LEARNING MADE EASY

Physics Essentials

The fundamentals of force, work, and energy

How to connect physics laws with the real world

Key concepts in quick, focused lessons

Steven Holzner, PhD

Author of *Quantum Physics* For Dummies

Physics Essentials

Physics Essentials

by Steven Holzner, PhD with Daniel Wohns

Physics Essentials For Dummies®

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2019 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748–6011, fax (201) 748–6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written permission. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002. For technical support, please visit https://hub.wiley.com/community/support/dummies.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version you purchased, you may download this material at http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2019932878

ISBN: 978-1-119-59028-6 (pbk); ISBN: 978-1-119-59034-7 (ePDF); ISBN: 978-1-119-59039-2 (ePub)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Contents at the Glance

Introdu	uction	1
CHAPTER 1:	Viewing the World through the Lens of Physics	5
CHAPTER 2:	Taking Vectors Step by Step	15
CHAPTER 3:	Going the Distance with Speed and Acceleration	25
CHAPTER 4:	Studying Circular Motions	41
CHAPTER 5:	Push-Ups and Pull-Ups: Exercises in Force	
CHAPTER 6:	Falling Slowly: Gravity and Friction	63
CHAPTER 7:	Putting Physics to Work	77
CHAPTER 8:	Moving Objects with Impulse and Momentum	
CHAPTER 9:	Navigating the Twists and Turns of Angular Kinetics	111
CHAPTER 10:	Taking a Spin with Rotational Dynamics	127
CHAPTER 11:	There and Back Again: Simple Harmonic Motion	139
CHAPTER 12:	Ten Marvels of Relativity	159
Index		167

Table of Contents

INTRO	DUCTION	1
	About This Book	1
	Conventions Used in This Book	2
	Foolish Assumptions	2
	Icons Used in This Book	3
	Where to Go from Here	3
CHAPTER 1:	Viewing the World through the	
	Lens of Physics	5
	Figuring Out What Physics Is About	5
	Paying Attention to Objects in Motion	6
	Getting Energized	7
	Moving as Fast as You Can: Special Relativity	8
	Measuring Your World	9
	Keeping physical units straight	9
	Converting between units of measurement	10
	Nixing some zeros with scientific notation	11
	Knowing which digits are significant	12
CHAPTER 2:	Taking Vectors Step by Step	15
	Getting a Grip on Vectors	15
	Looking for direction and magnitude	16
	Adding vectors	17
	Subtracting vectors	18
	Waxing Numerical on Vectors	19
	Working with Vector Components	20
	Using magnitudes and angles to find	20
	Vector components	20
	and angles	22
CHAPTER 3:	Going the Distance with Speed	
	and Acceleration	25
	From Here to There: Dissecting Displacement	26
	Examining axes	27
	Measuring speed	28

