marko LUKŠA

kubernetes in action

Anwendungen in Kubernetes-Clustern bereitstellen und verwalten

HANSER

Kubernetes in Action

Bleiben Sie auf dem Laufenden!

Unser Computerbuch-Newsletter informiert Sie monatlich über neue Bücher und Termine. Profitieren Sie auch von Gewinnspielen und exklusiven Leseproben. Gleich anmelden unter

www.hanser-fachbuch.de/newsletter

Hanser Update ist der IT-Blog des Hanser Verlags mit Beiträgen und Praxistipps von unseren Autoren rund um die Themen Online Marketing, Webentwicklung, Programmierung, Softwareentwicklung sowie IT- und Projektmanagement. Lesen Sie mit und abonnieren Sie unsere News unter

www.hanser-fachbuch.de/update

Marko Lukša

Kubernetes in Action

Anwendungen in Kubernetes-Clustern bereitstellen und verwalten

HANSER

Übersetzung: G&U Language & Publishing Services, Flensburg, www.gundu.com

Titel der Originalausgabe: "Kubernetes in Action", © 2018 by Manning Publications Co. Original English language edition published by Manning Publications USA © 2018 by Manning Publications.

German-language edition copyright © 2018 by Carl Hanser Verlag München. All rights reserved

Alle in diesem Buch enthaltenen Informationen, Verfahren und Darstellungen wurden nach bestem Wissen zusammengestellt und mit Sorgfalt getestet. Dennoch sind Fehler nicht ganz auszuschließen. Aus diesem Grund sind die im vorliegenden Buch enthaltenen Informationen mit keiner Verpflichtung oder Garantie irgendeiner Art verbunden. Autor und Verlag übernehmen infolgedessen keine juristische Verantwortung und werden keine daraus folgende oder sonstige Haftung übernehmen, die auf irgendeine Art aus der Benutzung dieser Informationen – oder Teilen davon – entsteht.

Ebenso übernehmen Autor und Verlag keine Gewähr dafür, dass beschriebene Verfahren usw. frei von Schutzrechten Dritter sind. Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Buch berechtigt deshalb auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Dieses Werk ist urheberrechtlich geschützt.

Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung des Buches, oder Teilen daraus, vorbehalten. Kein Teil des Werkes darf ohne schriftliche Genehmigung des Verlages in irgendeiner Form (Fotokopie, Mikrofilm oder ein anderes Verfahren) – auch nicht für Zwecke der Unterrichtsgestaltung – reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Copyright für die deutsche Ausgabe:

© 2018 Carl Hanser Verlag München, www.hanser-fachbuch.de

Lektorat: Sylvia Hasselbach

Copy editing: Sandra Gottmann, Münster-Nienberge

Umschlagdesign: Marc Müller-Bremer, München, www.rebranding.de

Umschlagrealisation: Stephan Rönigk Gesamtherstellung: Kösel, Krugzell

Ausstattung patentrechtlich geschützt. Kösel FD 351, Patent-Nr. 0748702

Printed in Germany

Print-ISBN: 978-3-446-45510-8 E-Book-ISBN: 978-3-446-45602-0 Für meine Eltern, die die Bedürfnisse ihrer Kinder stets über ihre eigenen gestellt haben.

Inhalt

Vor	wort		XXI
Der	Autor .		XXII
Dan	ksagun	g zur englischsprachigen Ausgabe	XXIII
Übe	r diese:	s Buch	XXV
Ziel	gruppe		XXV
Der	Aufbau	dieses Buches	XXVI
Der	Code .		XXVII
		zum Buch	XXVIII
		linequellen	XXVIII
Teil	l: Überl	olick	1
1	Einfüh	irung in Kubernetes	3
1.1	Der Be	edarf für ein System wie Kubernetes	4
	1.1.1	Von monolithischen Anwendungen zu Microservices	4
	1.1.2	Eine konsistente Umgebung für Anwendungen bereitstellen	8
	1.1.3	Übergang zu Continuous Delivery: DevOps und NoOps	8
1.2	Contai	nertechnologien	10
	1.2.1	Was sind Container?	10
	1.2.2	Die Containerplattform Docker	14
	1.2.3	Die Docker-Alternative rkt	18
1.3	Kuber	netes	19
	1.3.1	Die Ursprünge	19
	1.3.2	Kubernetes im Überblick	19
	1.3.3	Die Architektur eines Kubernetes-Clusters	21
	1.3.4	Anwendungen auf Kubernetes ausführen	22
	1.3.5	Vorteile der Verwendung von Kubernetes	24
1 4	Zusam	imenfassiing	27

2	Erste S	Schritte mit Docker und Kubernetes	9
2.1	Contair	nerimages mit Docker erstellen, ausführen und teilen 2	9
	2.1.1	Docker installieren und einen Hello-world-Container ausführen 3	80
	2.1.2	Eine triviale Node.js-Anwendung erstellen 3	32
	2.1.3	Eine Docker-Datei für das Image erstellen	3
	2.1.4	Das Containerimage erstellen	3
	2.1.5	Das Containerimage ausführen	86
	2.1.6	Das Innenleben eines laufenden Containers untersuchen	37
	2.1.7	Container anhalten und entfernen 3	39
	2.1.8	Das Image zu einer Registry hochladen	39
2.2	Kuberr	netes-Cluster einrichten	1
	2.2.1	Einen lokalen Kubernetes-Cluster mit einem Knoten mithilfe von Minikube ausführen	-1
	2.2.2		13
	2.2.3	Einen Alias und die Befehlszeilenvervollständigung für kubectl	Ŭ
	2.2.0		ŀ6
2.3	Fine er		ŀ7
2.0	2.3.1		18
	2.3.2	,	51
	2.3.3	9 0	52
	2.3.4	9	, <u>-</u> 54
	2.3.5		57
	2.3.6	O O	,, 58
2.4			59
2.7	Zusam	montassung	' 7
Teil	II: Grund	dlagen	1
3	Pods: (Container in Kubernetes ausführen 6	3
3.1	Einfüh	rung in Pods	63
	3.1.1		64
	3.1.2		5
	3.1.3		66
3.2	Pods at		59
	3.2.1	- A	59
	3.2.2	*	'1
	3.2.3		73
	3.2.4	Anwendungsprotokolle anzeigen 7	4
	3.2.5	o .	75
3.3			76
3.0	3.3.1		77
	3.3.2	9	78
	3.3.3		79
3.4			, 30
J. 1	3.4.1		30

