Alexander Schlüter Juan Bernabé-Moreno

 \square

B C

SUSTAINABLE AND SMART ENERGY SYSTEMS for Europe's Cities and Rural Areas

HANSER

Schlüter/Bernabé-Moreno Sustainable and Smart Energy Systems for Europe's Cities and Rural Areas

Alexander Schlüter, Juan Bernabé-Moreno

Sustainable and Smart Energy Systems for Europe's Cities and Rural Areas

HANSER

The editors: Dr.-Ing. Alexander Schlüter, E.ON Digital Technology GmbH Dr. Juan Bernabé-Moreno, E.ON Digital Technology GmbH and E.ON SE

Print-ISBN 978-3-446-47294-5 E-Book-ISBN 978-3-446-47175-7 ePub-ISBN 978-3-446-47176-4

The use of general descriptive names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

The final determination of the suitability of any information for the use contemplated for a given application remains the sole responsibility of the user.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or by any information storage and retrieval system, without permission in writing from the publisher.

© 2022 Carl Hanser Verlag GmbH & Co. KG, Munich www.hanser-fachbuch.de Editors: Christopher Hayes, Volker Herzberg Translation: Leinhäuser Language Services GmbH, Unterhaching Graphic Design: C3 Creative Code and Content GmbH, Munich; formkonfekt Karen Marschinke, Kassel Production Management: Carolin Benedix Typesetting: Eberl & Koesel Studio, Altusried-Krugzell Concept and design of cover: Max Kostopoulos Cover image: © shutterstock.com/majcot Printed and bound by Hubert & Co. GmbH und Co. KG BuchPartner, Göttingen Printed in Germany

Foreword by Fabrizio Rossi

Fabrizio Rossi, Secretary General of the Council of European Municipalities and Regions (CEMR)

We live in exceptional times, where changes happen at a pace just not imaginable only a few decades ago. The constant movement of transformation across Europe we are witnessing reflects trends and innovations often coming from other parts of the world, sometimes being conceived and developed in our continent. This great transformation has modified the way we

interact and communicate, move people and transport goods, make payments, produce and stock energy. And in turn, this silent revolution has become increasingly evident in the space we live in, our cities, towns, villages.

If today there is an element that more and more unites large metropolises with small rural centres, it is precisely this transformation. All our communities want to be smarter in the way they use their resources and provide services to their citizens. This is a silent revolution not only because electric buses produce less noise pollution than petrol ones or because an e-mail is less noisy than fax! It is silent because through a transversal approach, we are transforming our economies and, therefore, our communities.

In fact, being a smart city or a smart rural area today means trying to obtain an integrated approach to services. It is a triple gain if it improves the quality of life of citizens, increases the competitiveness of our economies, and pave the way for a sustainable low-carbon economy. The local transport system cannot ignore the way the energy necessary to make it work is produced, just as public buildings or the house in which we live must respect energy criteria that are growingly attentive to sustainability, and productive activities are reconverting towards a model with a lower impact on the environment and natural resources. And all this would be impossible without the ability to store, analyse and manage huge amounts of data

that allow us to optimise production processes and provide more accurate and rapid services to citizens.

The role of municipalities has therefore become crucial to manage and steer a change that is as profound as it is irreversible. A good local administration is, in fact, what can make the difference between a territorial development without order and growth for the benefit of all. For these reasons, the book edited by Alexander Schlüter and Juan Bernabé-Moreno represents a rare opportunity to learn more about the state of the art of this transformation in Europe and how the municipalities across the continent face this great challenge.

All people living in the European territory today should enjoy what Henri Lefebvre called the 'right to the city', which perhaps today we should call the 'right to the community', since cities and rural areas are united by similar problems and solutions. The right to the community is, therefore, not only the right of every person to access the resources and services of their own territory but also, and possibly above all, to contribute to this transformation so that it takes place in a way that is respectful of all. In fact, no change can make sense for European municipalities if not aimed at the well-being of their citizens, the inclusion of disadvantaged ones, the development of everyone's potential. This is probably the real and pivotal challenge that awaits all of us, both citizens and public administrators.

Brussels in February 2022

Fabrizio Rossi

Foreword by the Editors

Congratulations! You are one of the few people who read and pay attention to forewords. For this book, it makes sense to do so because we explain how you can use it most effectively to your advantage. This is because we don't just want to report on technologies and challenges but encourage you and give you tangible recommendations for action.

