RESEARCH

Natalija van Well

Innovative und interdisziplinäre Kristallzüchtung

Materialien mit abstimmbarem quantenkritischen Verhalten

Innovative und interdisziplinäre Kristallzüchtung

Natalija van Well

Innovative und interdisziplinäre Kristallzüchtung

Materialien mit abstimmbarem quantenkritischen Verhalten

Mit einem Geleitwort von Prof. Dr. Wolf Aßmus

Dr. Natalija van Well Frankfurt am Main, Deutschland

zugl.: Dissertation, Goethe-Universität Frankfurt am Main, 2014

ISBN 978-3-658-11762-7 ISBN 978-3-658-11763-4 (eBook) DOI 10.1007/978-3-658-11763-4

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Spektrum

© Springer Fachmedien Wiesbaden 2016

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Fachmedien Wiesbaden ist Teil der Fachverlagsgruppe Springer Science+Business Media (www.springer.com)

Geleitwort

Diese Publikation basiert auf der Dissertation der Autorin, die sie in den vergangenen vier Jahren im Kristall- und Materiallabor des Physikalischen Instituts der Johann Wolfgang Goethe-Universität in Frankfurt am Main angefertigt hat. Die Arbeit entstand im Rahmen des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Sonderforschungsbereichs / Transregios SFB/TR 49 "Condensed Matter Systems with Variable Many-Body Interactions".

Die Publikation behandelt die Kristallzüchtung und die Charakterisierung der frustrierten triangularen Magneten Cs_2CuCl_4 , Cs_2CuBr_4 und des $Cs_2CuCl_{4-x}Br_x$ Mischsystems. Bei Cs_2CuCl_4 handelt es sich um einen 2-dimensionalen Spin ½-Antiferromagneten mit anisotropem triangularem Gitter. Durch Substitution von Chlor durch Brom wird die Frustration im triangularen Gitter verstärkt. Die Wechselbeziehung zwischen geometrischer Frustration und Quantenfluktuation dominiert das System: Feld-induzierte Bose-Einstein Kondensation in Cs_2CuCl_4 bis Magnonen-Kristallisation in Cs_2CuBr_4 sind die Folge. Dieses komplexe Verhalten wird gegenwärtig unter Wissenschaftlern stark diskutiert.

Der Schwerpunkt der Publikation liegt im Gebiet der Kristallzüchtung aus Lösungen. Cs₂CuCl₄ kristallisiert wie Cs₂CuBr₄ in der orthorhombischen Raumgruppe Pnma mit Z = 4 Formeleinheiten pro Elementarzelle. Beide Randsysteme können sowohl bei Zimmertemperatur also auch bei 50 °C aus wässriger Lösung gezüchtet werden. Beim Chlor-Brom-Mischsystem schiebt sich im Bereich Cs₂CuCl₃Br₁ bis Cs₂CuCl₂Br₂ eine tetragonale Zwischenphase bei 24 °C Züchtungstemperatur ein, nicht jedoch bei einer Züchtungstemperatur von 50 °C. Sehr interessant ist auch die nicht-statistische Besetzung der Chlor-Plätze durch Brom bei der Züchtung aus wässriger Lösung. Züchtet man dagegen die Kristalle aus der Schmelze, erfolgt die Substitution statistisch.

Neben vielen Details der Kristallzüchtung und Charakterisierung zeigt diese Publikation, welche Sorgfalt bei der Materialpräparation notwendig ist, um aussagekräftige Ergebnisse zu erhalten. Allen Lesern, die an diesen interessanten Fragestellungen interessiert sind, wünsche ich viel Freude bei der Lektüre.

Frankfurt am Main

Prof. Dr. Wolf Aßmus (Ehem. Leiter des Kristall- und Materiallabors)

Danksagung

Mein Dank gilt vor allem Herrn Prof. Dr. Wolf Aßmus für die Möglichkeit, meine Doktorarbeit unter seiner Obhut zu schreiben und die Entwicklung von Materialien mit abstimmbarem quantenkritischen Verhalten innerhalb des Sonderforschungsbereiches/Transregio 49 "Condensed Matter Systems with Variable Many-Body Interactions" durchführen zu können.

Desweiteren möchte ich den Kolleginnen und Kollegen des Kristall- und Materiallabors der Goethe Universität Frankfurt am Main unter der neuen Leitung von Herrn Prof. Dr. C. Krellner für die Unterstützung meiner Ideen und für die vielen fachlichen Gespräche und Diskussionen danken.

Nicht zuletzt gilt mein Dank für die stets gute, vertrauensvolle und vor allem erfolgreiche Zusammenarbeit den Arbeitsgruppen: "Korrelierte Elektronen und Spins", "Condensed Matter Theory Group", "Metallorganische Chemie" und "Kristallographie" und ihren jeweiligen Arbeitsgruppenleitern Prof. Dr. M. Lang, Prof. Dr. R. Valenti, Prof. Dr. M. Wagner und Prof. Dr. B. Winkler.

Natalija van Well

Inhaltsverzeichnis

Gel	eitwo	rt	V
Dar	ksag	ung	VII
Abł	oildun	gsverzeichnis	XIII
Tab	ellen	verzeichnis	. XXIII
Abk	ürzu	ngsverzeichnis	XXV
1	Ein	leitung	1
2	Sta	nd der Forschung	3
	2.1	Strukturelle Übersicht und physikalische Eigenschaften	
		von Cs_2CuCl_4 , Cs_2CuBr_4 und dem Mischsystem $Cs_2CuCl_{4-x}Br_x$	3
	2.2	Strukturell-chemische Aspekte von Kronenether-Verbindungen.	11
3	Gri	undlagen	17
	3.1	Grundlagen der Kristallisation	17
	3.2	Züchtungsmethoden	20
		3.2.1 Kristallzüchtung aus Lösung	20
		3.2.2 Kristallisation aus einer Schmelze	
	3.3	Grundlagen des Magnetismus	
	3.4	Thermische Ausdehnung	29
4	Cha	arakterisierungsmethoden	31
	4.1	Differenzthermoanalyse (DTA)	
	4.2	Röntgendiffraktometrie	
	4.3	Rasterelektronenmikroskopie mit energiedispersiver Analyse	
		(EDX)	41
	4.4	Polarisationsmikroskopie	44
			17
		Das Polarisationsmikroskop	