	3.4.2	Labelselektoren mit mehreren Bedingungen	82
3.5	Die Po	dzuweisung mithilfe von Labels und Selektoren einschränken	82
	3.5.1	Labels zur Klassifizierung von Arbeitsknoten	83
	3.5.2	Pods bestimmten Knoten zuweisen	84
	3.5.3	Zuweisung zu einem einzelnen Knoten	84
3.6	Pods n	nit Anmerkungen versehen	85
	3.6.1	Die Anmerkungen zu einem Objekt einsehen	85
	3.6.2	Anmerkungen hinzufügen und ändern	86
3.7	Ressou	urcen mithilfe von Namespaces gruppieren	86
	3.7.1	Der Bedarf für Namespaces	87
	3.7.2	Andere Namespaces und die zugehörigen Pods finden	87
	3.7.3	Namespaces erstellen	88
	3.7.4	Objekte in anderen Namespaces verwalten	89
	3.7.5	Die Trennung der Namespaces	90
3.8	Pods s	toppen und entfernen	90
	3.8.1	Pods unter Angabe des Namens löschen	90
	3.8.2	Pods mithilfe von Labelselektoren löschen	91
	3.8.3	Pods durch Entfernen eines ganzen Namespaces löschen	91
	3.8.4	Alle Pods in einem Namespace löschen und den Namespace	
		erhalten	92
	3.8.5	(Fast) alle Ressourcen in einem Namespace löschen	92
3.9	Zusam	nmenfassung	93
4		tationscontroller & Co.: Verwaltete Pods bereitstellen	95
4.1		unktionsfähig halten	96
	4.1.1	Aktivitätssonden	96
	4.1.2	HTTP-Aktivitätssonden erstellen	97
	4.1.3	Eine Aktivitätssonde in Aktion	98
	4.1.4	Weitere Eigenschaften der Aktivitätssonde festlegen	99
	4.1.5	Wirkungsvolle Aktivitätssonden erstellen	100
4.2	•	ationscontroller	102
	4.2.1	Die Funktionsweise von Replikationscontrollern	103
	4.2.2	Einen Replikationscontroller erstellen	105
	4.2.3	Der Replikationscontroller in Aktion	106
	4.2.4	Pods in den Gültigkeitsbereich eines Replikationscontrollers	
		bringen und daraus entfernen	111
	4.2.5	Das Pod-Template ändern	114
	4.2.6	Pods horizontal skalieren	115
	4.2.7	Einen Replikationscontroller löschen	117
4.3	•	ationssätze anstelle von Replikationscontrollern verwenden	118
	4.3.1	Replikationssätze und Replikationscontroller im Vergleich	118
	4.3.2	Einen Replikationssatz definieren	119
	4.3.3	Finen Replikationssatz erstellen und untersuchen	120

	4.3.4	Die ausdrucksstärkeren Labelselektoren des Replikationssatzes	121
	4.3.5	Zusammenfassung: Replikationssätze	122
4.4	Daemo	onsets zur Ausführung einer Instanz eines Pods auf jedem Knoten	122
	4.4.1	Einen Pod auf allen Knoten ausführen	122
	4.4.2	Einen Pod nur auf einigen Knoten ausführen	123
4.5	Pods fi	ür endliche Aufgaben	126
	4.5.1	Jobs	127
	4.5.2	Einen Job definieren	128
	4.5.3	Ein Job in Aktion	128
	4.5.4	Mehrere Podinstanzen in einem Job ausführen	129
	4.5.5	Die Zeit zum Abschließen eines Job-Pods begrenzen	130
4.6	Jobs re	egelmäßig oder zu einem späteren Zeitpunkt ausführen	131
	4.6.1	Einen Cron-Job erstellen	131
	4.6.2	Die Ausführung geplanter Jobs	132
4.7	Zusam	menfassung	133
5	Dienst	te: Pods finden und mit ihnen kommunizieren	135
5.1	Dienst	e	136
	5.1.1	Dienste erstellen	137
	5.1.2	Dienste finden	143
5.2	Verbin	dungen zu Diensten außerhalb des Clusters	147
	5.2.1	Dienstendpunkte	147
	5.2.2	Manuell eingerichtete Dienstendpunkte	148
	5.2.3	Einen Alias für einen externen Dienst erstellen	150
5.3	Dienst	e für externe Clients verfügbar machen	151
	5.3.1	Einen NodePort-Dienst verwenden	151
	5.3.2	Einen Dienst über einen externen Load Balancer verfügbar	
		machen	155
	5.3.3	Besondere Eigenschaften von externen Verbindungen	157
5.4	Dienst	e über eine Ingress-Ressource extern verfügbar machen	159
	5.4.1	Eine Ingress-Ressource erstellen	161
	5.4.2	Über den Ingress auf den Dienst zugreifen	162
	5.4.3	Mehrere Dienste über denselben Domänennamen verfügbar	163
	5.4.4	machen Einen Ingress für TLS-Datenverkehr einrichten	164
		-	
5.5	5.5.1	reitschaft eines Pods zur Annahme von Verbindungen signalisieren Bereitschaftssonden	166 167
	5.5.2	Einem Pod eine Bereitschaftssonde hinzufügen	
	5.5.3	Bereitschaftssonden in der Praxis	168 170
5 4			
5.6	5.6.1	ess-Dienste zur Ermittlung einzelner Pods	172 172
	5.6.2	Pods über DNS finden	
	5.6.2	Alle Pods finden – auch dieienigen die nicht bereit sind	173 174

5.7	Fehler	behebung bei Diensten	175
5.8	Zusam	menfassung	176
6	Volum	es: Festplattenspeicher zu Containern hinzufügen	177
6.1	Volum	es	178
	6.1.1	Ein Beispiel	178
	6.1.2	Arten von Volumes	180
6.2	Gemei	nsame Datennutzung durch die Container	181
	6.2.1	emptyDir-Volumes	181
	6.2.2	Ein Git-Repository als Ausgangspunkt für ein Volume verwenden	184
6.3	Zugrif	f auf Dateien im Dateisystem des Arbeitsknotens	187
	6.3.1	HostPath-Volumes	188
	6.3.2	Systempods mit hostPath-Volumes	188
6.4	Dauerl	nafte Speicherung	190
	6.4.1	Eine GCE Persistent Disk in einem Pod-Volume	190
	6.4.2	Andere Arten von Volumes mit zugrunde liegendem persistenten	
		Speicher	193
6.5	Pods v	on der zugrunde liegenden Speichertechnologie entkoppeln	195
	6.5.1	Persistente Volumes und Claims	195
	6.5.2	Ein persistentes Volume erstellen	196
	6.5.3	Mit einem Claim ein persistentes Volume beanspruchen	198
	6.5.4	Einen Claim in einem Pod verwenden	200
	6.5.5	Vorteile der Verwendung von persistenten Volumes und Claims	201
	6.5.6	Persistente Volumes wiederverwenden	202
6.6	Persist	tente Volumes dynamisch bereitstellen	204
	6.6.1	Die verfügbaren Speichertypen mit Speicherklassen definieren	204
	6.6.2	Die Speicherklasse in einem Claim angeben	205
	6.6.3	Dynamische Bereitstellung ohne Angabe einer Speicherklasse	207
6.7	Zusam	menfassung	210
7	Konfig	urationszuordnungen und Secrets: Anwendungen	
	konfig	urieren	213
7.1	Konfig	uration von Anwendungen im Allgemeinen	213
7.2	Befehl	szeilenargumente an Container übergeben	215
	7.2.1	Den Befehl und die Argumente in Docker definieren	215
	7.2.2	Den Befehl und die Argumente in Kubernetes überschreiben	217
7.3	Umgeb	oungsvariablen für einen Container einrichten	219
	7.3.1	Eine Umgebungsvariable in einer Containerdefinition festlegen	220
	7.3.2	Im Wert einer Variablen auf andere Umgebungsvariablen verweisen	220
	7.3.3	Die Nachteile hartkodierter Umgebungsvariablen	221
7.4		nfiguration mit einer Konfigurationszuordnung entkoppeln	221
/ . Ŧ	7.4.1	Einführung in Konfigurationszuordnungen	221
	7.4.2	Eine Konfigurationszuordnung erstellen	223