But who are we – over 40 established international experts – actually writing this book for? It is, of course, intended for all those interested in smart cities and rural areas. We are directing it in particular to those responsible in cities, towns, villages and districts. They are crucially important to ensure that further development in energy, mobility and digitalisation succeeds. They have begun to gather experience in their local areas. We want to supplement this with scientific insights and forecasts while explaining technical terms and contexts in detail. Our aim throughout these chapters is to make you realise the challenges and take interesting approaches on board to enrich the lives of residents. Your municipality can contribute to the success of the energy transition while benefiting from it at the same time. Of course, experts in the field, students and those in the issues covered are invited to advance their education by reading this publication.

But what makes the transformation into a smart municipality worthwhile at all? It's because smart municipalities permit a more sustainable way of living and are therefore an answer to the major challenges, such as climate change, facing our society. Our environment is changing at an extraordinarily rapid pace – unfortunately, to our disadvantage. The systematic destruction of our planet worsens living conditions and increases the risks to human health, entailing high economic and social costs and leading to species extinction. We are currently living through some of the dangers that face us when the relations between humans, nature and wildlife are thrown off balance – for example, an increased risk of pandemic.

Wouldn't it be clever to combine the necessary changes with an improvement of our quality of life? And that's precisely what smart city projects are all about. In this book, we start off with the basics and encourage you to create your own vision and strategy for your smart municipality of the future and to understand your own role and responsibility in shaping it. After that, you will read about the numerous challenges and opportunities presented by energy systems and digitalisation. For the focus areas you will have formulated on this basis, we will point you toward selected funding and subsidy options.

Last but not least, we want to thank all those involved in this project, which has been driven and implemented with great enthusiasm right from the start by E.ON internally as well as by the many external authors. We hope you enjoy the book and the subsequent implementation.

Munich in spring 2021 Alexander Schlüter and Juan Bernabé-Moreno

Foreword to the European Edition

The feedback on the first book has shown that we seem to have hit the spot with the subject and type of presentation. For this reason, and in response to further climate-linked disasters, we have decided to publish an English edition to cater for a European framework. Compared with the first book, which contained many examples and data from Germany, we have replaced these with references to Europe and the European Union in this edition. And of course we have updated the information in general wherever possible. What's more, the team has been expanded, and Greenwich, London has made itself available for interview. We are very grateful for this. OK, enough of the foreword. Now it's time to read, plan and act!

Munich in February 2022

Alexander Schlüter and Juan Bernabé-Moreno

Contents

Fore	eword by Fabrizio Rossi	V
	eword by the Editors	VII VIII
Edit	tors and Authors	XVII
I.	Fundamentals and Strategic Planning	
1	First Steps towards Smart Municipalities Alexander Schlüter	3
2	Vision of a Sustainable Digital Future	7
2.1	Climate Change and its Consequences	7
2.2	Digitalisation and Municipalities	10
2.3	Literature	12
3	How to Make Your Municipality Smart and Sustainable	15
4	Strategic Planning of the Transformation Process	19
	Diana Khripko, Nicky Athanassopoulou, Imoh Ilevbare, Rob Phaal	
4.1	Background on Strategic Roadmapping	20
4.2	Scoping, Design and Planning	22
4.3	Strategic Roadmapping	24

4.4	Conclusion and Courses of Action for Smart Municipalities		
4.5	Literat	ure	31
п	Integ	rating Renewable Energy Systems	
1		wable Energy – Unleashing the Full Potential	37
	Jens W	leibezahn, Alexandra Krumm, Pao-Yu Oei, Laura Färber	
1.1		uction	37
1.2	Techno	o-economic Aspects	39
	1.2.1	Electricity Sector	40
	1.2.2	Heating Sector	44
	1.2.3	Mobility Sector	45
1.3	Socio-	economic, Regulatory, and Political Aspects	46
1.4	Applic	ations of Renewable Energies	48
	1.4.1	Major Cities: Photovoltaic Potential in Berlin and Urban Heat Transition in Hamburg	50
	1.4.2	Towns and Districts: The EC's Platform for Coal Regions in Transition and Steinfurt's Masterplan	52
	1.4.3	Rural Areas and Villages: Developing and Exporting	
		100% Green Electricity in Schönau and Samsø	54
1.5	Tenan	t Electricity: a German Renewable Energy Product	55
	1.5.1	The Principle Underlying Tenant Electricity	56
	1.5.2	Roles in the Tenant Electricity Model	57
	1.5.3	Technologies, Legal Requirements, and Incentives	58
	1.5.4	Metering and Technical Requirements	59
	1.5.5	Why Tenant Electricity is Attractive	59
1.6	Conclu	usion and Courses of Action for Smart Municipalities	60
1.7	Literat	ture	62
2	Electi	ricity Grids: Moving towards the Smart Grid	65
	Vincenz Regener, Simon Köppl		
2.1	Basic	Principles of Electricity Grids	65
	2.1.1	Physical Aspects – How Does Power Get from A to B?	65
	2.1.2	What Does Europe's Grid Infrastructure Look like?	66
	2.1.3	What are the Beginnings of Electric Power Transmission?	67

	2.1.4	What Are the Functions of Grid Operators?	68		
	2.1.5	What Are the Challenges the Energy Transition Poses to the Grid?	69		
2.2	How C		09		
2.2	How Can the Electricity Grid Be Turned into a Future-capable Smart Grid?				
	2.2.1	New, Digital Grid Operating Resources and Networking	71		
	2.2.2	Transparency for Households: What Do Smart Meters Do?	72		
	2.2.3	Flexibilisation of Generation and Consumption: to Support, or at Least Be Compatible with the Grid!	73		
2.3	Microg	grids: Innovative Districts as an Individual Solution	74		
2.4	-	ractice for the Use of Smart Grids	75		
2.5	Conclu	ision and Courses of Action for Smart Municipalities	76		
2.6	Literat	ure	77		
3	Therm	nal Grids	79		
	Hagen	Braas, Markus Bücherl, Janybek Orozaliev, Peder Berne			
3.1	Status	of the Heating Transition in the EU	80		
3.2	Heating Grids Now and in the Future				
3.3	Moder	n District Heating	84		
3.4	Case S	tudies	87		
	3.4.1	100% Renewable District Heating in Marstal	87		
	3.4.2	Combination of Different Infrastructures in London	88		
	3.4.3	Malmö's District Heating System	89		
	3.4.4	ectogrid™ in Medicon Village, Lund	92		
3.5	Conclu	ision and Courses of Action for Smart Municipalities	94		
3.6	Literat	ure	96		
ш	Using	Energy More Efficiently			
1	Prepa	ring the Ground with Energy Efficiency	101		
	Ron-Hendrik Hechelmann, Florian Schlosser, Henning Meschede, Alexander Schlüter				
1.1	Energy	Fificiency Based on the Onion Layer Model	103		
1.2	Energy	Efficiency in Cross-cutting Technologies	105		
	1.2.1	Lighting	106		
	1.2.2	Ventilation Systems	107		

	1.2.3	Heat Provision and Waste Heat Utilisation	109
	1.2.4	Cooling	113
	1.2.5	Compressed Air	114
	1.2.6	Electromechanical Drives	115
1.3	Literatu	ure	116
2	Saving	g Energy in Industry and Commerce	119
		Schlosser, Ron-Hendrik Hechelmann, Henning Meschede, der Schlüter	
2.1	What C	Can Industry and Commerce Do in Concrete Terms?	119
2.2	Where	Does Energy Efficiency in the Industry Reach its Limits?	124
2.3	Conclu	sion and Courses of Action for Smart Municipalities	125
2.4	Literatu	ure	127
3	Garanc	ting Buildings More Energy Efficiently e Emmerich-Bundel, Manuel Lindauer, Rita Streblow, der Schlüter	129
3.1	Backgr	ound	129
3.2	Main E	nergy Consumption Factors	132
	3.2.1	Building Shell	133
	3.2.2	Heating, Ventilation, Air-conditioning Systems for User Comfort	135
	3.2.3	Lighting	138
3.3	The Ro	le of Digital Technologies	139
3.4	Regula	tions for Energy Efficiency of Buildings	142
3.5	Conclu	sion and Courses of Action for Smart Municipalities	145
3.6	Literatu	ure	146
IV	Linkin	g Sectors and Storing Energy	
1		r Coupling and Storage are Crucial for Green Energy g Meschede, Diana Khripko, Alexander Schlüter	151
2		ge Systems for Increased Flexibility	157
2.1	Deman	d for Storage in the Electrical Energy System	157