Cs ₂ CuCl _{4-x} Br _x	Erg	gebni	sse der Züchtung für das Mischsystem	
 5.1 Ergebnisse der Züchtung von Einkristallen aus wässriger Lösung und deren Charakterisierung	Cs ₂		$_{4-x}\mathbf{Br}_{x}$	5
aus wässriger Lösung und deren Charakterisierung. 5.1.1 Randsysteme Cs ₂ CuCl ₄ und Cs ₂ CuBr ₄	5.1	Ergeb	nisse der Züchtung von Einkristallen	
 5.1.1 Randsysteme Cs₂CuCl₄ und Cs₂CuBr₄		aus w	ässriger Lösung und deren Charakterisierung	
 5.1.2 Mischsystem Cs₂CuCl_{4-x}Br_x		5.1.1	Randsysteme Cs ₂ CuCl ₄ und Cs ₂ CuBr ₄	4
 5.2 Charakterisierung der Ergebnisse aus wässriger Lösung		5.1.2	Mischsystem Cs ₂ CuCl _{4-x} Br _x	
5.2.1 EDX-Untersuchungen verschiedener Phasen 5.2.2 Röntgenpulverdiffraktometrie-Untersuchung 5.2.3 Strukturelle Untersuchung der neuen Phase Cs3Cu3Cl8OH 5.3 Diskussion der Kristallzüchtung aus wässriger Lösung	5.2	Chara	kterisierung der Ergebnisse aus wässriger Lösung	
 5.2.2 Röntgenpulverdiffraktometrie-Untersuchung		5.2.1	EDX-Untersuchungen verschiedener Phasen	
 5.2.3 Strukturelle Untersuchung der neuen Phase Cs3Cu3Cl8OH 5.3 Diskussion der Kristallzüchtung aus wässriger Lösung 5.4 Ergebnisse der Züchtung aus der Schmelze		5.2.2	Röntgenpulverdiffraktometrie-Untersuchung	
 5.3 Diskussion der Kristallzüchtung aus wässriger Lösung		5.2.3	Strukturelle Untersuchung der neuen Phase Cs3Cu3Cl8C)H
 5.4 Ergebnisse der Züchtung aus der Schmelze	5.3	Disku	ssion der Kristallzüchtung aus wässriger Lösung	
 5.4.1 Untersuchungen zum Cs₂CuCl₄-Cs₂CuBr₄ Phasendiagramm 5.4.2 Einfluss des Züchtungsverfahrens (Lösung oder Schmelze) auf die Kristallstruktur	5.4	Ergeb	nisse der Züchtung aus der Schmelze	
 5.4.2 Einfluss des Züchtungsverfahrens (Lösung oder Schmelze) auf die Kristallstruktur		5.4.1	Untersuchungen zum Cs ₂ CuCl ₄ -Cs ₂ CuBr ₄ Phasendiagram	nm9
auf die Kristallstruktur 5.4.3 Bridgmanzüchtung 5.4.4 Substitution mit Rb und K 5.4.4.1 Züchtung von $Cs_{2,x}Rb_xCuBr_4$ mit der Bridgmanmethode 5.4.4.2 Charakterisierung von $Cs_{2,x}Rb_xCuBr_4$ 5.5 Zusammenfassung Röntgenpulverdiffraktometrie bei tiefen Temperaturen.1 Physikalische Eigenschaften der orthorhombischen und tetragonalen Phase des Mischsystems1 Einkristalle mit Kronenethermolekülen: Züchtung und Eigenschaften		5.4.2	Einfluss des Züchtungsverfahrens (Lösung oder Schmelz	ze)
5.4.3 Bridgmanzüchtung 5.4.4 Substitution mit Rb und K 5.4.4.1 Züchtung von $Cs_{2-x}Rb_xCuBr_4$ mit der Bridgmanmethode 5.4.4.2 Charakterisierung von $Cs_{2-x}Rb_xCuBr_4$ 5.5 Zusammenfassung Röntgenpulverdiffraktometrie bei tiefen Temperaturen .1 Physikalische Eigenschaften der orthorhombischen und tetragonalen Phase des Mischsystems1 Einkristalle mit Kronenethermolekülen: Züchtung und Eigenschaften1 8.1 Substitution mit Kronenethermolekülen			auf die Kristallstruktur	
 5.4.4 Substitution mit Rb und K		5.4.3	Bridgmanzüchtung	1
5.4.4.1 Züchtung von Cs2-xRbxCuBr4 mit der Bridgmanmethode 5.4.4.2 Charakterisierung von Cs2-xRbxCuBr4 5.5 Zusammenfassung 8.1 Sussementerie bei tiefen Temperaturen 1 8.1.2 Kristallsüchtung aus wässriger Lösung von Cs2(C12H24Q6)(H2Q)2C122H2Q und Cs(C12H24Q6)(H2Q)BrH2Q 8.1.2 Kristallisationszüchtung aus wässriger Lösung des Systems CsBr-[C12H24Q6]-CuBr2 8.1.3 Kristallisationszüchtung der System CsBr-[C12H24Q6]- CuBr2 und CsCl-[C12H24Q6]-CuCl2 aus einer		5.4.4	Substitution mit Rb und K	1
Bridgmanmethode 5.4.4.2 Charakterisierung von $Cs_{2-x}Rb_xCuBr_4$ 5.5 Zusammenfassung Röntgenpulverdiffraktometrie bei tiefen Temperaturen.1 Physikalische Eigenschaften der orthorhombischen und tetragonalen Phase des Mischsystems Imperature des Mischsystems Sinkristalle mit Kronenethermolekülen: Züchtung und Einkristalle mit Kronenethermolekülen: Züchtung und Sinkristalle mit Kronenethermolekülen: Züchtung und Sinkristallzüchtung aus wässriger Lösung von $Cs_2(C_{12}H_{24}O_6)(H_2O)_2Cl_{2}H_2O$ und $Cs_2(C_{12}H_{24}O_6)(H_2O)_2Cl_{2}H_2O$ und $Cs_2(C_{12}H_{24}O_6)(H_2O)$ Sint Sint Sint Sint Sint Sint Sint Sint 			5.4.4.1 Züchtung von Cs _{2-x} Rb _x CuBr ₄ mit der	
5.4.4.2 Charakterisierung von Cs _{2-x} Rb _x CuBr ₄			Bridgmanmethode	1
 5.5 Zusammenfassung Röntgenpulverdiffraktometrie bei tiefen Temperaturen.1 Physikalische Eigenschaften der orthorhombischen und tetragonalen Phase des Mischsystems Einkristalle mit Kronenethermolekülen: Züchtung und Eigenschaften			5.4.4.2 Charakterisierung von Cs _{2-x} Rb _x CuBr ₄	1
Röntgenpulverdiffraktometrie bei tiefen Temperaturen.1 Physikalische Eigenschaften der orthorhombischen und tetragonalen Phase des Mischsystems 1 Einkristalle mit Kronenethermolekülen: Züchtung und Eigenschaften 1 8.1 Substitution mit Kronenethermolekülen 1 8.1.1 Kristallzüchtung aus wässriger Lösung von Cs2(C12H24O6)(H2O)2Cl22H2O und Cs(C12H24O6)(H2O)BrH2O 8.1.2 Kristallisationszüchtung aus wässriger Lösung des Systems CsBr-[C12H24O6]-CuBr2 8.1.3 Kristallisationszüchtung der Systeme CsBr-[C12H24O6]- CuBr2 und CsCl-[C12H24O6]-CuCl2 aus einer Lömmgermischung aus und Personnel und 2 Personnel	5.5	Zusan	nmenfassung	1
 Eigenschaften	Ph un Eir	ysikal d tetra 1krista	ische Eigenschaften der orthorhombischen agonalen Phase des Mischsystemsa alle mit Kronenethermolekülen: Züchtung un	12 d
 8.1 Substitution mit Kronenethermolekülen	Eig	gensch	naften	13
 8.1.1 Kristallzüchtung aus wässriger Lösung von Cs₂(C₁₂H₂₄O₆)(H₂O)₂Cl_{2.2}H₂O und Cs(C₁₂H₂₄O₆)(H₂O)Br H₂O 8.1.2 Kristallisationszüchtung aus wässriger Lösung des Systems CsBr-[C₁₂H₂₄O₆]-CuBr₂ 8.1.3 Kristallisationszüchtung der Systeme CsBr-[C₁₂H₂₄O₆]- CuBr₂ und CsCl-[C₁₂H₂₄O₆]-CuCl₂ aus einer Lögungsmischung von L Brongool und 2 Brongool 	8.1	Subst	itution mit Kronenethermolekülen	1
 Cs₂(C₁₂H₂₄O₆)(H₂O)₂Cl_{2.2}H₂O und Cs(C₁₂H₂₄O₆)(H₂O)Br H₂O		8.1.1		
 Cs(C₁₂H₂₄O₆)(H₂O)Br H₂O 8.1.2 Kristallisationszüchtung aus wässriger Lösung des Systems CsBr-[C₁₂H₂₄O₆]-CuBr₂			Kristallzüchtung aus wässriger Lösung von	
 8.1.2 Kristallisationszüchtung aus wässriger Lösung des Systems CsBr-[C₁₂H₂₄O₆]-CuBr₂			Kristallzüchtung aus wässriger Lösung von $Cs_2(C_{12}H_{24}O_6)(H_2O)_2Cl_2 H_2O und$	
CsBr-[C ₁₂ H ₂₄ O ₆]-CuBr ₂ 8.1.3 Kristallisationszüchtung der Systeme CsBr-[C ₁₂ H ₂₄ O ₆]- CuBr ₂ und CsCl-[C ₁₂ H ₂₄ O ₆]-CuCl ₂ aus einer			Kristallzüchtung aus wässriger Lösung von $Cs_2(C_{12}H_{24}O_6)(H_2O)_2Cl_2 H_2O und$ $Cs(C_{12}H_{24}O_6)(H_2O)Br H_2O$	1
 8.1.3 Kristallisationszüchtung der Systeme CsBr-[C₁₂H₂₄O₆]- CuBr₂ und CsCl-[C₁₂H₂₄O₆]-CuCl₂ aus einer Lösungsmischung aus 1 Brongrol und 2 Brongrol 		8.1.2	Kristallzüchtung aus wässriger Lösung von $Cs_2(C_{12}H_{24}O_6)(H_2O)_2Cl_{2.2}H_2O$ und $Cs(C_{12}H_{24}O_6)(H_2O)BrH_2O$ Kristallisationszüchtung aus wässriger Lösung des System	1. ms
$CuBr_2$ und $CsCl-[C_{12}H_{24}O_6]$ - $CuCl_2$ aus einer		8.1.2	Kristallzüchtung aus wässriger Lösung von $Cs_2(C_{12}H_{24}O_6)(H_2O)_2Cl_{2.2}H_2O$ und $Cs(C_{12}H_{24}O_6)(H_2O)BrH_2O$ Kristallisationszüchtung aus wässriger Lösung des Syster $CsBr-[C_{12}H_{24}O_6]-CuBr_2$	1 ms
L is a contract of the cont		8.1.2 8.1.3	Kristallzüchtung aus wässriger Lösung von $Cs_2(C_{12}H_{24}O_6)(H_2O)_2Cl_{2.2}H_2O$ und $Cs(C_{12}H_{24}O_6)(H_2O)BrH_2O$ Kristallisationszüchtung aus wässriger Lösung des System $CsBr-[C_{12}H_{24}O_6]-CuBr_2$ Kristallisationszüchtung der Systeme $CsBr-[C_{12}H_{24}O_6]$ -	1 ms 1
LONINGSHIISCHING AUS 1-PLODADOL UDO 7-PLODADOL		8.1.2 8.1.3	Kristallzüchtung aus wässriger Lösung von $Cs_2(C_{12}H_{24}O_6)(H_2O)_2Cl_{2.2}H_2O$ und $Cs(C_{12}H_{24}O_6)(H_2O)BrH_2O$ Kristallisationszüchtung aus wässriger Lösung des System $CsBr-[C_{12}H_{24}O_6]-CuBr_2$ Kristallisationszüchtung der Systeme $CsBr-[C_{12}H_{24}O_6]$ - $CuBr_2$ und $CsCl-[C_{12}H_{24}O_6]-CuCl_2$ aus einer	1 ms 1