	7.4.3	Einen Konfigurationseintrag als Umgebungsvariable an einen	
		Container übergeben	226
	7.4.4	Alle Einträge einer Konfigurationszuordnung auf einmal als	
		Umgebungsvariablen übergeben	227
	7.4.5	Einen Konfigurationseintrag als Befehlszeilenargument	
		übergeben	228
	7.4.6	Konfigurationsdateien mithilfe eines configMap-Volumes	
		verfügbar machen	229
	7.4.7	Die Konfiguration einer Anwendung ohne Neustart ändern	235
7.5		le Daten mithilfe von Geheimnissen an Container übergeben	237
	7.5.1	Einführung in Geheimnisse	238
	7.5.2	Das Geheimnis default-token	238
	7.5.3	Ein Geheimnis erstellen	240
	7.5.4	Unterschiede zwischen Konfigurationszuordnungen und	
		Geheimnissen	241
	7.5.5	Das Geheimnis in einem Pod verwenden	243
	7.5.6	Geheimnisse zum Abrufen von Images	247
7.6	Zusam	menfassung	248
8	Von Ar	nwendungen aus auf Podmetadaten und andere Ressourcen	
•		fen	249
8.1	_	aten über die Downward-API übergeben	249
0.1	8.1.1	Die verwendbaren Metadaten	250
	8.1.2	Metadaten über Umgebungsvariablen verfügbar machen	251
	8.1.3	Metadaten über Dateien in einem downwardAPI-Volume	201
	0.1.0	übergeben	254
8.2	Komm	unikation mit dem Kubernetes-API-Server	257
0.2	8.2.1	Die REST-API von Kubernetes	258
	8.2.2	Von einem Pod aus mit dem API-Server kommunizieren	262
	8.2.3	Botschaftercontainer zur Vereinfachung der Kommunikation	202
	0.2.0	mit dem API-Server	268
	8.2.4	Clientbibliotheken zur Kommunikation mit dem API-Server	270
8.3		menfassung	273
0.0	Zusum	momassan ₆	2,0
9	Deploy	ments: Anwendungen deklarativ aktualisieren	275
9.1	Anwen	dungen in Pods aktualisieren	276
	9.1.1	Alte Pods löschen und anschließend durch neue ersetzen	277
	9.1.2	Neue Pods starten und danach die alten löschen	277
9.2	Autom	atische schrittweise Aktualisierung mit einem	
		ationscontroller	279
	9.2.1	Die ursprüngliche Version der Anwendung ausführen	279
	9.2.2	Die schrittweise Aktualisierung mit kubectl durchführen	281
	9.2.3	Warum ist kubectl rolling-update veraltet?	285
9.3	Deploy	ments zur deklarativen Verwaltung von Anwendungen	287

	9.3.1	Ein Deployment erstellen	287
	9.3.2	Ein Deployment aktualisieren	290
	9.3.3	Eine Bereitstellung zurücknehmen	294
	9.3.4	Die Rolloutrate festlegen	297
	9.3.5	Den Rolloutvorgang anhalten	299
	9.3.6	Das Rollout fehlerhafter Versionen verhindern	301
9.4	Zusamr	nenfassung	306
10	Statefu	llSets: Replizierte statusbehaftete Anwendungen bereitstellen .	307
10.1	Statusb	ehaftete Pods replizieren	307
	10.1.1	Mehrere Replikate mit jeweils eigenem Speicher ausführen	308
	10.1.2	Eine unveränderliche Identität für jeden Pod bereitstellen	309
10.2	Statuss	ätze	311
	10.2.1	Statussätze und Replikationssätze im Vergleich	311
	10.2.2	Unveränderliche Netzwerkidentität	312
	10.2.3	Eigenen beständigen Speicher für jede Podinstanz zuweisen	314
	10.2.4	Garantien von Statussätzen	316
10.3		ätze nutzen	317
	10.3.1	Die Anwendung und das Containerimage erstellen	317
	10.3.2	Die Anwendung mithilfe eines Statussatzes bereitstellen	318
	10.3.3	Die Pods untersuchen	323
10.4		n Statussatz finden	327
	10.4.1	Die Peer-Ermittlung über DNS einrichten	329
	10.4.2	Einen Statussatz aktualisieren	330
10.5	10.4.3	Den Clusterdatenspeicher ausprobieren	331
10.5		g mit Knotenausfällen	332
	10.5.1	Die Trennung eines Knotens vom Netzwerk simulieren	332
10 (10.5.2		334
10.6	Zusamr	menfassung	336
Teil I	II: Fortg	eschrittene Themen	337
11	Interne	Mechanismen von Kubernetes	339
11.1	Die Arc	hitektur	339
	11.1.1	· · · - · · · · · · · · · · · · ·	340
	11.1.2	Verwendung von etcd	343
	11.1.3	Aufgaben des API-Servers	346
	11.1.4	Benachrichtigungen des API-Servers über Ressourcenänderungen	348
	11.1.5	Der Scheduler	350
	11.1.6	Die Controller im Controller-Manager	352
	11.1.7	Die Rolle des Kubelets	357
	11.1.8	Die Rolle des Kubernetes-Dienstproxys	358
	11.1.9	Kubernetes-Add-ons Zusammenfassung	359 361
	-11.1.10	Zusammemassung	პინ

