Looking at infinity
CHAPTER 9: Examining Exponential and Logarithmic Functions
Logarithmic Functions
Logarithmic Functions
Computing Exponentially
Getting to the Base of Exponential Functions
Classifying bases
Introducing the more frequently used bases: 10 and e110 Exponential Equation Solutions
Exponential Equation Solutions
Creating matching bases
Quelling quadratic patterns111 Looking into Logarithmic Functions113 Presenting the properties of logarithms113 Doing more with logs than sawing115
Looking into Logarithmic Functions
Presenting the properties of logarithms113 Doing more with logs than sawing115
Doing more with logs than sawing115
Calidaa Farratiaaa Caatalalaa Laaa
Solving Equations Containing Logs
Seeing all logs created equal
Solving log equations by changing to exponentials118
CHAPTER 10: Getting Creative with Conics121
Posing with Parabolas122
Generalizing the form of a parabola's equation123
Making short work of a parabola's sketch124
Changing a parabola's equation to the standard form125

	Circling around a Conic	126
	Getting Eclipsed by Ellipses	127
	Determining the shape	129
	Finding the foci	
	Getting Hyped for Hyperbolas	130
	Including the asymptotes	
	Graphing hyperbolas	
CHAPTER 11:	Solving Systems of Equations	135
	Looking at Solutions Using the Standard	
	Linear-Systems Form	
	Solving Linear Systems by Graphing	
	Interpreting an intersection	
	Tackling the same line	
	Putting up with parallel lines	137
	Using Elimination (Addition) to Solve Systems	
	of Equations	138
	Finding Substitution to Be a Satisfactory Substitute	
	Variable substituting made easy	
	Writing solutions for coexisting lines	
	Taking on Systems of Three Linear Equations	141
	Finding the solution of a system of three linear equations	1 / 1
	Generalizing with a system solution	
	Increasing the Number of Equations	
	Intersecting Parabolas and Lines	
	Determining if and where lines and parabolas	140
	cross paths	147
	Determining that there's no solution	
	Crossing Parabolas with Circles	
	Finding multiple intersections	
	Sifting through the possibilities for solutions	
	Sharing an ought the possionates for solutions	
CHAPTER 12:	Taking the Complexity Out of	
	Complex Numbers	155
	Simplifying Powers of i	
	Getting More Complex with Complex Numbers	157
	Performing complex operations	157
	Performing complex division by multiplying	
	by the conjugate	
	Simplifying reluctant radicals	159

	Unraveling Complex Solutions in Quadratic Equations	160
	Investigating Polynomials with Complex Roots	160
	Classifying conjugate pairs	
	Making use of complex zeros	161
CHAPTER 13:	Ten (or So) Special Formulas	163
	Using Multiplication to Add	163
	Factoring in Factorial	
	Picking Out Permutations	
	Collecting Combinations	
	Adding n Integers	
	Adding n Squared Integers	
	Adding Odd Numbers	
	Going for the Geometric	
	Calculating Compound Interest	
INDEX		167

Introduction

ere you are, perusing a book on the essentials of Algebra II. You'll find here, as Joe Friday (star of the old *Dragnet* series) said, "The facts, ma'am, just the facts." For those of you too young to remember *Dragnet*, just think of this essentials book as being the Twitter version — not too detailed but with all the necessary information. In this book, you find the information you need with enough examples to show you the processes, but not a bunch of nitty-gritty details that tend to get in the way.

About This Book

A book on Algebra II isn't a romance novel (although I do love math), and it isn't science fiction. You could think of this book as a cross between a travel guide and a mathematical laboratory manual. How do travel and math go together? Let me try some situations that may fit:

- >> You just finished working through Algebra I and feel eager to embark on a new adventure.
- >> You haven't worked with algebra in a while, but math has always been your strength, so you think that a little prepping with some basic concepts will bring you up to speed.
- You're helping a friend or family member with Algebra II and want just the most necessary information — no frills or extra side-trips.

Even though I've pared the material in this book down to the basics, I haven't lost sight of the fact that other math areas are what drive Algebra II. Algebra is the passport to studying calculus, trigonometry, number theory, geometry, and all sorts of good mathematics. Algebra is basic, and the algebra you find here will help you grow your skills and knowledge so you can do well in math courses and possibly pursue other math topics.