8.2	Idee eines "Baukastensystems" für die Modellierung	
	von Einflussparametern auf die Kristallzüchtung	149
	8.2.1 Kristallzüchtung und Charakterisierung von	
	Kupferchlorid und Kupferbromid mit $C_{10}H_{20}O_5$	149
	8.2.2 Kristallzüchtung und Charakterisierung von	
	Kupferchlorid mit C ₈ H ₁₆ O ₄	155
	8.2.3 Kristallzüchtung und Charakterisierung von	
	Kupferchlorid und Kaliumchlorid mit C ₈ H ₁₆ O ₄	165
8.3	Diskussion und Ausblick	175
8.4	Zusammenfassung	176
9 Zus	ammenfassung1	179
Literatu	rverzeichnis	181
Anhang		189
Anlage 5.	1: Die Messergebnisse der EDX-Untersuchung verschiedene	
	Phasen der Kristallzüchtung bei 8°C	189
Anlage 5.	2: Verfeinerungsdaten für die orthorhombische Modifikation bei	
	Zimmertemperatur	190
Anlage 5.	3: Ergebnisse der Verfeinerung für die orthorhombische	
-	Modifikation – Ergebnisse der Untersuchungen mittels	
	Neutronenstreuung	191
Anlage 5.	4: Verfeinerungsdaten für die tetragonale Modifikation bei	
-	Zimmertemperatur	192
Anlage 5.	5: Verfeinerungsdaten für die Zusammensetzung Cs ₃ Cu ₃ Cl ₈ OH	
	bei 173K	193
Anlage 6.	1: Verfeinerungsdaten für die orthorhombische Modifikation von	
	Cs ₂ CuCl ₄ , Cs ₂ CuCl ₃ Br ₁ , Cs ₂ CuCl ₂ Br ₂ , Cs ₂ CuBr ₄ bei 20K	194
Anlage 8.	1: Das Strukturbild der asymmetrischen Einheit für die beiden	
	Zusammensetzungen: (1) $Cs_2(C_{12}H_{24}O_6)(H_2O)2Cl_2 \cdot 2H_2O$	
	und (2) $Cs(C_{12}H_{24}O_6)(H_2O)Br \cdot H_2O$	195
Anlage 8.	2: Das Strukturbild der asymmetrischen Einheit für die	
-	C ₃₆ H ₇₂ Cs ₂ O ₁₈ ,2(C ₂₄ H ₄₈ Br ₄ Cs ₂ Cu O ₁₂),Br ₆ Cu ₂	
	Zusammensetzung	196
Anlage 8.	3: Die Zusammensetzung $[CuCl_2(H_2O)_2]C_{12}H_{24}O_6 \cdot 2H_2O \dots$	197
Anlage 8.	4: Verfeinerungsdaten für die Zusammensetzung	
-	$K(C_8H_{16}O_4)_2CuCl_3H_2O$ bei 173K	198
Verwend	lete Chemikalien	199

Abbildungsverzeichnis

Abbildung 2.1:	Elementarzelle von Cs ₂ CuCl ₄	3
Abbildung 2.2:	Angaben zur Kristallisation bei einer Temperatur von	
8	25°C und zu den kristallisierten Phasen [Vas76]	4
Abbildung 2.3:	Die Anordnung der $[CuCl_{4}]^{2}$ Tetraeder in der bc-Ebene	
8	und die Kopplungskonstanten J und J ^{(·} , a) für das 2D	
	Gitter und b) für das quasi 2D Gitter. In grau ist die	
	nächste Nachbarebene in Richtung der a-Achse	
	eingezeichnet I'' ist die Konnlungskonstante mit dieser	
	Fhene	6
Abbildung 2 4.	Schematisches magnetisches Phasendiagram von	0
Abbildung 2.4.	Cs-CuCl. [Col03]	7
Abbildung 2.5.	Messung der spezifischen Wärme von Cs-CuCL: a) im	/
Abbildung 2.5.	Null-Feld b) in der Nähe des kritischen Feldes in	
	Abhängigkeit von der Feldstärke [Rad05]	8
Abbildung 2.6.	Die Anordnung der [CuBr4] ²⁻ Tetraeder in der be-	0
Abbildung 2.0.	Ebene und die Konnlungskonstanten Lund I'	0
Abbildung 27.	Messungen der snezifischen Wärme von	
Abbildung 2.7.	$C_{s}C_{u}(\mathbf{Br}, C_{s})$, mit $x \leq 0.007$; a) im Null Feld in	
	$C_{2}Cu(D_{1-x}C_{1x})_{4}$ lint $x \ge 0.097$. a) lint Null-Feld lint Abbängigkeit von der Temperatur und der Cl	
	Abilangigken von der Temperatur und der Ci	
	Dotter ung und b) für einen wert der Cr Dotter ung $(x = 0.02)$ antiene der e. Aches in Abhängigkeit som	
	(x = 0.05) entiang der a-Achse in Abhangigkeit von Temperatur und Magnetfeld [One05]	10
A h h : 1 d	Deignicle für Mehre explere mit sonschieden en	. 10
Abbildung 2.8:	Beispiele für Makrocyclen mit verschiedenen	
	Donoratomen' Sauerston (links), Amino-NH-Gruppen	11
	(Mitte) und Schwefel (rechts) [Chr/4]	
Abbildung 2.9:	Komplexbildungskonstanten K (logarithmisch	
	autgetragen) für Reaktion in Methanol für die	
	verschiedenen cyclischen Polyether (Abhangigkeit von	
	der Ringgroße) in Abhangigkeit von der Ordnungszahl	10
	des Donoratoms (Na+, K+, Cs+) [Chr/4]	12
Abbildung 2.10:	Drei Beispiele von Kronenether-Komplexen mit Li	
	Sandwichkomplex mit zwei [12]krone-4 (links),	
	Sandwichverbindung mit zwei [12]krone-4 (Mitte),	
	Komplex Li ⁺ und [15]krone-5 (rechts) [Ste01]	13