11.2	Koopera	ation der Controller	361
	11.2.1	Die betroffenen Komponenten	361
	11.2.2	Die Abfolge der Ereignisse	362
	11.2.3	Clusterereignisse beobachten	364
11.3	Laufend	le Pods	365
11.4	Das Pod	Inetzwerk	366
	11.4.1	Anforderungen an das Netzwerk	366
	11.4.2	Funktionsweise des Netzwerks	368
	11.4.3	CNI	370
11.5	Implem	entierung von Diensten	370
	11.5.1	Der Kube-Proxy	370
	11.5.2	Iptables-Regeln	371
11.6	Cluster	mit hoher Verfügbarkeit	373
	11.6.1	Anwendungen hochverfügbar machen	373
	11.6.2	Die Komponenten der Kubernetes-Steuerebene hochverfügbar	
		machen	374
11.7	Zusamr	menfassung	377
12		neit des Kubernetes-API-Servers	379
12.1		tifizierung	379
	12.1.1	Benutzer und Gruppen	380
	12.1.2	Dienstkonten	381
	12.1.3	Dienstkonten erstellen	382
	12.1.4	Ein Dienstkonto mit einem Pod verknüpfen	384
12.2	_	estützte Zugriffssteuerung	386
	12.2.1	Das RBAC-Autorisierungs-Plug-in	386
	12.2.2	RBAC-Ressourcen	388
	12.2.3 12.2.4	Rollen und Rollenbindungen	391 395
	12.2.4	Standardclusterrollen und -clusterrollenbindungen	404
	12.2.6	Berechtigungen bedachtsam gewähren	406
122		nenfassung	407
12.5	Zusaiiii	nemassung	407
13	Sicherh	neit der Clusterknoten und des Netzwerks	409
13.1	Die Nar	nespaces des Hostknotens in einem Pod verwenden	409
	13.1.1	Den Netzwerknamespace des Knotens in einem Pod verwenden	410
	13.1.2	Bindung an einen Hostport ohne Verwendung des	
		Host-Netzwerknamespace	411
	13.1.3	Den PID- und den IPC-Namespace des Knotens verwenden $\ \ldots \ \ldots$	413
13.2	Den Sic	herheitskontext eines Containers einrichten	414
	13.2.1	$\label{thm:container:einer:bestimmten} Einen\ Container\ unter\ einer\ bestimmten\ Benutzer-ID\ ausführen\ .\ .$	415
	13.2.2	Die Ausführung eines Containers als root verhindern	416
	13.2.3	Pods im privilegierten Modus ausführen	417
	13.2.4	Einem Container einzelne Kernelfähigkeiten hinzufügen	418

	13.2.5	Fähigkeiten von einem Container entfernen	420	
	13.2.6	Prozesse am Schreiben im Dateisystem des Containers hindern \ldots	421	
	13.2.7	Gemeinsame Nutzung von Volumes durch Container mit		
		verschiedenen Benutzer-IDs	422	
13.3	Die Bea	arbeitung der Sicherheitsmerkmale in einem Pod einschränken	424	
	13.3.1	Podsicherheitsrichtlinien	424	
	13.3.2	Die Richtlinien runAsUser, fsGroup und supplementalGroups	427	
	13.3.3	Zulässige, unzulässige und Standardfähigkeiten festlegen	429	
	13.3.4	Die verwendbaren Arten von Volumes einschränken	430	
	13.3.5	Benutzern und Gruppen unterschiedliche		
		Podsicherheitsrichtlinien zuweisen	431	
13.4	Das Poo	dnetzwerk isolieren	434	
	13.4.1	Die Netzwerkisolierung in einem Namespace aktivieren	435	
	13.4.2	Einzelnen Pods im Namespace die Verbindung zu einem		
		Serverpod erlauben	435	
	13.4.3	Das Netzwerk zwischen Kubernetes-Namespaces isolieren	436	
	13.4.4	Verwendung der CIDR-Schreibweise zur Isolierung	438	
	13.4.5	Den ausgehenden Datenverkehr von Pods einschränken	438	
13.5	Zusamı	menfassung	439	
14	Die Co	mputerressourcen eines Pods verwalten	441	
14.1	Ressourcen für die Container eines Pods anfordern			
	14.1.1		441 442	
	14.1.2			
		zu Knoten	443	
	14.1.3	Der Einfluss der CPU-Anforderungen auf die CPU-Zeitzuteilung	448	
		Benutzerdefinierte Ressourcen definieren und anfordern	448	
14.2	Die ver	fügbaren Ressourcen für einen Container einschränken	449	
	14.2.1	Harte Grenzwerte für die von einem Container verwendeten		
		Ressourcen festlegen	449	
	14.2.2	Überschreiten der Grenzwerte	451	
	14.2.3	Grenzwerte aus der Sicht der Anwendungen in den Containern	452	
14.3	QoS-Kla	assen für Pods	454	
		Die QoS-Klasse eines Pods festlegen	454	
		Auswahl des zu beendenden Prozesses bei zu wenig Speicher	457	
14.4		rdanforderungen und -grenzwerte für die Pods in einem		
		pace festlegen	458	
	14.4.1	Der Grenzwertbereich	459	
	14.4.2	Einen Grenzwertbereich erstellen	460	
	14.4.3	Die Grenzwerte durchsetzen	461	
	14.4.4	Standardanforderungen und -grenzwerte anwenden	462	
14.5	Die in e	einem Namespace insgesamt verfügbaren Ressourcen beschränken	463	
	14.5.1	Ressourcenkontingente	463	
	14.5.2	Kontingente für persistenten Speicher festlegen	465	

	14.5.3	Die Höchstzahl der Objekte in einem Namespace beschränken	466	
	14.5.4	0	467	
14.6		sourcennutzung der Pods überwachen	468	
	14.6.1	9	468	
	14.6.2	Verlaufsdaten des Ressourcenverbrauchs speichern und	470	
	_	analysieren	470	
14.7	Zusamr	nenfassung	474	
15		atische Skalierung von Pods und Clusterknoten	475	
15.1		tische horizontale Podskalierung	476	
	15.1.1	Der Vorgang der automatischen Skalierung	476	
	15.1.2	Skalierung auf der Grundlage der CPU-Nutzung	479	
	15.1.3	Skalierung auf der Grundlage der Speichernutzung	486	
	15.1.4	Skalierung auf der Grundlage anderer Messgrößen	486	
	15.1.5	Geeignete Messgrößen für die automatische Skalierung		
		auswählen	488	
	15.1.6	Herunterskalieren auf null Replikate	489	
15.2		tische vertikale Podskalierung	489	
	15.2.1	Ressourcenanforderungen automatisch einrichten	489	
	15.2.2	Ressourcenanforderungen von laufenden Pods ändern	490	
15.3		ntale Skalierung von Clusterknoten	490	
		Der Cluster-Autoskalierer	490	
		Den Cluster-Autoskalierer aktivieren	492	
	15.3.3	Die Unterbrechung von Diensten beim Herunterskalieren		
		des Clusters minimieren	493	
15.4	Zusamr	menfassung	495	
16	Erweite	erte Planung	497	
16.1	5.1 Pods mithilfe von Mängeln und Tolerierungen von bestimmten Knoten			
	fernhal	ten	497	
	16.1.1	Mängel und Tolerierungen	498	
	16.1.2	Einem Knoten benutzerdefinierte Mängel hinzufügen	500	
	16.1.3	Tolerierungen zu Pods hinzufügen	500	
	16.1.4	Verwendungszwecke für Mängel und Tolerierungen	501	
16.2	Knotena	affinität	502	
	16.2.1	Feste Knotenaffinitätsregeln aufstellen	503	
	16.2.2	Knotenprioritäten bei der Zuteilung eines Pods	505	
16.3	Pods m	it Affinitäts- und Antiaffinitätsregeln auf denselben Knoten		
	unterbr	ingen	508	
	16.3.1	Podaffinitätsregeln zur Bereitstellung von Pods auf demselben		
		Knoten	509	
	16.3.2	Pods im selben Schaltschrank, in derselben Verfügbarkeitszone		
		oder derselben geografischen Region bereitstellen	511	
	16.3.3	Präferenzen statt fester Regeln für die Podaffinität angeben	513	

	16.3.4	Pods mit Antiaffinitätsregeln voneinander getrennt halten	514
16.4	Zusamı	menfassung	516
17	Best Pi	ractices für die Anwendungsentwicklung	519
		samtbild	519
		penszyklus eines Pods	521
17.2	17.2.1	•	521
	17.2.1		524
	17.2.3		525
	17.2.4		527
	17.2.5		531
17.3		nungsgemäße Verarbeitung aller Clientanforderungen	001
		tellen	535
	17.3.1		
		eines Pods verhindern	535
	17.3.2	Unterbrechungen von Clientverbindungen beim Herunterfahren	
		eines Pods verhindern	535
17.4	Einfach	ne Ausführung und Handhabung von Anwendungen in Kubernetes .	540
	17.4.1	Einfach zu handhabende Containerimages erstellen	540
	17.4.2	Images sauber kennzeichnen	541
	17.4.3	Mehrdimensionale statt eindimensionaler Labels	541
	17.4.4	Ressourcen mit Anmerkungen beschreiben	542
	17.4.5	Gründe für die Beendigung eines Prozesses angeben	542
	17.4.6	Anwendungsprotokolle	544
17.5	Empfoh	nlene Vorgehensweisen für Entwicklung und Tests	546
	17.5.1	Anwendungen während der Entwicklung außerhalb von	
		Kubernetes ausführen	546
	17.5.2	Minikube für die Entwicklung	547
	17.5.3	Versionssteuerung und Manifeste zur automatischen	
		Bereitstellung von Ressourcen	549
	17.5.4	Ksonnet als Alternative zu YAML- und JSON-Manifesten	549
	17.5.5	, , ,	550
17.6	Zusamı	menfassung	551
18	Kuberr	netes erweitern	553
18.1	Eigene	API-Objekte definieren	553
	18.1.1	Eigene Ressourcendefinitionen	554
	18.1.2	Benutzerdefinierte Ressourcen mit benutzerdefinierten	
		Controllern automatisieren	558
	18.1.3	Benutzerdefinierte Objekte validieren	562
	18.1.4	Einen benutzerdefinierten API-Server für benutzerdefinierte	
		Objekte bereitstellen	562
18.2	Kubern	netes mit dem Kubernetes-Dienstkatalog erweitern	564
	18.2.1	Der Dienstkatalog	565

	18.2.2	Der API-Server des Dienstkatalogs und der Controller-Manager	566
	18.2.3	Dienstbroker und die API OpenServiceBroker	567
	18.2.4	Dienste bereitstellen und nutzen	568
	18.2.5	Aufheben der Bindung und der Bereitstellung	571
	18.2.6	Vorteile des Dienstkatalogs	571
18.3	Plattfor	rmen auf der Grundlage von Kubernetes	572
	18.3.1	Die Containerplattform Red Hat OpenShift	572
	18.3.2	Deis Workflow und Helm	575
18.4	Zusamı	menfassung	578
Anha	ang A: V	erwendung von kubectl für mehrere Cluster	579
A.1	Umscha	alten zwischen Minikube und Google Kubernetes Engine	579
	A.1.1	Umschalten zu Minikube	579
	A.1.2	Umschalten zu GKE	579
A.2	Verwen	ndung von kubectl für mehrere Cluster oder Namespaces	580
	A.2.1	Den Speicherort der Konfigurationsdatei festlegen	580
	A.2.2	Der Inhalt der Konfigurationsdatei	580
	A.2.3	Konfigurationseinträge auflisten, hinzufügen und ändern	581
	A.2.4	Verwendung von kubectl mit verschiedenen Clustern,	
		Benutzern und Kontexten	583
	A.2.5	Umschalten zwischen Kontexten	583
	A.2.6	Kontexte und Cluster auflisten	584
	A.2.7	Kontexte und Cluster löschen	584
Anha	ang B: E	inen Cluster mit mehreren Knoten mit kubeadm erstellen	585
B.1	Das Bet	triebssystem und die erforderlichen Pakete einrichten	585
	B.1.1	Die virtuelle Maschine erstellen	585
	B.1.2	Den Netzwerkadapter für die VM einrichten	586
	B.1.3	Das Betriebssystem installieren	587
	B.1.4	Docker und Kubernetes installieren	590
	B.1.5	Die VM klonen	591
B.2	Den Ma	aster mit kubeadm konfigurieren	5 93
	B.2.1	Ausführung der Komponenten durch kubeadm	594
В.3	Arbeits	knoten mit kubeadm einrichten	595
	B.3.1	Das Containernetzwerk einrichten	596
B.4	Vom lo	kalen Computer auf den Cluster zugreifen	597
Anha	ang C: A	ndere Containerlaufzeitumgebungen verwenden	599
C.1	Docker	durch rkt ersetzen	599
	C.1.1	Kubernetes zur Verwendung von rkt einrichten	599
	C.1.2	rkt in Minikube ausprobieren	600
C.2	Andere	Containerlaufzeiten über die CRI verwenden	602
	C.2.1	CRI-O	602
	C22	Anwendungen in VMs statt in Containern ausführen	602

Anha	ang D: C	Clusterverbund	603
D.1	Der Ku	bernetes-Clusterverbund	603
D.2	Die Are	chitektur	604
D.3	D.3.1	nd-API-Objekte	605
Anha	ang E: K	ubernetes-Ressourcen in diesem Buch	609
Inde	x		613

Vorwort

Nachdem ich schon einige Jahre für Red Hat gearbeitet hatte, wurde ich Ende 2014 einem neuen Team namens *Cloud Enablement* zugeteilt. Unsere Aufgabe bestand darin, die Middleware-Produktpalette unseres Unternehmens auf die Containerplattform OpenShift zu übertragen, die zu diesem Zeitpunkt auf der Grundlage von Kubernetes entwickelt wurde. Damals steckte Kubernetes noch in den Kinderschuhen – noch nicht einmal Version 1.0 war veröffentlicht worden!

In unserem Team mussten wir uns mit den Interna von Kubernetes schnell vertraut machen, um unsere Software in die richtige Richtung lenken und alle Möglichkeiten ausnutzen zu können, die Kubernetes bot. Wenn wir auf ein Problem stießen, konnten wir oft schlecht unterscheiden, ob wir irgendetwas falsch machten oder ob es an einem der Bugs lag, unter denen Kubernetes in seiner Frühzeit litt.

Sowohl Kubernetes als auch meine Kenntnisse darüber haben sich seitdem erheblich weiterentwickelt. Als ich begann, damit zu arbeiten, hatten die meisten noch nie davon gehört. Heute kennt es praktisch jeder Softwareentwickler, und unter allen Möglichkeiten, um Anwendungen sowohl in der Cloud als auch in Rechenzentren am eigenen Standort auszuführen, gehört es zu denen mit der weitesten Verbreitung und dem schnellsten Wachstum.

Während der ersten Monate meiner Arbeit mit Kubernetes schrieb ich einen zweiteiligen Blogpost darüber, wie man einen JBoss-WildFly-Anwendungsservercluster in OpenShift/Kubernetes ausführt. Damals ahnte ich es noch nicht, aber dieser einfache Post führte schließlich dazu, dass der Verlag Manning mit der Bitte an mich herantrat, ein Buch über Kubernetes zu schreiben. Natürlich konnte ich ein solches Angebot nicht ablehnen, obwohl ich sicher war, dass Manning auch andere mögliche Autoren angesprochen hatte und sich letzten Endes für jemand anderen entscheiden würde.

Wie Sie sehen, geschah das nicht. Nach mehr als anderthalb Jahren Schreib- und Recherchearbeit ist das Buch nun fertig geworden. Es war ein großartiges Erlebnis. Ein Buch über ein technisches Thema zu schreiben ist die beste Möglichkeit, um die betreffende Technologie viel ausführlicher kennenzulernen, als es durch reine Anwendung möglich wäre. Da sich nicht nur meine Kenntnisse über Kubernetes erweitert haben, sondern Kubernetes selbst weiterentwickelt wurde, musste ich ständig bereits fertiggestellte Kapitel umschreiben und ergänzen. Als Perfektionist werde ich niemals absolut zufrieden mit diesem Buch sein, aber ich freue mich zu hören, dass viele Personen, die Vorabversionen über das Manning Early Access Program gelesen haben, es für einen großartigen Leitfaden zum Thema Kubernetes halten.

Mein Ziel bestand darin, den Lesern die Technologie von Kubernetes nahezubringen und den Gebrauch der Werkzeuge für eine wirkungsvolle und rationelle Entwicklung und Bereitstellung von Anwendungen in Kubernetes-Clustern vorzuführen. Die Einrichtung und Wartung eines hochverfügbaren Kubernetes-Clusters ist jedoch kein Schwerpunkt dieses Buchs, allerdings dürfte Ihnen der letzte Teil solide Kenntnisse darüber vermitteln, woraus ein solcher Cluster besteht, sodass Sie andere Quellen zu diesem Thema besser verstehen können.

Ich hoffe, dass Sie die Lektüre genießen können und das Buch Ihnen zeigt, wie Sie den größten Nutzen aus Kubernetes ziehen können.

Der Autor

Marko Lukša ist Softwareentwickler mit mehr als 20 Jahren Berufserfahrung, wobei die Palette seiner Projekte von einfachen Webanwendungen bis zu vollständigen ERP-Systemen, Frameworks und Middleware reicht. Seine ersten Programmierversuche hat er bereits 1985 im Alter von sechs Jahren auf einem ZX Spectrum gemacht, den sein Vater gebraucht für ihn gekauft hatte. In der Grundschule wurde er Landesmeister im Logo-Programmierwettbewerb und nahm an Programmierferienlagern teil, in denen er Pascal lernte. Seitdem hat er Software in einer breiten Palette von Programmiersprachen entwickelt.

In der weiterführenden Schule begann er damit, dynamische Websites zu erstellen, als das Web noch ziemlich jung war. Während seines Studiums der Informatik an der Universität von Ljubljana in Slowenien entwickelte er bei einem ortsansässigen Unternehmen Software für das Gesundheitswesen und die Telekommunikationsbranche. Schließlich begann er für Red Hat zu arbeiten. Dort entwickelte er zu Anfang eine Open-Source-Implementierung der Google App Engine API, die die Middleware JBoss von Red Hat verwendete. Außerdem arbeitete er an Projekten wie CDI/Weld, Infinispan/JBoss Data Grid u. a. mit.

Seit Ende 2014 gehört er zum Cloud-Enablement-Team von Red Hat. Zu seinen Aufgaben gehört es dabei, sich über die neuesten Entwicklungen bei Kubernetes und verwandten Technologien auf dem neuesten Stand zu halten und dafür zu sorgen, dass die Middleware des Unternehmens die Möglichkeiten von Kubernetes und OpenShift voll ausnutzt.

Danksagung zur englischsprachigen Ausgabe

Bevor ich mit dem Schreiben dieses Buches begann, hatte ich keine Vorstellung davon, wie viele Personen daran beteiligt sind, um aus einem ersten Manuskript eine fertige Veröffentlichung zu machen. Es gibt viele Menschen, denen ich Dank schulde.

Als Erstes möchte ich Erin Twohey danken, die mich gebeten hat, dieses Buch zu schreiben, und Michael Stephens, der von Anfang an volles Vertrauen darin gesetzt hat, dass ich es schaffen kann. Seine ermutigenden Worte haben mich zu Anfang stark motiviert und diese Motivation während der letzten anderthalb Jahre aufrechterhalten.

Ich möchte auch meinem ursprünglichen Entwicklungsredakteur Andrew Warren danken, der mir half, das erste Kapitel fertigzustellen, und seiner Nachfolgerin Elesha Hyde, die mit mir danach bis zum letzten Kapitel gearbeitet hat. Vielen Dank dafür, dass sie es mit mir ausgehalten haben, auch wenn der Umgang mit mir nicht ganz leicht ist und ich ziemlich oft einfach vom Radar verschwinde.