Conventions Used in This Book

To help you navigate this book, I use the following conventions:

- >> I italicize special mathematical terms and define them right then and there so you don't have to search around.
- >> I use **boldface** text to indicate keywords in bulleted lists or the action parts of numbered steps. I describe many algebraic procedures in a step-by-step format and then use those steps in an example or two.

Foolish Assumptions

Algebra II is essentially a continuation of Algebra I, so I need to make some assumptions about readers of this book.

I assume that a person taking on Algebra II has a grasp of working with operations on signed numbers, simplifying radical expressions, and manipulating with rational terms. Another assumption I make is that your order of operations is in order. You should be able to work your way through algebraic equations and expressions using the ordering rules. I also assume that you know how to solve basic linear and quadratic equations and can make quick sketches of basic graphs. Even though I lightly cover these topics in this book, I assume that you have a general knowledge of the necessary procedures.

If you feel a bit over your head after reading through some chapters, you may want to refer to *Algebra I For Dummies*, 2nd Edition (Wiley), or *Algebra II For Dummies* (Wiley) for a more complete explanation of the basics. My feelings won't be hurt; I wrote those, too!

Icons Used in This Book

The icons that appear in this book are great for calling attention to the hot topics when doing algebra.

ALGEBRA

This icon provides you the rule or law or instruction on how to proceed whenever encountering the particular mathematical situation. The algebra rule given is "the law" — it always applies and always must be followed.

EXAMPLE

When you see the Example icon, you know that you'll find the result of an attempt at working out an equation or concept. An example often has a hidden agenda — it shows you more of a process than a basic rule can get across by itself.

This icon is like the sign alerting you to the presence of something special to watch out for on your adventure. It can save you time and energy. Use this information to cut to the chase and avoid unnecessary detours.

This icon helps you bring back information that you may have misplaced along the way. The information is needed to get you from here to the goal.

WARNING

This icon alerts you to common hazards and stumbling blocks that could trip you up — cause accidents or get you into trouble with the math police. Those who have gone before you have found that these items can cause a big problem — so pay heed.

Where to Go from Here

You can use the table of contents at the beginning of the book and the index in the back to navigate your way to the topic that you're most interested in. You may want to start with some problem solving — in the form of equations or inequalities. If that's the case, then look at Chapter 2 for linear equations and inequalities or Chapters 3 and 4 for quadratic and other degree equations. Chapter 5 is your destination if you want to see what constitutes a function and its characteristics. And specific functions such as linear and quadratics are found in Chapter 6; polynomials are found in Chapter 7, rationals in Chapter 8, and exponentials and logs in Chapter 9. I saved the imaginary for last, in Chapter 12. But you could stop off and look at conics in Chapter 10, if those curves are of interest. Also, systems of equations incorporate several types of functions, and you find them in Chapter 11.

And, if you're more of a freewheeling type of guy or gal, take your finger, flip open the book, and mark a spot. No matter your motivation or what technique you use to jump into this book, you won't get lost because you can go in any direction from there.

Enjoy!

- » Making algebra orderly with the order of operations and other properties
- » Enlisting rules of exponents
- » Focusing on factoring

Chapter **1**Making Advances in Algebra

lgebra is a branch of mathematics that people study before they move on to other areas or branches in mathematics and science. Algebra all by itself is esthetically pleasing, but it springs to life when used in other applications.

Any study of science or mathematics involves rules and patterns. You approach the subject with the rules and patterns you already know, and you build on those rules with further study. In this chapter, I recap for you the basic rules from Algebra I so that you work from the correct structure. I present these basics so you can further your study of algebra and feel confident in your algebraic ability.

Bringing Out the Best in Algebraic Properties

Mathematicians developed the rules and properties you use in algebra so that every student, researcher, curious scholar, and bored geek working on the same problem would get the same answer — no matter the time or place.

Making short work of the basic properties

The commutative, associative, and other such properties are not only basic to algebra, but also to geometry and many other mathematical topics. I present the properties here so that I can refer to them as I solve equations and simplify expressions in later chapters.

The commutative property

The *commutative property* applies to the operations of addition and multiplication. It states that you can change the order of the values in an operation without changing the final result:

$$a+b=b+a$$
 Commutative property of addition $a \cdot b = b \cdot a$ Commutative property of multiplication

So you can be sure that 2+4=4+2 and $8\cdot 7=7\cdot 8$.