Struktur vom Komplex [(LiCl)([12]krone-4)]. Die	
Li-O Abstände betragen 2.128 Å und der Abstand	
Li-Cl ist 2.290 Å. Durch die Konformationsänderung	
wird ein kronenartiger Aufbau gebildet [Bel99]	13
Struktur vom Komplex [(CuCl ₂)([12]krone-4)]. Die	
Cu-O Abstände liegen zwischen 2 113 Å und 2 403 Å	
und die Abstände Cu-Cl betragen 2 214 Å und 2 228 Å	
Durch die Konformationsänderung wird auch hier ein	
kronenartiger Aufbau gebildet [Rem75]	14
Fragment der Struktur vom Komplex	1 1
[(CuCl2)([15]krone-5)] für ein molares Verhältnis	
$1 \cdot 1$ [Str01]	14
Finheitszelle von [[15]krone-5-CuCl(CH.CN)]CuCl.	17
[Fen00]	15
Beiträge zur Änderung der freien Enthalnie ACK	10
(nach Vorlage von W Klaber [Kla08 S 202])	19
(liach vollage voll w. Klebel [Kle98, 5.205])	10
Ronzentration entres gelosten stones in der Nahe der Dhasengrenze c^{S} ist die Konzentration in der	
$V_{ristallphase}$ und σ_{rist} die Nonzentration in der	
Diffusionagronzachicht [Wil99, S 102]	10
Läglightgitadiagramm nach Varlage von Margmann	19
[Mar05 S 440]	21
[MC103, 5.449]	
Austreliung von Stolungen beim Kristanwachstum	
Wesh struggfront h) has an en bankaryan	
Wash struggfront, D) bel einer konkaven	
Wash stars forst Initiary and Structure and heil	
wachstumsfront; initilerung von Storungen bei 1,	
Herauswachsen bei 2 und Ausbreitung bei 3 [Wil88,	22
S.5//]	23
a) Schematische Darstellung des Ofens für die	
Zuchtung mit der Bridgman Methode und b)	24
I emperaturprofil bei 600°C	24
Vergleich der Aufspaltung der d Orbitale im a)	
oktaedrischen und b) tetraedrischen Ligandenfeld	07
[Lut98, S. 199]	27
Typische Verläufe: a) der Temperaturabhängigkeit der	
magnetischen Suszeptibilität und b) des effektiven	• •
magnetischen Moments	28
Schematische Darstellung der Wärmeströme in einem	
DTA-Gerät nach Vorlage von Hemminger et al.	
[Hem89, S.6]	32
	Struktur vom Komplex [(LiCl)([12]krone-4)]. Die Li-O Abstände betragen 2.128 Å und der Abstand Li-Cl ist 2.290 Å. Durch die Konformationsänderung wird ein kronenartiger Aufbau gebildet [Bel99] Struktur vom Komplex [(CuCl ₂)([12]krone-4)]. Die Cu-O Abstände liegen zwischen 2.113 Å und 2.403 Å und die Abstände Cu-Cl betragen 2.214 Å und 2.228 Å. Durch die Konformationsänderung wird auch hier ein kronenartiger Aufbau gebildet [Rem75] Fragment der Struktur vom Komplex [(CuCl2)([15]krone-5)] für ein molares Verhältnis 1 : 1 [Str91] Einheitszelle von [[15]krone-5-CuCl(CH ₃ CN)]CuCl ₃ [Fen90] Beiträge zur Änderung der freien Enthalpie ΔGK (nach Vorlage von W. Kleber [Kle98, S.203]) Konzentration eines gelösten Stoffes in der Nähe der Phasengrenze. c^8 ist die Konzentration in der Kristallphase und σ ist die Dicke einer Diffusionsgrenzschicht [Wil88, S.192] Löslichkeitsdiagramm nach Vorlage von Mersmann [Mer05, S.449] Ausbreitung von Störungen beim Kristallwachstum aus einer Schmelze: a) bei einer konvexen Wachstumsfront; b) bei einer konvexen Wachstumsfront; I und II Positionen der Wachstumsfront; I und II Positionen der Wachstumsfront; I und II Positionen der Wachstumsfront; I und Hostietung bei 3 [Wil88, S.577] a) Schematische Darstellung des Ofens für die Züchtung mit der Bridgman Methode und b) Temperaturprofil bei 600°C Vergleich der Aufspaltung der d Orbitale im a) oktaedrischen und b) tetraedrischen Ligandenfeld [Lut98, S.199] Typische Verläufe: a) der Temperaturabhängigkeit der magnetischen Suszeptibilität und b) des effektiven magnetischen Darstellung der Wärmeströme in einem DTA-Gerät nach Vorlage von Hemminger et al. [Hem89, S.6]

Abbildung 4.2:	Beispiel einer Messkurve für eine endotherme	
8	Reaktion [Hem89, S.144]	
Abbildung 4.3:	AnlageSTA 409"	35
Abbildung 4.4:	Anlage "STA 409"– schematische Darstellung [Net]	
Abbildung 4.5:	Elemente des Probenträgers und ein Beispiel von zwei	
	Ouarzampullen nach dem Versuch	
Abbildung 4.6:	Zweikreisdiffraktometer	38
Abbildung 4.7:	Bragg-Brentano Geometrie [Sie]	39
Abbildung 4.8:	Entstehende Emissionsprodukte (nach Vorlage von	
in the second se	Physik in unserer Zeit" [Phy85])	41
Abbildung 4.9:	Schematische Darstellung des	1
in the second se	Rasterelektronenmikroskops DSM 940 A" der Firma	
	Zeics [Zei]	43
Abbildung 4 10.	Interferenzfiguren: a) senkrecht zur ontischen Achse	
Abbildung 4.10.	b) c) und d) generat zur ontischen Achse [Fue91]	46
Abbildung 4 11.	Schema des Vibrations-Magnetometers nach Vorlage	+0
Abbildung 4.11.	I ueken [] ueQ0 S 65]	18
Abbildung 112.	Verlauf der Magnetisierung von Varnish als Funktion	40
Abbildung 4.12.	der Temperatur für ein Magnetfeld von 1T	40
Abbildung 5 1.	Anlagerung von Teileben en der Oberflöche eines	
Abbildung 5.1:	Easthämmers (Eastmass)	52
Abbildung 5 2.	Ca CuCl (Züchtungstemperatur 50°C	55
Abbildung 5.2:	Züchtungsdeuer 2.4 Weehen Verdungstungerete	
	28.55 mg/Stundo	51
Abbildung 5 2.	26.55 mg/ stunde	34
Abbildung 5.5:	Cs_2CuCl_4 (Zuchlungsteinperatur 50 C,	55
Abbildung 5 4.	Zuchtungsdauer 15 Monate)	33
Abbildung 5.4:	Cs ₂ CuCl ₄ - Zuchlungstemperatur 24 °C. a)	
	24.25 mg/Stunda, h) Züchtungsdauen O Menete	
	24.55 mg/Stunde, 0) Zuchtungsdauer 9 Monate,	55
Abbild	verdunstungsrate 9.74 mg/Stunde	
Abbildung 5.5:	a) Spatinache der Cs ₂ CuCl ₄ -Probe, b) Laueaumanme	
Abbildung 5 (und Bestimmung der $(0, 0, 1)$ Flache	33
Abbildung 5.6:	$C_{3}C_{18}OH$ (Zucntungstemperatur 24°C)	30
Abbildung 5.7:	Cs2CuCl4 (Zuchtungstemperatur 8°C)	36
Abbildung 5.8:	Cs_2CuCl_4 (Zuchtungstemperatur 8°C): bei	
	Zimmertemperatur nach dem Phasenubergang	36
Abbildung 5.9:	Cs_2CuCl_4 Kristall (Zuchtungstemperatur 8°C), der	
	unmitteibar nach der Zuchtung auf 80 K abgekült	
	wurde	56
Abbildung 5.10:	Neue Phase Cs3Cu3Cl8OH in dem Phasendiagramm	
	$CsCI-CuCl_2-H_2O$ bei 25°C [Sob81]	57