	The Fast Track to Understanding Speed and Velocity	
	How fast am I right now? Instantaneous speed	
	Staying steady: Uniform speed	
	Changing your speed: Nonuniform motion	
	Doing some calculations: Average speed	
	Contrasting average speed and instantaneous speed	31
	Speeding Up (or Slowing Down): Acceleration	33
	Defining our terms	33
	Recognizing positive and negative acceleration	33
	Looking at average and instantaneous acceleration	34
	Accounting for uniform and nonuniform acceleration	35
	Bringing Acceleration, Time, and Displacement Together	35
	Locating not-so-distant relations	36
	Equating more speedy scenarios	37
	Putting Speed, Acceleration, and Displacement Together	38
CHAPTER 4:	Studying Circular Motions	41
	Understanding Uniform Circular Motion	
	Creating Centripetal Acceleration	43
	Seeing how centripetal acceleration controls velocity	
	Calculating centripetal acceleration	
	Finding Angular Equivalents for Linear Equations	45
CHAPTER 5:	Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force	45 49
CHAPTER 5:	Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force Reckoning with Force	45 49 49
CHAPTER 5:	Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force Reckoning with Force Objects at Rest and in Motion: Newton's First Law	45 49 49 50
CHAPTER 5:	Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force Reckoning with Force Objects at Rest and in Motion: Newton's First Law Calculating Net Force: Newton's Second Law	45 49 50 51
CHAPTER 5:	Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force Reckoning with Force Objects at Rest and in Motion: Newton's First Law Calculating Net Force: Newton's Second Law Gathering net forces.	45 49 50 51 52
CHAPTER 5:	Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force Reckoning with Force Objects at Rest and in Motion: Newton's First Law Calculating Net Force: Newton's Second Law Gathering net forces Just relax: Dealing with tension	45 49 50 51 52 56
CHAPTER 5:	Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force Reckoning with Force Objects at Rest and in Motion: Newton's First Law Calculating Net Force: Newton's Second Law Gathering net forces Just relax: Dealing with tension A balancing act: Finding equilibrium	45 49 50 51 52 56 57
CHAPTER 5:	Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force Reckoning with Force Objects at Rest and in Motion: Newton's First Law Calculating Net Force: Newton's Second Law Gathering net forces Just relax: Dealing with tension A balancing act: Finding equilibrium Foual and Opposite Reactions: Newton's Third Law	45 49 50 51 52 56 57 60
CHAPTER 5:	Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force Reckoning with Force Objects at Rest and in Motion: Newton's First Law Calculating Net Force: Newton's Second Law Gathering net forces	45 49 50 51 52 56 57 60
CHAPTER 5: CHAPTER 6:	 Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force Reckoning with Force Objects at Rest and in Motion: Newton's First Law Calculating Net Force: Newton's Second Law Gathering net forces Just relax: Dealing with tension A balancing act: Finding equilibrium Equal and Opposite Reactions: Newton's Third Law Falling Slowly: Gravity and Friction 	45 49 50 51 52 56 60 63
CHAPTER 5: CHAPTER 6:	 Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force Reckoning with Force Objects at Rest and in Motion: Newton's First Law Calculating Net Force: Newton's Second Law Gathering net forces Just relax: Dealing with tension A balancing act: Finding equilibrium Equal and Opposite Reactions: Newton's Third Law Falling Slowly: Gravity and Friction Dropping the Apple: Newton's Law of Gravitation 	45 49 50 51 52 56 60 63 63
CHAPTER 5: CHAPTER 6:	 Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force Reckoning with Force Objects at Rest and in Motion: Newton's First Law Calculating Net Force: Newton's Second Law Gathering net forces Just relax: Dealing with tension A balancing act: Finding equilibrium Equal and Opposite Reactions: Newton's Third Law Falling Slowly: Gravity and Friction Dropping the Apple: Newton's Law of Gravitation Down to Earth: Dealing with Gravity 	45 49 50 51 52 56 63 63 63
CHAPTER 5: CHAPTER 6:	Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force Reckoning with Force. Objects at Rest and in Motion: Newton's First Law Calculating Net Force: Newton's Second Law	45 49 50 51 52 56 60 63 63 65 66
CHAPTER 5: CHAPTER 6:	 Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force Reckoning with Force. Objects at Rest and in Motion: Newton's First Law. Calculating Net Force: Newton's Second Law. Gathering net forces. Just relax: Dealing with tension. A balancing act: Finding equilibrium Equal and Opposite Reactions: Newton's Third Law Falling Slowly: Gravity and Friction Dropping the Apple: Newton's Law of Gravitation. Down to Earth: Dealing with Gravity. Leaning Vertically with Inclined Planes. Facing Friction. 	45 49 50 51 52 56 60 63 63 65 66 68
CHAPTER 5: CHAPTER 6:	 Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force Reckoning with Force Objects at Rest and in Motion: Newton's First Law Calculating Net Force: Newton's Second Law Gathering net forces Just relax: Dealing with tension A balancing act: Finding equilibrium Equal and Opposite Reactions: Newton's Third Law Falling Slowly: Gravity and Friction Dropping the Apple: Newton's Law of Gravitation Down to Earth: Dealing with Gravity Leaning Vertically with Inclined Planes Facing Friction Figuring out the normal force 	45 49 50 51 52 56 63 63 63 63 63 63 63 63 63 63 64 68 68
CHAPTER 5: CHAPTER 6:	 Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force Reckoning with Force. Objects at Rest and in Motion: Newton's First Law. Calculating Net Force: Newton's Second Law. Gathering net forces. Just relax: Dealing with tension. A balancing act: Finding equilibrium Equal and Opposite Reactions: Newton's Third Law Falling Slowly: Gravity and Friction Dropping the Apple: Newton's Law of Gravitation. Down to Earth: Dealing with Gravity. Leaning Vertically with Inclined Planes. Facing Friction. Figuring out the normal force Finding the coefficient of friction 	45 49 50 51 52 56 63 63 63 63 65 66 68 69 69
CHAPTER 5: CHAPTER 6:	 Finding Angular Equivalents for Linear Equations Push-Ups and Pull-Ups: Exercises in Force Reckoning with Force. Objects at Rest and in Motion: Newton's First Law. Calculating Net Force: Newton's Second Law. Gathering net forces. Just relax: Dealing with tension. A balancing act: Finding equilibrium Equal and Opposite Reactions: Newton's Third Law Falling Slowly: Gravity and Friction Dropping the Apple: Newton's Law of Gravitation. Down to Earth: Dealing with Gravity. Leaning Vertically with Inclined Planes. Facing Friction. Figuring out the normal force	45 49 50 51 56 57 60 63 63 63 63 63 63 64 63