Ich möchte auch Jeanne Boyarsky danken, die als erste Lektorin meine Kapitel las und kommentierte, während ich noch daran schrieb. Jeanne und Elesha trugen erheblich dazu bei, das Buch so gut zu machen, wie es hoffentlich ist. Ohne ihre Kommentare hätte das Buch niemals so positive Bewertungen von externen Gutachtern und Lesern bekommen können.

Ich möchte auch meinem Fachlektor Antonio Magnaghi und natürlich allen externen Gutachtern danken: Al Krinker, Alessandro Campeis, Alexander Myltsev, Csaba Sari, David DiMaria, Elias Rangel, Erisk Zelenka, Fabrizio Cucci, Jared Duncan, Keith Donaldson, Michael Bright, Paolo Antinori, Peter Perlepes und Tiklu Ganguly. Ihre positive Rückmeldung hat mich durchhalten lassen, wenn ich manchmal das Gefühl hatte, mein Text sei fürchterlich geschrieben und völlig nutzlos, und ihre konstruktive Kritik hat mir geholfen, die Abschnitte zu verbessern, die ich ohne große Anstrengung flott zusammengestoppelt hatte. Vielen Dank dafür, dass Sie mich auf schwer verständliche Stellen hingewiesen und Vorschläge zur Verbesserung des Buches gemacht haben. Vielen Dank auch dafür, die richtigen Fragen zu stellen, die mir deutlich machten, dass ich ein oder zwei Dinge in der ursprünglichen Version meines Manuskripts falsch dargestellt hatte.

Ich möchte auch den Lesern danken, die Vorabversionen dieses Buches über das Early-Access-Programm von Manning (MEAP) erworben und ihre Kommentare im Onlineforum abgegeben oder mich direkt angesprochen haben, insbesondere Vimal Kansal, Paolo Patierno und Roland Huß, die einige Inkonsistenzen und andere Fehler gefunden haben. Des Weiteren möchte ich allen Manning-Mitarbeitern danken, die an der Produktion dieses Buches beteiligt waren. Bevor ich zum Schluss komme, möchte ich meinem Kollegen und Schulfreund Aleš Justin danken, der mich zu Red Hat gebracht hat, und meinen wunderbaren Kollegen im Cloud-Enablement-Team. Wäre ich nicht bei Red Hat und in diesem Team gewesen, so wäre ich nicht derjenige gewesen, der dieses Buch geschrieben hat.

Abschließend möchte ich meiner Frau und meinem Sohn danken, die während der letzten 18 Monate mehr als verständnisvoll waren und mich unterstützt haben, obwohl ich mich in mein Büro verkrochen habe, anstatt Zeit mit ihnen zu verbringen.

Vielen Dank euch allen!

Über dieses Buch

Dieses Buch soll Sie zu einem kompetenten Kubernetes-Benutzer machen. Sie lernen hier praktisch alle Prinzipien kennen, die Sie beherrschen müssen, um Anwendungen in einer Kubernetes-Umgebung zu entwickeln und auszuführen.

Bevor es mit Kubernetes losgeht, erhalten Sie einen Überblick über Containertechnologien wie Docker und das Erstellen von Containern, damit Sie den weiteren Ausführungen auch dann folgen können, wenn Sie damit noch nicht gearbeitet haben. Danach werden Sie Schritt für Schritt in alles eingeführt, was Sie über Kubernetes wissen müssen, von den Grundprinzipien zu den verborgenen Mechanismen.

Zielgruppe

Dieses Buch richtet sich hauptsächlich an Anwendungsentwickler, bietet aber auch einen Überblick über die Verwaltung von Anwendungen. Es ist für alle gedacht, die sich für die Ausführung und Verwaltung von Containeranwendungen auf mehr als einem einzigen Server interessieren.

Sowohl Anfänger als auch erfahrene Softwareentwickler, die etwas über Containertechnologien lernen möchten, erhalten hier die notwendigen Kenntnisse, um ihre Anwendungen in einer Kubernetes-Umgebung zu entwickeln und in Containern auszuführen.

Vorkenntnisse in Containertechnologien und Kubernetes sind nicht erforderlich. Die Erklärungen in diesem Buch bauen aufeinander auf, und es wird kein Beispielcode verwendet, der nur für Experten verständlich wäre.

Leser sollten allerdings Grundkenntnisse in Programmierung, Computernetzwerken, einfachen Linux-Befehlen und Standardprotokollen wie HTTP mitbringen.

Über dieses Buch

Der Aufbau dieses Buches

Dieses Buch besteht aus 18 Kapiteln, die in drei Teile gegliedert sind.

Teil 1 gibt eine kurze Einführung in Docker und Kubernetes. Sie erfahren hier, wie Sie einen Kubernetes-Cluster einrichten und darin eine einfache Anwendung ausführen. Dieser Teil umfasst nur zwei Kapitel:

- Kapitel 1 erklärt, was Kubernetes ist, wie es entstand und wie es hilft, die heutigen Probleme der Verwaltung und Skalierung von Anwendungen zu lösen.
- Kapitel 2 enthält eine praktische Anleitung, um ein Containerimage zu erstellen und in einem Kubernetes-Cluster auszuführen. Es erklärt auch, wie Sie lokale Kubernetes-Cluster mit einem Knoten und richtige Cluster mit mehreren Knoten in der Cloud ausführen.

Teil 2 stellt die Grundprinzipien vor, mit denen Sie vertraut sein müssen, um Anwendungen in Kubernetes auszuführen. Er besteht aus folgenden Kapiteln:

- Kapitel 3 stellt die Grundbausteine von Kubernetes vor die Pods und erklärt, wie Pods und andere Kubernetes-Objekte mithilfe von Labels geordnet werden können.
- Kapitel 4 erklärt, wie Kubernetes Anwendungen durch den automatischen Neustart von Containern in funktionsfähigem Zustand hält. Hier erfahren Sie auch, wie Sie verwaltete Pods ausführen, horizontal skalieren, gegen den Ausfall von Clusterknoten absichern und zu vorherbestimmten Zeitpunkten oder regelmäßig ausführen.
- Kapitel 5 zeigt, wie Pods ihre Dienste für Clients im und außerhalb des Clusters verfügbar machen und wie Pods im Cluster Dienste innerhalb oder außerhalb des Clusters entdecken und nutzen können.
- Kapitel 6 erklärt, wie mehrere Container im selben Pod Dateien gemeinsam nutzen können und wie Sie persistenten Speicher verwalten und für die Pods zugänglich machen.
- Kapitel 7 zeigt, wie Sie Konfigurationsdaten und sensible Informationen, z.B. Anmeldeinformationen, an Anwendungen innerhalb der Pods übergeben.
- Kapitel 8 beschreibt, wie Anwendungen Informationen über die Kubernetes-Umgebung beziehen, in der sie laufen, und wie sie mit Kubernetes kommunizieren, um den Status des Clusters zu ändern.
- Kapitel 9 gibt eine Einführung in das Prinzip von Deployments und erklärt, wie Sie Anwendungen in einer Kubernetes-Umgebung ordnungsgemäß ausführen und aktualisieren.
- Kapitel 10 stellt eine Möglichkeit zur Ausführung statusbehafteter Anwendungen vor, die gewöhnlich eine stabile Identität benötigen und ihren Status erhalten müssen.