Abbildung 5.11:	Temperaturverlauf im Thermoschrank für 24 Stunden	58
Abbildung 5.12:	Cs ₂ CuCl ₄ 2H ₂ O (Züchtungstemperatur 16°C)	60
Abbildung 5.13:	Cs ₂ CuBr ₄ - Züchtungstemperatur a) 50°C, b) 24°C	
0	und c) 8°C	60
Abbildung 5.14:	$C_{s_2}C_uCl_{32}Br_{08}$ (Züchtungstemperatur 24°C,	
0	Züchtungsdauer 9 Monate)	61
Abbildung 5.15:	$Cs_2CuCl_{24}Br_{16}$ – Züchtungstemperatur: a) 50°C und	
0	b) 24°C	61
Abbildung 5.16:	Einkristalle (Züchtungstemperatur 8°C):	
8	a) $Cs_2CuCl_{32}Br_{0.8}$, b) $Cs_3Cu_2Cl_{6.6}Br_{0.4} \cdot 2H_2O$? und	
	c) $Cs_3Cu_3Cl_{7,3}Br_{0,7}OH$	62
Abbildung 5.17:	Pulverdiffraktometrie für Cs ₂ CuCl _{4-x} Br _x	
0	(Züchtungstemperatur 24°C). Die orthorhombische	
	Phase (Pnma) wird durch die tetragonale Phase	
	(I4/mmm) im Bereich von $1 \le x \le 2$ unterbrochen	68
Abbildung 5.18:	Pulverdiffraktometrie für Cs ₂ CuCl _{4-x} Br _x (Züchtungs-	
_	temperatur 50°C). Im gesamten Konzentrationsbereich	
	liegt die orthorhombische Phase vor	68
Abbildung 5.19:	Normierte Elementarzellvolumina in Abhängigkeit	
_	des Br Gehalts: a) Züchtungstemperatur 50°C,	
	b) Züchtungstemperatur 24°C, Existenz eines	
	tetragonalen Strukturtyps	69
Abbildung 5.20:	Strukturmodell der orthorhombischen Phase von	
	Cs ₂ CuCl _{4-x} Br _x , Raumgruppe Pnma	70
Abbildung 5.21:	Rietveld-Verfeinerung für zwei repräsentative	
	Zusammensetzungen: a) orthorhombischer Strukturtyp	
	– Pnma, b) tetragonaler Strukturtyp – I4/mmm. Die	
	gemessenen Daten und das kalkulierte Profil für die	
	verfeinerte Struktur zeigen eine gute Übereinstimmung.	
	Die Differenz zwischen den simulierten und den	
	gemessenen Daten ist jeweils darunter zu sehen	71
Abbildung 5.22:	Strukturmodell der Einheitszelle von Cs ₂ CuCl ₂ Br ₂	
	(tetragonalen Phase, Raumgruppe I4/mmm)	73
Abbildung 5.23:	Vergleich dreier Raumgruppen – I4/mmm, I-4c2 und	
	Bbcm, unter der Voraussetzung vergleichbarer	
	Baueinheiten	74
Abbildung. 5.24:	a) Tieftemperatur-Pulverdiffraktogramme für	
	Cs ₂ CuCl _{2.2} Br _{1.8} bei verschiedenen Temperaturen,	
	b) Ausgewählter Winkelbereich von 31° bis 35°	76

Abbildung 5.25:	a) Pulverdiffraktommetrie von drei Zusammen-	
0	setzungen der tetragonalen Phase bei 300 K.	
	b) Pulverdiffraktommetrie derselben	
	Zusammensetzungen bei 20 K	77
Abbildung 5.26:	Pulverdiffraktometrieergebnisse von Cs ₂ CuCl ₂ ₂ Br ₁₈ .	
8	gemessen am SLS des PSI Villigen bei 295 K und 4 K	
	und Nahaufnahme des Bereichs von 37° bis 39.7°	78
Abbildung 5.27:	Relative Längenänderung der Gitterkonstanten mit	
	ansteigender Br Konzentration, a) Überblick.	
	b) detaillierte Ansicht der Längenänderungsanisotropie	80
Abbildung 5.28:	Strukturbild von Cs ₂ Cu ₂ Cl ₈ OH, RG P2 ₁ /c in Richtung	
8	b-Achse	81
Abbildung 5.29:	Oktaedrische Cu ²⁺ Umgebung in Cs ₃ Cu ₃ Cl ₈ OH	82
Abbildung 5.30:	Pulverdiffraktogramme von Cs ₃ Cu ₃ Cl ₈ OH und	
8	Cs ₃ Cu ₃ Cl ₇ ₃ Br ₀ ₇ OH a) im Vergleich; beide Zusammen-	
	setzungen gehören zur monoklinen Raumgruppe $P2_1/c$,	
	b) detaillierte Ansicht, die die charakteristische	
	Verschiebung der Gitterkonstanten zeigt	83
Abbildung 5.31:	REM Aufnahme des Kristall mit der	
0	Zusammensetzung Cs ₃ Cu ₃ Cl ₇ Br ₁ OH	84
Abbildung 5.32:	Schematisches Phasendiagramm für das Mischsystem	
0	$Cs_2CuCl_{4-x}Br_x$	85
Abbildung 5.33:	Interferenzbild für den optisch einachsigen Kristall	
U U	$Cs_2CuCl_{2,4}Br_{1,6}$	86
Abbildung 5.34:	Interferenzbild für den optisch einachsigen Kristall	
	Cs ₂ CuCl ₄ (Züchtungstemperatur 8°C)	86
Abbildung 5.35:	DTA von einem neu gezüchteten tetragonalen Kristall	
	mit der Zusammensetzung Cs ₂ CuCl _{2.5} Br _{1.5}	87
Abbildung 5.36:	a) DTA von einem Cs ₂ CuCl _{2.5} Br _{1.5} Kristall, der bei 24°C	
	gezüchtet und dann ein Jahr lang an der Umgebungsluft	
	gelagert wurde, b) DTA von einem Cs ₂ CuCl _{2.2} Br _{1.8}	
	Kristall, der bei 24°C gezüchtet und dann drei Jahre lang	
	an der Umgebungsluft gelagert wurde	89
Abbildung 5.37:	DTA-Verlauf nach dem Mahlen des Kristalls	
	Cs ₂ CuCl _{2.2} Br _{1.8} bei tiefen Temperaturen. Dieser	
	Kristall wurde bei 24°C gezüchtet und dann drei Jahre	
	lang an der Umgebungsluft gelagert	90
Abbildung 5.38:	Verlauf der Abkühlkurven für das Cs ₂ CuCl _{4-x} Br _x	
	Mischsystem	92
Abbildung 5.39:	Verlauf der Aufheizkurven für das Cs ₂ CuCl _{4-x} Br _x	
	Mischsystem	93