CHAPTER 7:	Putting Physics to Work	.77
	Wrapping Your Mind around Work	.77
	Pushing your weight	. 78
	Taking a drag	. 79
	Working Backward: Negative Work	. 80
	Working Up a Sweat: Kinetic Energy	.81
	Breaking down the kinetic energy equation	.82
	Using the kinetic energy equation	.83
	Calculating kinetic energy by using het force	.85 70
	Working against gravity	. 87 87
	Converting potential energy into kinetic energy.	. 88
	Pitting Conservative against Nonconservative Forces	.89
	No Work Required: The Conservation of Mechanical Energy	.91
	A Powerful Idea: The Rate of Doing Work	. 92
	Moving Objects with Impulse and	
CHAPTER 8:	Momentum	~ -
	momentum	.95
	Feeling a Sudden Urge to Do Physics: Impulse	.95
	Mastering Momentum	.97
	Taking impulse and momentum to the pool ball	90 . 90
	Getting impulsive in the rain	100
	Watching Objects Go Bonk: The Conservation of Momentum	101
	Measuring Firing Velocity	103
	Examining Elastic and Inelastic Collisions	105
	Flying apart: Elastic collisions	105
	Sticking together: Inelastic collisions	105
	Colliding along a line	106
	Colliding in two dimensions	107
CHAPTER 9.	Navigating the Twists and Turns	
	of Angular Kinetics	111
	Changing Gears (and Equations) from Linear to	
	Rotational Motion	112
	Tackling Tangential Motion	112
	Calculating tangential speed	113
	Figuring out tangential acceleration	114
	Looking at centripetal acceleration	115
	Applying Vectors to Rotation	116
	Analyzing angular velocity	116
	Working out angular acceleration	117

	Doing the Twist with Torque11	9
	Walking through the torque equation12	20
	Mastering lever arms12	2
	Identifying the torque generated12	2
	Realizing that torque is a vector12	24
	No Spin, Just the Unbiased Truth: Rotational Equilibrium12	5
CHAPTER 10:	Taking a Spin with Rotational Dynamics12	27
	Converting Newton's Second Law into Angular Motion	27
	Moving from tangential to angular acceleration	29
	Bringing the moment of inertia into play	29
	Finding Moments of Inertia for Standard Shapes	31
	Doing Rotational Work and Producing Kinetic Energy13	32
	Making the transition to rotational work13	3
	Solving for rotational kinetic energy13	34
	Going Round and Round with Angular Momentum13	6
CHAPTER 11	There and Back Again: Simple	
	Harmonic Motion	39
	Homing in on Hooke's Law 13	39
	Staving within the elastic limit	10
	Exerting a restoring force	1
	Déjà Vu All Over Again: Simple Harmonic Motion14	2
	Browsing the basics of simple harmonic motion	2
	Exploring some complexities of simple harmonic motion14	4
	Finding angular frequencies of masses on springs	51
	Examining Energy in Simple Harmonic Motion	54
	Going for a Swing with Pendulums15	5
CHAPTER 12:	Ten Marvels of Relativity	59
	Nature Doesn't Play Favorites	9
	The Speed of Light Is Constant	50
	Time Contracts at High Speeds	51
	Space Travel Slows Down Aging	52
	Length Shortens at High Speeds	52
	Matter and Energy Are Equivalent: $E = mc^2$	53
	Matter + Antimatter Equals Boom	54
	The Sun Is Losing Mass16	54
	You Can't Surpass the Speed of Light16	54
	Newton Was Right	5
INDEX	16	57

Introduction

Physics is what it's all about.