2.2	Technologies 1		
2.3	Areas of Application	163	
	2.3.1 Battery Systems	163	
	2.3.2 Thermal Storage Systems	165	
2.4	Practical Example: "Werksviertel Mitte" in Munich	166	
2.5	Conclusion and Courses of Action for Smart Municipalities	169	
2.6	Literature	171	
3	Using More Hydrogen and Green Fuels	173	
	Eugenio Scionti, Matteo Genovese, Christoph Pellinger, Petronilla Fragiacomo, Alexander Schlüter		
3.1	Underlying Drivers	173	
	Katherina Reiche		
3.2	Introduction	174	
3.3	Current Status and Outlook	175	
3.4	Production	180	
3.5	Transmission, Distribution and Storage Infrastructures	183	
3.6	Application in Energy-intensive Industries	185	
3.7	Application in the Power Sector	187	
3.8	Application in Buildings	189	
3.9	Application in Agriculture	191	
3.10	Conclusion and Courses of Action for Smart Municipalities	192	
3.11	Literature	194	
4	Preparing for More Sustainable Mobility	197	
	Alexander Schlüter, Matteo Genovese, Petronilla Fragiacomo		
4.1	Challenges for the Sector	197	
4.2	Technologies and Outlook for Electric Vehicles	202	
4.3	Charging and Flexibility Options by Connecting to the Energy System	209	
4.4	Conclusion and Courses of Action for Smart Municipalities	211	
4.5	Literature	214	
5	Making Energy Demand More Flexible	217	
	Diana Khripko, Henning Meschede, Eva Meschede		
5.1	Identifying Load Shifting Potentials	219	

5.2		cal Examples of a Flexibilisation in the Industrial and by Sectors	222
	5.2.1	Converting Electrical Energy into other Energy Forms	222
	5.2.2	Adjusting Demand by Switching the Energy Source	224
	5.2.3	Flexibility in Operational Planning and Control of	
		Electrical Facilities	226
	5.2.4	Focus: Commercial Water Supply	227
5.3	Practic	cal Examples of Flexibilisation in Households	228
5.4	Conclusion and Options for Action for Smart Municipalities 2		
5.5	Literature 2		
V	Digita	lising Municipalities and Energy Systems	
1	-	Ilisation: The Issue of Our Time	241
2		Energy Transition: Digitalising Municipalities	243
2.1		lisation as Key Element of the Energy Transition	243
2.1	2.1.1	Digitalisation of Energy Systems	
	2.1.2	Digitalisation of Energy Consumers	
	2.1.3	Tipping Points for Significant Changes in Energy Systems	
2.2		plogies Accelerating the Transition	
2.3		usion and Courses of Action for Smart Municipalities	
2.4		ure	
3	The R	ising Role of Prosumers in the Energy System	255
	Svetlar	na Ikonnikova, Alexander Schlüter, Bernadette Brandner	
3.1	Energy	Transition through Digitalisation	257
3.2	Role of	f Network Effects Enhanced through Digitalisation	259
3.3	New O	pportunities to Generate Added Value	262
3.4	Setting	g Up Data Centres and Using Blockchain	265
3.5	Conclu	ision and Courses of Action for Smart Municipalities	267
3.6	Literat	ure	269

4	The Fo	oundation of the Digital Transformation: Data and IoT	271	
	Giorgio	o Cortiana, Nicholas Ord		
4.1	Growth and Potential of the IoT			
4.2	Data beyond Specific Domains 2			
4.3	Data fr	com and to IoT Devices for Controllable Remote Operation \ldots	275	
4.4	Conclu	ision and Courses of Action for Smart Municipalities	278	
4.5	Literat	ure	279	
5	Artific	cial Intelligence – Enabling Smarter Municipalities	281	
	Juan B	ernabé-Moreno, Theodoros Evgeniou		
5.1	Introdu	uction	281	
	5.1.1	Definition of AI and Intelligent Systems	284	
	5.1.2	$\label{eq:precession} Prerequisites \ and \ Limiting \ Factors \ for \ AI: \ It's \ All \ about \ Data .$	285	
	5.1.3	Types of Problems and AI Tools	286	
5.2	AI Mał	kes Our Municipalities Smart	287	
	5.2.1	Smart Manufacturing	288	
	5.2.2	Smart Buildings	289	
	5.2.3	Smart Mobility	290	
	5.2.4	Smart Energy Systems	292	
	5.2.5	Smart Logistics	293	
	5.2.6	Smart Farming	294	
	5.2.7	Smart Waste Management: towards a Circular Economy	296	
	5.2.8	Smart Police and Emergency Services	297	
	5.2.9	Smart Healthcare and Sustainability	298	
5.3	The Ad	loption Path	300	
	5.3.1	Ecosystem for Services Development	301	
	5.3.2	Processes and Governance	302	
	5.3.3	Data and Technology Readiness	302	
5.4	Conclusion and Courses of Action for Smart Municipalities 30			
5.5	Literature 30			

VI Becoming Concrete

1	Integrating Interests and Finding Optimal Financing 3			
		Garbuzova-Schlifter, Jakob Kulawik, Philipp Bugs, Kuldip Singh, Praktiknjo		
1.1	Introduction			
1.2	Financial Stakeholders			
1.3	Funda	mentals of Municipality Project Financing	316	
1.4	Selected Financing Options			
	1.4.1	Debt Financing	320	
	1.4.2	Equity Financing	322	
	1.4.3	Hybrid Financing	324	
1.5	Selecte	ed Funding Options	326	
1.6	Selecte	ed Partnership Models	329	
	1.6.1	Public-Private Partnership	329	
	1.6.2	Joint Venture	331	
	1.6.3	Citizens Participation Schemes	332	
1.7	Conclu	ision and Courses of Action for Smart Municipalities	333	
1.8	Literature 33			
2	Interv	/iews	339	
2.1	Nicola	s Lahovnik, Wunsiedel, Germany	339	
2.2	Thomas Bugl and Dr. Götz Brühl, Rosenheim, Germany 3			
2.3	Sarah	Butler and Trevor Dorling, Greenwich, London, United Kingdom	343	
3	We M	ust Act – Now!	347	
	Alexan	nder Schlüter, Juan Bernabé-Moreno		
List	of Abb	reviations	349	
Inde	x		355	

Editors and Authors

Editors and Authors

Dr.-Ing. Alexander Schlüter

Innovation Manager, New Business, E.ON Digital Technology GmbH.

Lecturer, Technical University Munich (Guest) & REMENA-Programme of the Universities Cairo, Kassel and Monastir.

Dr. Juan Bernabé-Moreno

Chief Data Officer, E.ON; Global Head of Data and Analytics, E.ON Digital Technology GmbH.

Research Fellow, University of Oxford & Universidad de Granada.

Authors

Dr. Nikoletta Athanassopoulou

Head of Solution Development, IfM Engage, Institute for Manufacturing, University of Cambridge.

Angel K. Batalla, MBA, MA Design MSc Energy & Sustainability Student, Technical University Munich.

Climate Tech & Sustainability Strategy, Hellenic Republic Asset Development Fund.

Peder Berne, MSc

Project Manager Sustainable City, E.ON City Energy Solutions.

Hagen Braas, MSc Research Associate, Institute for Thermal Energy Technology, University of Kassel. Bernadette Brandner, MSc

Former Working Student, E.ON Digital Technology GmbH.

Scholarship recipient, UnternehmerTUM GmbH.

Dr.-Ing. Markus Bücherl Expert Engineer, E.ON Energy Solutions GmbH.

Philipp Bugs, MSc Venture Manager, New Business, E.ON Digital Technology GmbH.

Dr. Giorgio Cortiana Head of Advanced Analytics – Energy Intelligence, E.ON Digital Technology GmbH.

Garance Emmerich-Bundel, MSc, MBA Senior Manager Technology Enablement, E.ON Energy Infrastructure Solutions.

Prof. PhD Theodoros Evgeniou

Professor of Decision Sciences and Technology Management, INSEAD.

Artificial Intelligence Academic Partner, World Economic Forum.

Dipl.-Pol. Laura Antonia Färber, MSc Venture Manager, New Business, E.ON Digital Technology GmbH.

Prof. Ing. Petronilla Fragiacomo

Associate Professor of Energy Systems and Power Generation.

Research Head of Fuel Cell and Hydrogen Team, University of Calabria.