Abbildung 5.40:	Verlauf für Cs ₂ CuCl _{3.2} Br _{0.8} : Aufheizkurve in schwarz (obere Kurve) und Abkühlkurve in grau (untere	
	Kurve)	94
Abbildung 5.41:	Entwurf eines schematischen Phasendiagramms für das $Cs_2CuCl_{4-x}Br_x$ Mischsystem als quasibinäres System. Die vertikalen Fehlerbalken geben die Unsicherheiten bei der Ermittlung der Solidus- und Liquidustemperatur wieder. In diesem Fall liegt der relative Fehler bei der	
	zwischen 6 % und 8 %	05
Abbildung 5.42:	Röntgenpulverdiffraktometrie-Aufnahmen ausgewählter Zusammensetzungen des Mischsystems	
Abbildung 5 12.	Böntgennulverdiffrektemetrie Vergleich für Kristelle:	97
Abbildung 5.45:	contgenpuiverunnraktometrie-vergieten für Kristalle.	98
Abbildung 5 44.	Unsicherheit der Besetzung der Atomnositionen der	90
Abbildung 5.44.	Zusammensetzungen: Cs ₂ CuCl ₂ ₂ Br _{6.0} Cs ₂ CuCl ₂ Br ₁	
	$C_{s_2}C_{u}C_{l_2}B_{r_2}$ und $C_{s_2}C_{u}C_{l_3}B_{r_2}$	100
Abbildung 5.45:	Die vorbereiteten Pulverproben von links nach rechts:	100
	Vergleichsprobe, Cs ₂ CuCl ₄ , Cs ₂ CuCl ₂ Br ₁ ,	
	$Cs_2CuCl_2Br_2$, $Cs_2CuCl_1Br_3$ und Cs_2CuBr_4	102
Abbildung 5.46:	a) Cs_2CuCl_4 Probe in einer Quarzampulle.	
5	b) Querschnitt der Cs ₂ CuCl ₄ -Probe, c) Cs ₂ CuBr ₄	
	Probe in einer Quarzampulle, d) Querschnitt der	
	Cs ₂ CuBr ₄ -Probe	102
Abbildung 5.47:	a) Spaltfläche der Cs ₂ CuBr ₄ -Probe, b) Laueaufnahme	
	und Bestimmung der (0, 0, 1) Fläche	103
Abbildung 5.48:	Homogener Bereich der Proben a) Cs ₂ CuCl ₃ Br ₁ und	
	b) $Cs_2CuCl_2Br_2$	103
Abbildung 5.49:	Homogener Bereich der Cs _{1.7} Rb _{0.3} CuBr ₄ Probe,	
	gezüchtet mit der Bridgmanmethode	103
Abbildung 5.50:	REM-Aufnahmen nach der Schmelzzüchtung:	
	a) Übersichtsaufnahme, die einen Hohlraum mit	
	mehreren Kristallen zeigt und b) Nahaufnahme von	
	einem Cs ₂ CuBr ₄ Kristall, der einen morphologischen	
	Aufbau der Flächen und Kanten zeigt	104
Abbildung 5.51:	Vergleich der Ergebnisse der Röntgenpulver-	
	diffraktometrie von Cs ₂ CuCl ₃ Br ₁ – Proben aus der	
	Bridgmanzüchtung mit denen aus der Lösungszüchtung	105

Abbildung 5.52:	Verlauf der Aufheizkurven für ausgewählte
	Zusammensetzungen des Cs _{2-x} Rb _x CuBr ₄ Mischsystem.
	Alle Messungen sind mit der gleichen Heizrate
	10 K/min aufgenommen worden
Abbildung 5.53:	Röntgenpulverdiffraktometrie: Vergleich von Cs ₂ CuBr ₄
0	und Cs _{1.7} Rb _{0.3} CuBr ₄ , a) Übersichtsaufnahme beider Zu-
	sammensetzungen (Pnma) b) Verschiebung der Reflex-
	lagen von Cs ₁₇ Rb ₀₃ CuBr ₄ im Vergleich zu Cs ₂ CuBr ₄ 109
Abbildung 5.54:	Tieftemperaturuntersuchung von Cs ₁₇ Rb ₀₃ CuBr ₄
Abbildung 6.1:	Tieftemperatur-Pulverdiffraktogramme für
0	ausgewählte Zusammensetzungen bei verschiedenen
	Temperaturen: a) Cs_2CuCl_4 , b) $Cs_2CuCl_3Br_1$,
	c) $Cs_2CuCl_2Br_2$ und d) Cs_2CuBr_4
Abbildung 6.2:	Die normierte relative Längenänderung der
0	Gitterkonstanten mit der Temperatur für: a) Cs ₂ CuCl ₄ ,
	b) $Cs_2CuCl_3Br_1$, c) $Cs_2CuCl_2Br_2$ und d) Cs_2CuBr_4
Abbildung 6.3:	Thermische Ausdehnung der Gitterkonstanten für
0	folgende Zusammensetzungen: a) Cs ₂ CuCl ₄ ,
	b) $Cs_2CuCl_3Br_1$, c) $Cs_2CuCl_2Br_2$ und d) Cs_2CuBr_4 116
Abbildung 6.4:	Thermischen Ausdehnung der Gitterkonstanten der
	Cs ₂ CuCl ₄ Zusammensetzung [Tyl92]117
Abbildung 6.5:	$[CuX_4]^2$ Tetraeder für vier Zusammensetzungen (aus
	den Daten der Röntgenpulverdiffraktometrie bei 20 K)
	mit eingezeichneten Abständen von Cu ²⁺ -Liganden in Å 119
Abbildung 7.1:	Verlauf der Suszeptibilität $\chi_{mol}(T)$ für verschiedene Br
	Konzentrationen b als Funktion der Temperatur für
	1 T. Mit 1 und 2 sind zwei verschiedene Proben
	gekennzeichnet, die aber die gleiche
	Zusammensetzung haben
Abbildung 7.2:	Links: Die schematische Darstellung der magnetischen
	Struktur in Richtung c-Achse für die tetragonale Phase.
	Rechts: Die auf den Strukturtyp I4/mmm übertragene
	schematische magnetische Struktur. Der Abstand der
	Cu-Ebenen, die zueinander versetzt sind, beträgt 8.33 A 125
Abbildung 7.3:	Verlauf der Suszeptibilität $\chi_{mol}(T)$ als Funktion der
	Temperatur für 0.01 T, 0.05 T und 0.1 T Magnetfeld 126
Abbildung 7.4:	Verlauf der Suszeptibilität $\chi_{mol}(T)$ als Funktion der
	Temperatur für 0.01 T, 0.05 T, 0.1 T. Die c-Achse ist
	senkrecht zum Magnetfeld. Die graue Kurve zeigt eine
	Messung, in der die Probe zuvor in einem Magnetfeld
	von 0.05 T abgekühlt wurde 127