What what's all about?

Everything. That's the whole point. Physics is present in every action around you. And because physics has no limits, it gets into some tricky places, which means that it can be hard to follow. It can be even worse when you're reading some dense textbook that's hard to follow.

For most people who come into contact with physics, textbooks that land with 1,200-page whumps on desks are their only exposure to this amazingly rich and rewarding field. And what follows are weary struggles as the readers try to scale the awesome bulwarks of the massive tomes. Has no brave soul ever wanted to write a book on physics from the *reader's* point of view? Yes, one soul is up to the task, and here I come with such a book.

About This Book

Physics Essentials For Dummies is all about physics from *your* point of view. I've taught physics to many thousands of students at the university level, and from that experience, I know that most students share one common trait: confusion. As in, "I'm confused as to what I did to deserve such torture."

This book is different. Instead of writing it from the physicist's or professor's point of view, I write it from the reader's point of view.

After thousands of one-on-one tutoring sessions, I know where the usual book presentation of this stuff starts to confuse people, and I've taken great care to jettison the top-down kinds of explanations. You don't survive one-on-one tutoring sessions for long unless you get to know what really makes sense to people — what they want to see from *their* points of view. In other words, I designed this book to be crammed full of the good stuff — and *only* the good stuff. You also discover unique ways of looking at problems that professors and teachers use to make figuring out the problems simple.

Conventions Used in This Book

Some books have a dozen conventions that you need to know before you can start. Not this one. Here's all you need to know:

- New terms appear in italic, like this, the first time I discuss them. If you see a word in italic, look for a definition close by.
- Physicists use several different measurement systems, or ways of presenting measurements. (See how the italic/definition thing works?) In Chapter 1, I introduce the most common systems and explain that I use the meter-kilogram-second (MKS) system in this book. I suggest that you spend a few minutes with the last section of Chapter 1 so you're familiar with the measurements you see in all the other chapters.
- Vectors items that have both a magnitude and a direction appear in bold, like this. However, when I discuss the magnitude of a vector, the variable appears in italic.

Foolish Assumptions

I assume that you have very little knowledge of physics when you start to read this book. Maybe you're in a high school or first-year college physics course, and you're struggling to make sense of your textbook and your instructor.

I also assume that you have some math prowess. In particular, you should know some algebra, such as how to move items from one side of an equation to another and how to solve for values. You also need a little knowledge of trigonometry, but not much.

Icons Used in This Book

You come across two icons in the left margins of this book that call attention to certain tidbits of information. Here's what the icons mean:

This icon marks information to remember, such as an application of a law of physics or a shortcut for a particularly juicy equation.

When you run across this icon, be prepared to find a little extra info designed to help you understand a topic better.

Where to Go from Here

You can leaf through this book; you don't have to read it from beginning to end. Like other *For Dummies* books, this one has been designed to let you skip around as you like. This is your book, and physics is your oyster.

You can jump into Chapter 1, which is where all the action starts; you can head to Chapter 2 for a discussion on the necessary vector algebra you should know; or you can jump in anywhere you like if you know exactly what topic you want to study. For a taste of how truly astounding physics can be, you may want to check out Chapter 12, which introduces some of the amazing insights provided to us by Einstein's theory of special relativity.

- » Recognizing the physics in your world
- » Getting a handle on motion and energy
- » Wrapping your head around relativity
- » Mastering measurements

Chapter **1** Viewing the World through the Lens of Physics

hysics is the study of your world and the world and universe around you. You may think of physics as a burden — an obligation placed on you in school. But in truth, physics is a study that you undertake naturally from the moment you open your eyes.

Nothing falls beyond the scope of physics; it's an all-encompassing science. You can study various aspects of the natural world, and, accordingly, you can study different fields in physics: the physics of objects in motion, of forces, of what happens when you start going nearly as fast as the speed of light, and so on. You enjoy the study of all these topics and many more in this book.