In Teil 3 geht es um die internen Mechanismen von Kubernetes-Clustern. Es werden hier nicht nur einige neue Konzepte eingeführt, sondern auch alle Funktionsprinzipien, die Sie in den ersten beiden Teilen gelernt haben, von einer höheren Warte aus untersucht. Dieser Teil umfasst folgende Kapitel:

Kapitel 11 stößt unter die Oberfläche von Kubernetes vor und beschreibt die Komponenten, aus denen ein Kubernetes-Cluster besteht, und ihre Funktionsweise. Außerdem wird hier erklärt, wie Pods über das Netzwerk kommunizieren und wie Dienste die Last auf mehrere Pods verteilen.

- Kapitel 12 erklärt, wie Sie Ihren Kubernetes-API-Server und den Cluster mithilfe von Authentifizierung und Autorisierung sicherer gestalten können.
- Kapitel 13 zeigt, wie Pods auf die Ressourcen des Knotens zugreifen und wie ein Clusteradministrator sie daran hindern kann.
- Kapitel 14 beschreibt, wie Sie den Verbrauch von Computerressourcen durch die einzelne Anwendung einschränken, die garantierte Dienstqualität der Anwendungen festlegen, die Ressourcennutzung überwachen und Benutzer daran hindern, zu viele Ressourcen zu verbrauchen.
- Kapitel 15 erklärt, wie Sie Kubernetes einrichten, um die Anzahl der Replikate einer Anwendung automatisch skalieren zu lassen, und wie Sie die Größe des Clusters erhöhen, wenn die vorhandenen Clusterknoten keine weiteren Anwendungen mehr aufnehmen können.
- Kapitel 16 zeigt, wie Sie dafür sorgen, dass Pods bestimmten Knoten zugeteilt oder nicht zugeteilt werden. Außerdem erfahren Sie, wie Sie Pods zusammen oder getrennt zuteilen können.
- Kapitel 17 beschreibt, wie Sie Ihre Anwendungen auf clustergerechte Weise entwickeln sollten. Sie erhalten dabei auch einige Hinweise dazu, wie Sie bei der Entwicklung und dem Testen vorgehen sollten, um Störungen zu vermeiden.
- Kapitel 18 zeigt, wie Sie Kubernetes mit eigenen Objekten erweitern k\u00f6nnen und wie andere dies bereits getan und damit professionelle Anwendungsplattformen erstellt haben.

Bei der Lektüre werden Sie nicht nur die einzelnen Bestandteile von Kubernetes kennenlernen, sondern auch Ihre Kenntnisse des Befehlszeilentools kubectl nach und nach erweitern.

Der Code

Dieses Buch enthält nicht viel Quellcode, aber dafür eine Menge Manifeste für Kubernetes-Ressourcen im YAML-Format sowie Shellbefehle und deren Ausgabe. All diese Elemente sind in nichtproportionaler Schrift dargestellt, um sie vom normalen Fließtext abzuheben.

Die Shellbefehle sind gewöhnlich in fetter nichtproportionaler Schrift angegeben, um sie von der Ausgabe zu unterscheiden. Manchmal sind jedoch nur die wichtigsten Teile eines Befehls oder auch einige besondere Teile der Ausgabe fett hervorgehoben. Die Ausgabe wurde meistens umformatiert, sodass sie in eine Buchzeile passt. Da das Kubernetes-Befehlszeilenwerkzeug kubectl ständig weiterentwickelt wird, kann es sein, dass sich die Ausgabe neuerer Versionen von dem unterscheidet, was Sie in diesem Buch sehen. Die Listings enthalten oft auch Anmerkungen, die die wichtigsten Teile hervorheben und erklären.

Alle Beispiele in diesem Buch wurden mit Kubernetes 1.8 in der Google Kubernetes Engine und in einem lokalen Minikube-Cluster getestet. Der vollständige Quellcode und die YAML-Manifeste sind auf https://github.com/luksa/kubernetes-in-action zu finden.

Das Forum zum Buch

Über dieses Buch

Manning Publications, der Herausgeber der Originalausgabe, unterhält ein Forum (in englischer Sprache), in dem Sie das Buch kommentieren, fachliche Fragen stellen und Hilfe sowohl vom Autor als auch von anderen Lesern erhalten können. Dieses Forum finden Sie auf https://forums.manning.com/forums/kubernetes-in-action. Um mehr über die Manning-Foren und die Verhaltensregeln dafür zu erfahren, schauen Sie auf https://forums.manning.com/forums/about nach.

Manning möchte damit eine Möglichkeit für den Austausch zwischen Lesern und zwischen Leser und Autor geben. Der Autor ist dabei in keiner Form zu irgendeiner garantierten Form der Beteiligung verpflichtet, da er alle seine Beiträge freiwillig (und unbezahlt) leistet. Wir raten Ihnen, anspruchsvolle Fragen zu stellen, falls sein Interesse nachlassen sollte. Das Forum und die Archive früherer Diskussionen sind auf der Website von Manning so lange zugänglich, wie die Originalausgabe dieses Buches in Druck ist.

■ Sonstige Onlinequellen

Informationen über Kubernetes sind auch an folgenden Orten zu finden:

- Auf der Kubernetes-Website https://kubernetes.io
- Im Kubernetes-Blog auf http://blog.kubernetes.io, in dem regelmäßig interessante Informationen erscheinen
- Im Slack-Kanal der Kubernetes-Community auf http://slack.k8s.io
- In den YouTube-Kanälen von Kubernetes und der Cloud Native Computing Foundation:
- https://www.youtube.com/channel/UCZ2bu0qutTOM0tHYa_jkIwg
- https://www.youtube.com/channel/UCvqbFHwN-nwalWPjPUKpvTA

Um mehr über einzelne Themen zu erfahren oder auch um selbst zu Kubernetes beitragen zu können, wenden Sie sich an die Kubernetes-Interessengruppen (Special Interest Groups, SIGs) auf https://github.com/kubernetes/kubernetes/wiki/Special-Interest-Groups-(SIGs).

Da es sich bei Kubernetes um Open-Source-Software handelt, enthält auch der Kubernetes-Quellcode einen Schatz an Informationen. Sie finden ihn in https://github.com/kubernetes/kubernetes und verwandten Repositorys.

ı