Abbildung 7.5:	Effektives magnetisches Moment in Abhängigkeit von
C	der Temperatur für die tetragonale Phase-Cs ₂ CuCl ₄
	(c-Achse steht senkrecht zum Magnetfeld) 128
Abbildung 7.6:	Magnetisierung bei $T = 2 K$ für tetragonale Phase
U	Cs ₂ CuCl ₄
Abbildung 7.7:	Magnetisierung bei $T = 2 K$ für die tetragonale Phase
0	$Cs_2CuCl_{26}Br_{14}$
Abbildung 7.8:	Verlauf der Suszeptibilität $\chi_{mol}(T)$ als Funktion der
8	Temperatur für 0.01 T, 0.05 T, 0.1 T und 1 T
Abbildung 8.1:	Die Bestimmung der "Lochgröße" eines Kronenethers
8	nach Vorlage von Lutz und Gade [Lut98, S.376]134
Abbildung 8.2:	a) Polyether-Kation-Kombination [18]krone-6 mit Cs ⁺
8	und [12]krone-4 mit Li ⁺ und schematische Darstellung
	der Polyether-Kation-Kombinationen 2 : 1 und 1 : 1,
	b) Pnma-Struktur von Cs ₂ CuCl ₄ in Richtung b-Achse,
	wobei die mit schwarz gekennzeichneten Cs-Ione durch
	Polyether-Ion-Kombinationen ersetzt werden sollen
Abbildung 8.3:	Einkristalle auf Milimeterpapier aus wässriger Lösung:
U	$Cs_2(C_{12}H_{24}O_6)(H_2O)2Cl_2\cdot 2H_2O$ und
	b) $C_{s}(C_{12}H_{24}O_{6})(H_{2}O)Br \cdot H_{2}O$
Abbildung 8.4:	Züchtung bei 50°C von
	$Cs_2(C_{12}H_{24}O_6)(H_2O)2Cl_2 \cdot 2H_2O$
Abbildung 8.5:	Zwei gezüchtete Kristalle aus derselben wässrigen
	Lösung (3 : 1 : 1 CsBr - CuBr2 - [18]krone-6):
	a) Kristall mit noch ungeklärter Struktur, b)
	C ₃₆ H ₇₂ Cs ₂ O ₁₈ ,2(C ₂₄ H ₄₈ Br ₄ Cs ₂ Cu O ₁₂),Br ₆ Cu ₂ 139
Abbildung 8.6:	Röntgenpulverdiffraktometrie von
	$Cs_2(C_{12}H_{24}O_6)(H_2O)_2Cl_2\cdot 2H_2O$ und
	$Cs(C_{12}H_{24}O_6)(H_2O)Br \cdot H_2O \dots 139$
Abbildung 8.7:	Vergleich der Röntgenpulverdiffraktogramme der beiden
	aus derselben wässrigen Lösung ($3 : 1 : 1$, CsBr - CuBr ₂ –
	[18]krone-6) gezüchteten Kristalle. Obere Abbildung:
	$C_{36}H_{72}Cs_2O_{18}, 2(C_{24}H_{48}Br_4Cs_2CuO_{12}), BrCu_2; untere$
	Abbildung: Kristall mit noch ungeklärter Struktur 142
Abbildung 8.8:	Kristall mit ungeklärte Struktur: a) Magnetisierung bei
	$I = 2 \text{ K}$, b) Suszeptibilitat $\chi_g(I)$ als Funktion der
	143 Temperatur für zwei verschiedene Magnetfelder
Abbildung 8.9:	$C_{36}H_{72}Cs_2O_{18}, 2(C_{24}H_{48}Br_4Cs_2CuO_{12}), Br_6Cu_2:$
	a) Magnetisierung bei $I = 2 \text{ K}$, b) Suszeptibilität
	$\chi_{mol}(I)$ als Funktion der Lemperatur für drei
	verschiedene Magnetteider

Abbildung 8.10:	Röntgenpulverdiffraktometrie Ergebnisse für: Obere	
0	Abbildung: $[CuCl_2(H_2O)_2] \cdot C_{12}H_{24}O_6 \cdot 2H_2O$ und untere	
	Abbildung: $[CuBr_2(H_2O)_2] \cdot C_{12}H_{24}O_6 \cdot 2H_2O$	5
Abbildung 8.11:	Einkristalle a) $[CuCl_2(H_2O)_2] \cdot C_{12}H_{24}O_6 \cdot 2H_2O$ und	
0	b) $[CuBr_2(H_2O)_2] \cdot C_{12}H_{24}O_6 \cdot 2H_2O14$	5
Abbildung 8.12:	Einkristalle: a) $(C_{10}H_{20}O_5)CuCl_2 H_2O-?, b)$	
0	$(C_{10}H_{20}O_5)CuBr_2 \cdot 2H_2O$	6
Abbildung 8.13:	Einkristall ($C_8H_{16}O_4$)CuCl ₂	6
Abbildung 8.14:	Einkristall K($C_8H_{16}O_4$) ₂ CuCl ₃ ·H ₂ O	6
Abbildung 8.15:	Struktur: a) $[CuBr_2(H_2O)_2] \cdot C_{12}H_{24}O_6 \cdot 2H_2O$ mit Abstand	
0	der Cu-Einheiten von 7.4418(5)Å in Richtung a-Achse	
	und 10.1510(2)Å in Richtung c-Achse,	
	b) $[CuCl_2(H_2O)_2] \cdot C_{12}H_{24}O_6 \cdot 2H_2O$ mit Abstand der	
	Cu-Einheiten von 7.3884(8) Å in Richtung a-Achse und	
	10.336(1) Å in Richtung der Diagonalen der ac-Ebene 14	8
Abbildung 8.16:	Rietveld-Verfeinerung für (C ₁₀ H ₂₀ O ₅)CuBr ₂ ·2H ₂ O. Die	
0	graue Linie zeigt das berechnete Profil für die	
	verfeinerte Struktur. Die Kreuze geben die gemessenen	
	Daten des Diffraktogramms wieder. Die Differenz	
	zwischen simulierten und gemessenen Daten ist	
	darunter zu sehen	50
Abbildung 8.17:	Struktur von (C ₁₀ H ₂₀ O ₅)CuBr ₂ ·2H ₂ O mit Abständen	
	der Cu – Einheiten von 8.019(4) Å und 8.213(3) Å 15	1
Abbildung 8.18:	$(C_{10}H_{20}O_5)CuBr_2 \cdot 2H_2O$: Suszeptibilität $\chi_{mol}(T)$ als	
	Funktion der Temperatur für 1T Magnetfeld (Vier-	
	ecke) und inverse Suszeptibilität $\chi^{-1}_{mol}(T)$ als Funktion	
	der Temperatur (Kreise). Die Messfehler sind durch	
	die Größe der Punkte angegeben 15	62
Abbildung 8.19:	$(C_{10}H_{20}O_5)CuBr_2 \cdot 2H_2O: a)$ Effektives magnetisches	
	Moment in Abhängigkeit von der Temperatur, b)	
	Magnetisierung bei $T = 2 K$ und Anpassung durch die	
	Brillouin-Funktion	4
Abbildung 8.20:	Rietveld-Verfeinerung für $(C_8H_{16}O_4)CuCl_2$. Die graue	
	Linie zeigt das berechnete Profil für die verfeinerte	
	Struktur. Die Kreuze geben die gemessenen Daten des	
	Diffraktogramms wider. Die Differenz zwischen den	
	simulierten und den gemessenen Daten ist darunter	
	eingetragen	15
Abbildung 8.21:	Asymmetrische Einheit von $(C_8H_{16}O_4)CuCl_2$ 15	6
Additidung 8.22:	Struktur von $(C_8H_{16}O_4)CuCl_2$, Kettenrichtung entlang	
	der a-Achse	• /

Abbildung 8.23:	Struktur von (C ₈ H ₁₆ O ₄)CuCl ₂ , Ansicht der Ketten-	
	Richtung entlang der c-Achse	157
Abbildung 8.24:	$(C_8H_{16}O_4)CuCl_2$: Suszeptibilität $\chi_{mol}(T)$ als Funktion	
	der Temperatur für 1 T Magnetfeld (Vierecke) und	
	inversen Suszeptibilität $\chi^{-1}_{mol}(T)$ als Funktion der	
	Temperatur (Kreise). Die Messfehler entsprechen der	
	Größe der Punkte	158
Abbildung 8.25:	$(C_{8}H_{16}O_{4})CuCl_{2}$: Effektives magnetisches Moment in	
	Abhängigkeit von der Temperatur	160
Abbildung 8.26:	Magnetisjerung in Abhängigkeit der Feldstärke bei 2 K	161
Abbildung 8 27	a) Verlauf der Suszentibilität von $(C_0H_1(\Omega_1)C_1)$ und	
110011dung 0.27.	Annassung der Suszeptibilitätsgleichung mit einem	
	Modell einer magnetischen Kette ($S_{1} = S_{2} = \frac{1}{2}$) b)	
	detaillierte Ansicht	163
Abbildung 8 28.	a) Verlauf der Suszentibilität von (C-H. O.)CuCl- und	105
Abbildung 0.20.	Annassung der Suszeptibilitätsgleichung mit einem	
	An passing der Suszeption tatsgreichung mit einem aussi 1D Kattenmedell ($S_1 = S_2 = 1/2$)	165
Abbildung 8 20.	$V(C \parallel O)$ CuCl $\parallel IO$ asymptotic scherologie	165
Abbildung 8 20.	$K(C_8\Pi_{16}O_4)_2 CuCl_3 \Pi_2 O - asymmetrische Emmetrichen Struktur von K(C, H, O), CuCl, H, O mit weeheeln den$	100
Abbildung 6.50:	Struktur von $K(C_8 \Pi_{16} O_4)_2 CuC_{13} \Pi_2 O$ mit weensemden	
	Abstanden der Cu-Einnelten entlang der D-Achse: $5.0090(7)$ Å mmd (7521(7) Å	1//
Abbild	5.9989(7) A und 6.7531(7) A	100
Additional 8.51:	schematische Darstellung der dinuklearen Cu-Einnelt	1(7
ALL!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	Structure and K(C, H, C) Corolla H, C mit Albetin der	10/
Abbildung 8.52:	Struktur von K($C_8H_{16}O_4$) ₂ CuCl ₃ ·H ₂ O mit Abstanden	
	der Cu-Einneiten von 10.6431(7) A entlang der	1.0
		168
Abbildung 8.33:	$K(C_8H_{16}O_4)_2CuCl_3 H_2O$: Suszeptibilitat $\chi_{mol}(I)$ als	
	Funktion der Temperatur für T T Magnetfeld $(U_1^{(1)}, 1) = 1$	
	(Vierecke) und die inversen Suszeptibilität $\chi^{+}_{mol}(I)$	1.00
		169
Abbildung 8.34:	$K(C_8H_{16}O_4)_2CuCl_3H_2O$ - Effektives magnetisches	171
	Moment in Abhangigkeit von der Temperatur	1/1
Abbildung 8.35:	$K(C_8H_{16}O_4)_2CuCl_3H_2O$ - Die Magnetisierung bei	1 7 0
	1=2K und Anpassung der Brillouin-Funktion	172
Abbildung 8.36:	a) Verlauf der Suszeptibilität von	
	$K(C_8H_{16}O_4)_2CuCl_3 \cdot H_2O$ und Anpassung der	
	Suszeptibilitätsgleichung mit einer dinuklearen	
	Einheit ($S_1 = S_2 = \frac{1}{2}$), b) detaillierte Ansicht	174