Figuring Out What Physics Is About

You can observe plenty going on around you all the time in the middle of your complex world. Leaves are waving, the sun is shining, the stars are twinkling, light bulbs are glowing, cars are moving, computer printers are printing, people are walking and riding bikes, streams are flowing, and so on. When you stop to examine these actions, your natural curiosity gives rise to endless questions:

- >> Why do I slip when I try to climb that snow bank?
- What are those stars all about? Or are they planets? Why do they seem to move?
- >> What's the nature of this speck of dust?
- >> Are there hidden worlds I can't see?
- >> Why do blankets make me warm?
- >> What's the nature of matter?
- What happens if I touch that high-tension line? (You know the answer to that one; as you can see, a little knowledge of physics can be a lifesaver.)

Physics is an inquiry into the world and the way it works, from the most basic (like coming to terms with the inertia of a dead car that you're trying to push) to the most exotic (like peering into the very tiniest of worlds inside the smallest of particles to try to make sense of the fundamental building blocks of matter). At root, physics is all about getting conscious about your world.

Paying Attention to Objects in Motion

Some of the most fundamental questions you may have about the world deal with objects in motion. Will that boulder rolling toward you slow down? How fast will you have to move to get out of its way? (Hang on just a moment while I get out my calculator . . .) Motion was one of the earliest explorations of physics, and physics has proved great at coming up with answers.

This book handles objects in motion — from balls to railroad cars and most objects in between. Motion is a fundamental fact of life and one that most people already know a lot about. You put your foot on the accelerator, and the car takes off.

But there's more to the story. Describing motion and how it works is the first step in really understanding physics, which is all about observations and measurements and making mental and mathematical models based on those observations and measurements. This process is unfamiliar to most people, which is where this book comes in.

Studying motion is fine, but it's just the very beginning of the beginning. When you take a look around, you see that the motion of objects changes all the time. You see a motorcycle coming to a halt at the stop sign. You see a leaf falling and then stopping when it hits the ground, only to be picked up again by the wind. You see a pool ball hitting other balls in just the wrong way so that they all move without going where they should.

Motion changes all the time as the result of *force*. You may know the basics of force, but sometimes it takes an expert to really know what's going on in a measurable way. In other words, sometimes it takes a physicist like you.

Getting Energized

You don't have to look far to find your next piece of physics. You never do. As you exit your house in the morning, for example, you may hear a crash up the street. Two cars have collided at a high speed, and, locked together, they're sliding your way.

Thanks to physics you can make the necessary measurements and predictions to know exactly how far you have to move to get out of the way. You know that it's going to take a lot to stop the cars. But a lot of *what*?

It helps to have the ideas of energy and momentum mastered at such a time. You use these ideas to describe the motion of objects with mass. The energy of motion is called *kinetic energy*, and when you accelerate a car from 0 to 60 miles per hour in 10 seconds, the car ends up with plenty of kinetic energy.

Where does the kinetic energy come from? Not from nowhere — if it did, you wouldn't have to worry about the price of gas. Using gas, the engine does work on the car to get it up to speed.

Or say, for example, that you don't have the luxury of an engine when you're moving a piano up the stairs of your new place. But there's always time for a little physics, so you whip out your calculator to calculate how much work you have to do to carry it up the six floors to your new apartment. After you move up the stairs, your piano will have what's called *potential energy* simply because you put in a lot of work against gravity to get the piano up those six floors.

Unfortunately, your roommate hates pianos and drops yours out the window. What happens next? The potential energy of the piano due to its height in a gravitational field is converted into *kinetic energy*, the energy of motion. It's an interesting process to watch, and you decide to calculate the final speed of the piano as it hits the street.

Next, you calculate the bill for the piano, hand it to your roommate, and go back downstairs to get your drum set.

Moving as Fast as You Can: Special Relativity

Even when you start with the most mundane topics in physics, you quickly get to the most exotic. In Chapter 12, you discover ten amazing insights into Einstein's theory of special relativity.

But what exactly did Einstein say? What does the famous $E = mc^2$ equation really mean? Does it really say that matter and energy are equivalent — that you can convert matter into energy and energy into matter? Yep, sure does.

And stranger things happen when matter starts moving near the speed of light, as predicted by your buddy Einstein.

"Watch that spaceship," you say as a rocket goes past at nearly the speed of light. "It appears compressed along its direction of travel — it's only half as long as it would be at rest."

"What spaceship?" your friends all ask. "It went by too fast for us to see anything."

"Time measured on that spaceship goes more slowly than time here on Earth, too," you explain. "For us, it will take 200 years for the rocket to reach the nearest star. But for the rocket, it will take only 2 years."

"Are you making this up?" everyone asks.