Dr. rer. pol. Maria Garbuzova-Schlifter

Global Data Governance Manager & Senior Expert Digital Innovation, E.ON Digital Technology GmbH.

Dr.-Eng. Matteo Genovese

Postdoc and Research Fellow, Fuel Cell & Hydrogen Research Group, University of Calabria.

Dr.-Ing. Ron-Hendrik Hechelmann Postdoc, Department of Sustainable Products and Processes, University of Kassel.

Prof. Dr. Svetlana Ikonnikova

Associate Professor, Chair for Resource Economics, Center for Energy Markets, TUM School of Management, Technical University Munich.

Dr. Imoh Ilevbare

Principal Solution Development Specialist, IfM Engage, Institute for Manufacturing, University of Cambridge.

Dipl.-Ing. Alexander Jäger Advisor for Strategic Special Projects and Policy Issues, Bayernwerk AG.

Dr.-Ing. Diana Khripko

Senior Solution Development Specialist, IfM Engage, Institute for Manufacturing, University of Cambridge.

Dr. Andreas Kießling Head of Associations and Quality Assurance, Bayernwerk AG.

Dipl.-Ing. Simon Köppl Project Leader, FfE.

Alexandra Krumm, MSc Research Associate, Europa-Universität Flensburg. Doctoral Candidate, The Reiner Lemoine Institute.

Jakob Kulawik, MSc Research Associate, Chair for Energy System Economics, E.ON Energy Research Center, RWTH Aachen University.

Dr.-Ing., Dipl. Math. Manuel Lindauer Product Development, Calcon Deutschland GmbH. Freelancer, Fraunhofer Institute for Building Physics.

Eva Meschede, MSc

Research Associate, Institute for Networked Energy Systems, German Aerospace Centre (DLR).

Prof. Dr.-Ing. Henning Meschede

Chair for Energy Systems Technology, Paderborn University.

Prof. Dr. Pao-Yu Oei

Professor for Economics of Energy System Transformation, Europa-Universität Flensburg.

Head of "CoalExit" research group, Europa-Universität Flensburg, Technische Universität Berlin, and DIW Berlin.

Nicholas Ord, MBA, Tech Eng. (Computer Science and Electronics Systems)

Venture Manager, New Business, E.ON Digital Technology GmbH.

Dr.-Ing. Janybek Orozaliev

Group Lead Thermal Components and Systems, Institute for Thermal Energy Technology, University of Kassel.

Dr. Victoria Ossadnik Board member, E.ON SE. Member of the supervisory boards of Linde plc. & Commerzbank AG.

Dr.-Ing. Christoph Pellinger Managing Director, FfE

Dr. Rob Phaal Director of Research (STIM, CUED), Institute for Manufacturing, University of Cambridge.

Dr.-Ing. Matthias Philipp Project Manager Product- and Solution Development, Bayernwerk Natur GmbH.

Prof. Dr.-Ing. Aaron Praktiknjo Chair of the Department for Energy Systems Economics, E.ON Energy Research Center, RWTH Aachen University.

Vincenz Regener, MSc Research Associate, FfE.

Dipl.-Chem. Katherina Reiche Chief Executive Officer, Westenergie AG. Chair, National Hydrogen Council of the German Federal Government.

Dr.-Ing. Florian Schlosser Postdoc, Department for Energy Systems Technology, Paderborn University.

Eugenio Scionti, MSc Venture Manager, New Business, E.ON Digital Technology GmbH.

Kuldip Singh, Drs., CMA, CFM Head of Digital Transformation CS, E.ON Digital Technology GmbH.

Prof. Dr.-Ing. Rita Streblow

Professor for Digital Networking of Buildings, Energy Supply Systems and Users, Einstein Center Digital Future, Technische Universität Berlin.

Chief Engineer, Institute for Energy Efficient Buildings and Indoor Climate, E.ON Energy Research Center, RWTH Aachen University.

Matthew Timms, BSc

Industry Advisor, Advent International

Independent Non-Executive Digital Advisory Board Member, Cabinet Office, UKE.

Postdoctoral Research Fellow and Marie Skłodowska-Curie Fellow, Copenhagen School of Energy Infrastructure (CSEI), Copenhagen Business School.

Dr.-Ing. Egon Leo Westphal Chief Executive Officer, Bayernwerk AG.

Fundamentals and Strategic Planning