Tabellenverzeichnis

Tabelle 2.1:	Strukturdaten einiger Phasen der Systeme CsCl-CuCl ₂ -H ₂ O	
	bzw. CsBr-CuBr ₂ -H ₂ O	.4
Tabelle 5.1:	Ergebnisse der EDX-Untersuchung der orthorhombischen	
	Phase (Kristallzüchtung bei 50°C)	55
Tabelle 5.2:	EDX – Untersuchung der tetragonalen Phase	
	(Kristallzüchtung bei 24°C)	56
Tabelle 5.3:	Abstände zwischen Cu ²⁺ Ionen und Spitzen des Oktaeders	32
Tabelle 5.4:	Einwaagezusammensetzungen, EDX – Analyse der	
	Zusammensetzungen nach der DTA-Untersuchung und die	
	Solidus- und Liquidustemperaturen) 6
Tabelle 5.5:	Ergebnisse der Verfeinerung der Gitterkonstanten und	
	Atompositionen von Cl und Br. Der relative Fehler bezieht	
	sich auf die Abweichung von einer vollständigen selektiven	
	Besetzung (Br2 \rightarrow 1.0).) 9
Tabelle 5.6:	Vergleich der EDX-Ergebnisse der ausgewählten Proben	
	aus der Bridgmanzüchtung und aus der Lösungszüchtung 10)5
Tabelle 5.7:	EDX-Analyse der kristallisierten Phase für die Verbindung	
	$Cs_{1,7}Rb_{0,3}CuBr_4$)8
Tabelle 5.8:	Vergleich der Gitterkonstantenwerte von Cs ₂ CuBr ₄ und	
	$Cs_1 Rb_0 CuBr_4$)8
Tabelle 6.1:	Analytische Funktionen der thermischen	
	Ausdehnungskoeffizienten der untersuchten	
	Zusammensetzungen	17
Tabelle 6.2:	Koeffizienten der thermischen Ausdehnung bei 275 K 11	18
Tabelle 6.3:	Veränderung der Abstände und Winkel von Cu ²⁺ zu Cu ²⁺ 12	20
Tabelle 8.1:	Das Verhältnis Cs zu Br und Cs zu Cl in den untersuchten	
	Kristallen (durchgeführt mittels EDX-Analyse)13	38
Tabelle 8.2:	Zusammensetzung der beiden Kristalle der Abbildung 8.5	
	aus derselben wässrigen Lösung (3 : 1 : 1, CsBr - CuBr ₂ -	
	[18]krone-6)	41
Tabelle 8.3:	Abstände und Winkel der dinuklearen Cu-Einheit16	58

Abkürzungsverzeichnis

beziehungsweise
Dichtefunktionaltheorie
Differenzthermoanalyse
Energy Dispersive X-Ray Analysis
The goodness of fit
Kapitel
Ordnungszahl
Primärelektron
Physical Property Measurement System der Firma Quantum
Design
Paul Scherrer Institut, Villigen (Schweiz)
Rasterelektronenmikroskop
Rückstreuelekron
Raumgruppe
Seite
Sekundärelektron
Synchroton Light Source
unter anderem
Vibrating Sample Magnetometer

1 Einleitung

Viele Erkenntnisse der Forschung der letzten Jahrzehnte führten zu unzähligen Innovationen der modernen Technik, die unser Leben nachhaltig verändert haben. In diesem Zusammenhang gehören Quantenphänomene zu den faszinierendsten Ereignissen der Forschung, da diese zu einem besseren Verständnis der Ordnungsmechanismen in Materialien mit korrelierten Elektronen führen. Dieses Wissen ist wichtig, um daraus beispielsweise Schlussfolgerungen für die Entwicklung von leistungsfähigeren Supraleitern ziehen zu können.

Das Ziel dieser Arbeit ist die Entwicklung von Materialien, die quantenkritische Phänomene zeigen. Durch die Synthese, Züchtung und Charakterisierung von Materialien werden Erkenntnisse über die Systematik der Veränderung der physikalischen Eigenschaften ermittelt.

Ausgehend von den bereits bekannten und gut untersuchten Randsystemen Cs_2CuCl_4 und Cs_2CuBr_4 , die triangulare Antiferromagnete sind, geht es in dieser Arbeit insbesondere um das Mischsystem $Cs_2CuCl_{4-x}Br_x$. Dieses bildet ein isostrukturelles System durch kontrollierte Substitution von Cl und Br, welches, wie auch die Randsysteme, die gleichen triangularen antiferromagnetischen Gitter aufweist. Dabei stellt dieses Mischsystem ein abstimmbares Modell zur Untersuchung des Zusammenhangs zwischen Frustration und quantenkritischem Verhalten dar. Da bei diesem Mischsystem der orthorhombische Strukturtyp unter bestimmten Züchtungsbedingungen beibehalten wird und eine partielle selektive Besetzung der Halogenpositionen möglich ist, kann man den spezifischen Einfluss der selektiven Besetzung auf die magnetischen Eigenschaften untersuchen.

Bis zum Beginn der Arbeit gab es nur wenige Informationen zur Züchtung und zur Struktur der Kristalle dieses Mischsystems [On005]. Von daher fokussiert sich diese Arbeit auf die Züchtung mit unterschiedlichen Parametern und die Charakterisierung der Kristalle des Rand- und Mischsystems. Durch eine Veränderung der Züchtungsparameter wird der Einfluss der Züchtungsbedingungen auf die Struktur und auf die damit einhergehenden physikalischen Eigenschaften der Materialien deutlich.

Einen allgemeinen Überblick über den Stand der Forschung findet sich in Kapitel 2. Die für das Verständnis und für die Beschreibung der in der Arbeit vorgestellten Ergebnisse hilfreichen physikalischen Grundlagen und Charakterisierung-Methoden werden in Kapitel 3 und 4 dargestellt. Das Kapitel 5 zeigt die Ergebnisse der Züchtung und der Untersuchung der Randsysteme und des Mischsystems. Dabei wird das Phasendiagramm (Züchtung aus wässriger Lösung) des Cs₂CuCl₄ Systems um eine neue Phase Cs₃Cu₃Cl₈OH ergänzt, welche