The associative property

Like the commutative property (see the preceding section), the associative property applies to the operations of addition and multiplication. The associative property states that you can change the grouping of operations without changing the result:

$$a+(b+c)=(a+b)+c$$
 Associative property of addition $a(b \cdot c)=(a \cdot b)c$ Associative property of multiplication

This property tells you that 3+(8+5)=(3+8)+5 and that $-4\cdot(8\cdot3)=(-4\cdot8)\cdot3$.

The distributive property

The distributive property states that you can multiply each term in an expression within parentheses by the factor outside the parentheses and not change the value of the expression. It takes one operation — multiplication — and spreads it out over terms that you add to and subtract from one another:

$$a(b+c-d)=$$
 Distributing multiplication over $a \cdot b + a \cdot c - a \cdot d$ addition and subtraction

For example, you can use the distributive property on the problem $12\left(\frac{1}{2}+\frac{2}{3}-\frac{3}{4}\right)$ to make your life easier. You distribute the 12 over the fractions by multiplying each fraction by 12 and then combining the results: $=12\cdot\frac{1}{2}+12\cdot\frac{2}{3}-12\cdot\frac{3}{4}=6+8-9=5$.

Identities

The numbers 0 and 1 have special roles in algebra — as identities.

$$a+0=0+a=a$$
 The additive identity is 0. Adding 0 to a number doesn't change that number; the number keeps its identity.

$$a\cdot 1=1\cdot a=a$$
 The multiplicative identity is 1. Multiplying a number by 1 doesn't change that number; the number keeps its identity.

Inverses

RIIIFS

You find two types of *inverses* in algebra — additive inverses and multiplicative inverses:

- >> A number and its additive inverse add up to 0.
- >> A number and its *multiplicative inverse* have a product of 1.

The additive inverse of 6 is -6, so 6 + (-6) = 0. And the multiplicative inverse of 6 is $\frac{1}{6}$, so $6 \cdot \frac{1}{6} = 1$.

The multiplication property of zero

The *multiplication property of zero* (MPZ) states that if the product of $a \cdot b \cdot c \cdot d \cdot e \cdot f = 0$, at least one of the terms has to represent the number 0. The only way the product of two or more values can be 0 is for at least one of the values to actually be 0. If you multiply (16)(467)(11)(9)(0), the result is 0. It doesn't really matter what the other numbers are — the 0 always wins.

Organizing your operations

When mathematicians switched from words to symbols to describe mathematical processes, their goal was to make dealing with problems as simple as possible; however, at the same time, they wanted everyone to know what was meant by an expression and for everyone to get the same answer to a problem. Along with

the special notation came a special set of rules on how to handle more than one operation in an expression.

ALGEBRA RULES The *order of operations* dictates that you follow this sequence:

- Raise to powers or find roots.
- **2.** Multiply or divide.
- Add or subtract.

If you have to perform more than one operation from the same level, work those operations moving from left to right. If any grouping symbols appear, perform the operation inside the grouping symbols first.

So, to do the problem $4+3^2-5\cdot 6+\sqrt{23-7}+\frac{14}{2}$, follow the order of operations:

- **1.** The radical acts like a grouping symbol, so you subtract what's in the radical first to get $4 + 3^2 5 \cdot 6 + \sqrt{16} + \frac{14}{2}$.
- 2. Raise the power and find the root: $4+9-5\cdot 6+4+\frac{14}{2}$.
- **3.** Do the multiplication and then the division: 4+9-30+4+7.
- **4.** Add and subtract, moving from left to right: 4+9-30+4+7=13-30+4+7=-17+4+7=-13+7=-6.

Enumerating Exponential Rules

Several hundred years ago, mathematicians introduced powers of variables and numbers called *exponents*. Instead of writing *xxxxxxxx*, you use the exponent 8 by writing x^8 . This form is easier to read and much quicker. The use of exponents expanded to being able to write fractions with negative exponents and radicals with fractional exponents. You find all the details in *Algebra I For Dummies*, 2nd Edition (Wiley).

Multiplying and dividing exponents

When two numbers or variables have the same base, you can multiply or divide those numbers or variables by adding or subtracting their exponents: