Jörg Mielebacher

Algorithmen zur Gefäßerkennung für die Koronarangiographie mit Synchrotronstrahlung

VIEWEG+TEUBNER RESEARCH

Jörg Mielebacher

Algorithmen zur Gefäßerkennung für die Koronarangiographie mit Synchrotronstrahlung

VIEWEG+TEUBNER RESEARCH

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über <http://dnb.d-nb.de> abrufbar.

Dissertation Universität Siegen, 2009

1. Auflage 2010

Alle Rechte vorbehalten © Vieweg+Teubner | GWV Fachverlage GmbH, Wiesbaden 2010

Lektorat: Ute Wrasmann | Sabine Schöller

Vieweg+Teubner ist Teil der Fachverlagsgruppe Springer Science+Business Media. www.viewegteubner.de

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlags unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Umschlaggestaltung: KünkelLopka Medienentwicklung, Heidelberg Druck und buchbinderische Verarbeitung: STRAUSS GMBH, Mörlenbach Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier. Printed in Germany

ISBN 978-3-8348-1035-9

Danksagung

Mein Dank gilt Herrn Prof. Dr. Wolfgang Merzenich und Herrn Prof. Dr. Albert H. Walenta - Herrn Prof. Walenta für die von ihm angeregte Aufgabenstellung und die Einbeziehung in sein Forschungsprojekt, Herrn Prof. Merzenich für seine Bereitschaft diese interdisziplinäre Arbeit seitens der Informatik zu betreuen. Beide haben mein Vorhaben stets offen, kompetent und engagiert begleitet.

Bedanken möchte ich mich außerdem bei den beteiligten Arbeitsgruppen - insbesondere bei den Mitarbeiterinnen und Mitarbeitern um Prof. Walenta, die mit großem Einsatz die Messungen ermöglicht haben. Herrn Dr. Heinz Werner Schenk gilt mein besonderer Dank für den regelmäßigen Austausch über die physikalischen Aspekte und über seine Erfahrungen mit früheren Experimenten. Herrn Dr. Achim Hennings, Mitarbeiter von Prof. Merzenich, danke ich für den Austausch über den mathematischen Zugang zu der Gefäßerkennung.

Die Zusammenarbeit mit medizinischen Experten der Universität des Saarlandes (Prof. Dr. M. Böhm) und der Universität Duisburg-Essen (Prof. Dr. R. Erbel) war für die Vorbereitung und Durchführung der Messungen unverzichtbar. Die gemeinsamen Gespräche während der Auswertung waren außerordentlich produktiv und haben mir wichtige Einblicke in die kardiologische Forschung eröffnet. Besonders danken möchte ich Frau Dr. Katrin Walenta für ihr Engagement und ihre wertvollen Beiträge während der Messungen und der Auswertung.

Die Mitarbeiter der Beamline ID17 an der European Synchrotron Radiation Facility (ESRF) haben die Messungen tatkräftig unterstützt. Besonders danke ich Herrn Dr. Stefan Fiedler (jetzt EMBL Hamburg) und Herrn Dr. Christian Nemoz für die detaillierten Informationen über die verwendeten Aufnahmesysteme.

Ohne die Unterstützung meiner Familie wäre diese Arbeit nicht möglich gewesen. Meine Frau hat mich stets in meinem Vorhaben bestärkt und war mir eine kritische und kompetente Gesprächspartnerin. Sie und unsere Tochter haben mir an vielen Abenden und Wochenenden geduldig Gelegenheit gegeben, die vorliegende Arbeit abzuschließen.

Inhaltsverzeichnis

1	Einl	eitung	1
2	Gru	ndlagen	5
	2.1	Medizinische Grundlagen	6
	2.2	Technik der Koronarangiographie mit Synchrotronstrahlung	14
	2.3	Datenmaterial	22
3	Vor	verarbeitung	31
	3.1	Eigenschaften der Rohdaten	32
	3.2	Korrekturverfahren	42
	3.3	Logarithmische Subtraktion	48
4	Bild	inhalte	53
	4.1	Übersicht	54
	4.2	Blutgefäße	55
	4.3	Herzinnenräume	63
	4.4	Herzmuskel	70
5	Gef	äßerkennung als Problem der Strukturerkennung	73
	5.1	Definition und Einordnung	74
	5.2	Exkurs: Natürliche Strukturerkennung	75
	5.3	Verfahren der Gefäßerkennung	76
	5.4	Durchführbarkeit und Bewertungskriterien	81
	5.5	Einschränkungen und Lösungsansätze	87
6	Gef	äßerkennung in nichtinvasiven Koronarangiogrammen	93
	6.1	Anwendungsszenario und Anforderungen	94
	6.2	Problemanalyse	95
	6.3	Entwicklung des Erkennungsverfahrens	109
	6.4	Evaluation	114
	6.5	Fazit	126
7	Gef	äßerkennung in selektiven TPI-Aufnahmen	129

Lit	teratu	rverzeichnis	155
8	Fazit	t und Ausblick	151
	7.5	Fazit	147
	7.4	Evaluation	141
	7.3	Entwicklung des Erkennungsverfahrens	138
	7.2	Problemanalyse	131
	7.1	Anwendungsszenario und Anforderungen	130

Abbildungsverzeichnis

1.1	Vergleich der eingesetzten Aufnahmeverfahren	3
2.1	Schnittbild des Herzens mit dargestellten Trabekeln	7
2.2	Koronarangiographie mit unterschiedlichen Aufnahmeverfahren .	12
2.3	Massenschwächungskoeffizient von Gadolinium	16
2.4	Massenschwächungskoeffizienten von Gadolinium, Knochen und	
	Weichgewebe	16
2.5	Vergleich von linearer und logarithmischer Subtraktion	18
2.6	Messanordnung der Angiographie mit Synchrotronstrahlung	19
2.7	Nichtinvasive und selektive Aufnahme eines Schweineherzens	21
2.8	TPI-Aufnahme eines Schweineherzens	23
2.9	Skizze des Stufenphantoms	25
2.10	Aufnahmen des Stufenphantoms	25
2.11	Aufnahme des Gefäßphantoms	26
2.12	Messanordnung für die Untersuchung von Schweineherzen	27
2.13	Subtraktionsbilder des Datensatzes PIGIV1	28
2.14	Subtraktionsbilder des Datensatzes TPI05	29
2.15	Simulierte nichtinvasive Aufnahme eines Schweineherzens	30
3.1	Defekte Bildkanäle in einer Transmissionsaufnahme	33
3.2	Weißfeldmessung für beide Strahlenergien	33
3.3	Bildzeile der Weißfeldmessung für beide Strahlenergien	34
3.4	Messung des kanalweisen Dunkelstroms über 50sec	35
3.5	Messung des Dunkelstroms über 50sec in einem Kanal	36
3.6	Kanalweise Mittelwerte einer Weißfeldmessung	37
3.7	Periodische Störungen des Weißfeldes	37
3.8	Subtraktionssignal bei zeitlich schwankender Strahlintensität	38
3.9	Histogramm einer Leeraufnahme	40
3.10	Auswirkungen der Winkeldivergenz der Fächerstrahlen	41
3.11	Vergleich eines unkorrigierten und korrigierten Subtraktionsbildes	43
3.12	Bildzeile mit und ohne Korrektur defekter Kanäle	45
3.13	Wirkung der Dunkelstrom-/Weißfeld-Korrektur	47

3.14	Kompensation zeitlicher Schwankungen der Strahlintensität	48
3.15	Spaltenprofil einer Aufnahme des Stufenphantoms	50
3.16	Vergleich zweier Zeilen des Stufenphantoms	51
3.17	Nachbearbeitung von Subtraktionsaufnahmen	52
4.1	Bildinhalte bei selektiven und nichtinvasiven Aufnahmen	55
4.2	Weg der Strahlung in einem Gefäßquerschnitt	56
4.3	Vermessung eines Querschnitts der Aorta	58
4.4	Abbild eines senkrecht verlaufenden Blutgefäßes	59
4.5	Abbild eines geneigten Blutgefäßes	60
4.6	Schaubild der Neigungsfunktion	60
4.7	Änderung der Gefäßausrichtung in einer TPI-Aufnahme	61
4.8	Messung der Gefäßbreite im Zeitverlauf	62
4.9	TPI-Subtraktionssignal eines Gefäßquerschnitts	63
4.10	Schemazeichnung der Schnittanalyse von Herzinnenräumen	66
4.11	Schritte der Schnittanalyse der Herzinnenräume	67
4.12	Ergebnisse der Form- und Oberflächenanalyse der Herzinnenräume	69
4.13	Aufnahmen zur Messung der Kontrastmittelausbreitung	71
4.14	Signal des Myokards in Abhängigkeit von der Gefäßentfernung	71
5.1	Sobel-Operatoren angewandt auf eine selektive Aufnahme	78
5.1 5.2	Sobel-Operatoren angewandt auf eine selektive Aufnahme Vergleich von Schwellwert, Gradientenbetrag und Matched Filter .	78 79
5.1 5.2 5.3	Sobel-Operatoren angewandt auf eine selektive Aufnahme Vergleich von Schwellwert, Gradientenbetrag und Matched Filter . Eintreffen des Kontrastmittelbolus nach selektiver Gabe	78 79 82
5.1 5.2 5.3 5.4	Sobel-Operatoren angewandt auf eine selektive Aufnahme Vergleich von Schwellwert, Gradientenbetrag und Matched Filter . Eintreffen des Kontrastmittelbolus nach selektiver Gabe Simulation unterschiedlicher Kontrastmittelkonzentrationen	78 79 82 84
5.1 5.2 5.3 5.4 5.5	Sobel-Operatoren angewandt auf eine selektive Aufnahme Vergleich von Schwellwert, Gradientenbetrag und Matched Filter . Eintreffen des Kontrastmittelbolus nach selektiver Gabe Simulation unterschiedlicher Kontrastmittelkonzentrationen Sensitivität und Spezifität	78 79 82 84 85
5.1 5.2 5.3 5.4 5.5 5.6	Sobel-Operatoren angewandt auf eine selektive Aufnahme Vergleich von Schwellwert, Gradientenbetrag und Matched Filter . Eintreffen des Kontrastmittelbolus nach selektiver Gabe Simulation unterschiedlicher Kontrastmittelkonzentrationen Sensitivität und Spezifität	78 79 82 84 85 88
5.1 5.2 5.3 5.4 5.5 5.6 5.7	Sobel-Operatoren angewandt auf eine selektive Aufnahme Vergleich von Schwellwert, Gradientenbetrag und Matched Filter . Eintreffen des Kontrastmittelbolus nach selektiver Gabe Simulation unterschiedlicher Kontrastmittelkonzentrationen Sensitivität und Spezifität	78 79 82 84 85 88 88
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Sobel-Operatoren angewandt auf eine selektive Aufnahme Vergleich von Schwellwert, Gradientenbetrag und Matched Filter . Eintreffen des Kontrastmittelbolus nach selektiver Gabe Simulation unterschiedlicher Kontrastmittelkonzentrationen Sensitivität und Spezifität	78 79 82 84 85 88 88 88
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Sobel-Operatoren angewandt auf eine selektive Aufnahme Vergleich von Schwellwert, Gradientenbetrag und Matched Filter . Eintreffen des Kontrastmittelbolus nach selektiver Gabe Simulation unterschiedlicher Kontrastmittelkonzentrationen Sensitivität und Spezifität	78 79 82 84 85 88 88 88 89 90
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	Sobel-Operatoren angewandt auf eine selektive AufnahmeVergleich von Schwellwert, Gradientenbetrag und Matched FilterEintreffen des Kontrastmittelbolus nach selektiver GabeSimulation unterschiedlicher KontrastmittelkonzentrationenSensitivität und SpezifitätSubtraktionssignal eines GefäßpaaresSelektive Aufnahme eines GefäßverschlussesBeispiele für die Subtraktion der HerzinnenräumeDarstellung der Innenstruktur eines VorhofsErgebnis des Matched Filters in einer Vorhofregion	78 79 82 84 85 88 88 89 90
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Sobel-Operatoren angewandt auf eine selektive AufnahmeVergleich von Schwellwert, Gradientenbetrag und Matched FilterEintreffen des Kontrastmittelbolus nach selektiver GabeSimulation unterschiedlicher KontrastmittelkonzentrationenSensitivität und SpezifitätSubtraktionssignal eines GefäßpaaresSelektive Aufnahme eines GefäßverschlussesBeispiele für die Subtraktion der HerzinnenräumeDarstellung der Innenstruktur eines VorhofsErgebnis des Matched Filters in einer VorhofregionVariabilität eines TPI-Gefäßschnittes	78 79 82 84 85 88 88 89 90 90 92
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 6.1	Sobel-Operatoren angewandt auf eine selektive AufnahmeVergleich von Schwellwert, Gradientenbetrag und Matched FilterEintreffen des Kontrastmittelbolus nach selektiver GabeSimulation unterschiedlicher KontrastmittelkonzentrationenSensitivität und SpezifitätSubtraktionssignal eines GefäßpaaresSelektive Aufnahme eines GefäßverschlussesBeispiele für die Subtraktion der HerzinnenräumeDarstellung der Innenstruktur eines VorhofsErgebnis des Matched Filters in einer VorhofregionVariabilität eines TPI-GefäßschnittesEintreffen des Kontrastmittelbolus nach intravenöser Gabe	78 79 82 84 85 88 88 89 90 90 90 92 96
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 6.1 6.2	Sobel-Operatoren angewandt auf eine selektive AufnahmeVergleich von Schwellwert, Gradientenbetrag und Matched FilterEintreffen des Kontrastmittelbolus nach selektiver GabeSimulation unterschiedlicher KontrastmittelkonzentrationenSensitivität und SpezifitätSubtraktionssignal eines GefäßpaaresSelektive Aufnahme eines GefäßverschlussesBeispiele für die Subtraktion der HerzinnenräumeDarstellung der Innenstruktur eines VorhofsErgebnis des Matched Filters in einer VorhofregionVariabilität eines TPI-GefäßschnittesEintreffen des Kontrastmittelbolus nach intravenöser GabePerfusion Map einer nichtinvasiven Aufnahme	78 79 82 84 85 88 88 88 90 90 90 92 96 97
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 6.1 6.2 6.3	Sobel-Operatoren angewandt auf eine selektive AufnahmeVergleich von Schwellwert, Gradientenbetrag und Matched FilterEintreffen des Kontrastmittelbolus nach selektiver GabeSimulation unterschiedlicher KontrastmittelkonzentrationenSensitivität und SpezifitätSubtraktionssignal eines GefäßpaaresSelektive Aufnahme eines GefäßpaaresBeispiele für die Subtraktion der HerzinnenräumeDarstellung der Innenstruktur eines VorhofsErgebnis des Matched Filters in einer VorhofregionVariabilität eines TPI-GefäßschnittesEintreffen des Kontrastmittelbolus nach intravenöser GabePerfusion Map einer nichtinvasiven AufnahmeROI für die Kontrastmittelausbreitung bei intravenöser Gabe	78 79 82 84 85 88 88 89 90 90 92 96 97 97
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 6.1 6.2 6.3 6.4	Sobel-Operatoren angewandt auf eine selektive AufnahmeVergleich von Schwellwert, Gradientenbetrag und Matched FilterEintreffen des Kontrastmittelbolus nach selektiver GabeSimulation unterschiedlicher KontrastmittelkonzentrationenSensitivität und SpezifitätSubtraktionssignal eines GefäßpaaresSelektive Aufnahme eines GefäßpaaresBeispiele für die Subtraktion der HerzinnenräumeDarstellung der Innenstruktur eines VorhofsErgebnis des Matched Filters in einer VorhofregionVariabilität eines TPI-GefäßschnittesPerfusion Map einer nichtinvasiven AufnahmeROI für die Kontrastmittelausbreitung bei intravenöser GabeKontrastmittelausbreitung bei intravenöser Gabe	78 79 82 84 85 88 88 89 90 90 92 90 92 96 97 97 98
$5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \\ 5.7 \\ 5.8 \\ 5.9 \\ 5.10 \\ 5.11 \\ 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ \end{cases}$	Sobel-Operatoren angewandt auf eine selektive AufnahmeVergleich von Schwellwert, Gradientenbetrag und Matched FilterEintreffen des Kontrastmittelbolus nach selektiver GabeSimulation unterschiedlicher KontrastmittelkonzentrationenSensitivität und SpezifitätSubtraktionssignal eines GefäßpaaresSelektive Aufnahme eines GefäßpaaresSelektive Aufnahme eines GefäßverschlussesBeispiele für die Subtraktion der HerzinnenräumeDarstellung der Innenstruktur eines VorhofsErgebnis des Matched Filters in einer VorhofregionVariabilität eines TPI-GefäßschnittesPerfusion Map einer nichtinvasiven AufnahmeROI für die Kontrastmittelausbreitung bei intravenöser GabeKontrastmittelausbreitung im rechten und linken HerzenKontrastmittelausbreitung nach Erreichen der Koronararterien	78 79 82 84 85 88 88 89 90 90 92 90 92 96 97 97 97 98 99
$5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \\ 5.7 \\ 5.8 \\ 5.9 \\ 5.10 \\ 5.11 \\ 6.1 \\ 6.2 \\ 6.3 \\ 6.4 \\ 6.5 \\ 6.6 \\ $	Sobel-Operatoren angewandt auf eine selektive AufnahmeVergleich von Schwellwert, Gradientenbetrag und Matched FilterEintreffen des Kontrastmittelbolus nach selektiver GabeSimulation unterschiedlicher KontrastmittelkonzentrationenSensitivität und SpezifitätSubtraktionssignal eines GefäßpaaresSelektive Aufnahme eines GefäßverschlussesBeispiele für die Subtraktion der HerzinnenräumeDarstellung der Innenstruktur eines VorhofsVariabilität eines TPI-GefäßschnittesVariabilität eines TPI-GefäßschnittesROI für die Kontrastmittelausbreitung bei intravenöser GabeKontrastmittelausbreitung im rechten und linken HerzenKontrastmittelausbreitung nach Erreichen der KoronararterienROI für die Untersuchung der Unterscheidbarkeit in PIGIV1	78 79 82 84 85 88 88 89 90 90 92 96 97 97 97 97 98 99

6.8	Merkmalsverteilungen mit und ohne Blutgefäß	103
6.9	ROI S1 und ROI S2 der selektiven Transmissionsaufnahmen	106
6.10	Schematische Darstellung des Kreisprofils.	110
6.11	Kreisprofile simulierter Gefäße	111
6.12	Einzelschritte der Gefäßerkennung mit Kreisprofilen	112
6.13	Beispiele simulierter Gefäße für die Kreisprofilevaluation	116
6.14	Einfluss der Parameter der Kreisprofilerkennung	117
6.15	Einfluss der Kontrastmittelkonzentration auf die Erkennung	119
6.16	Kreisprofilerkennung bei Gefäßverengung	120
6.17	Fehler der Kreisprofilerkennung bei Überlagerung	121
6.18	Gefäßerkennung bei Verzweigungen und Kreuzungen	121
6.19	Laufzeit der Kreisprofilerkennung	122
7.1	ROI für die Untersuchung der Unterscheidbarkeit in TPI05	132
7.2	Beispiele stark verzerrter Gefäßabbilder in TPI05	134
7.3	Bildzeile einer TPI-Aufnahme und ihre diskrete Ableitung	135
7.4	Beispiele simulierter TPI-Aufnahmen	142
7.5	Einfluss der Suchfensterbreite auf die TPI-Gefäßverfolgung	143
7.6	Einfluss der Kontrastmittelkonzentration auf die Gefäßverfolgung	145
7.7	Gefäßverfolgung in TPI05-Aufnahme 2	146
7.8	Gefäßverfolgung in TPI05-Aufnahme 6	148
7.9	Gefäßverfolgung in TPI05-Aufnahme 7	149

Tabellenverzeichnis

2.1	Massenschwächungskoeffizienten von Gadolinium, Knochen und Weichgewebe	15
4.1	Ergebnisse der Messung des Röhrendurchmessers	57
6.1	SNR in vier Bildregionen bei intravenöser Kontrastmittelgabe	104
6.2	AUC in zwei Bildregionen von PIGIV1	105
6.3	SNR und AUC in selektiven Aufnahmen	106
6.4	Qualitätsklassen des Datensatzes PIGIV1	123
6.5	Sensitivität und Mittentreue der Kreisprofilerkennung in PIGIV1 .	125
7.1	SNR der Gefäßabbilder in TPI05	133
7.2	Messung der Gefäßlage in TPI05	136
7.3	Ergebnisse der Gefäßverfolgung in TPI05	146

Algorithmenverzeichnis

1	SequentialCut()
2	extractVessels()
3	findVessel()
4	findNextSegment()

Kapitel 1 Einleitung

Erkrankungen des Herz-Kreislauf-Systems verursachen 16% der deutschen Gesundheitsausgaben [For04] und sind mit 45% die häufigste Todesursache [SR06]. Den größten Anteil stellen die ischämischen Herzkrankheiten dar, bei denen verengte oder verschlossene Herzkranzgefäße zu einer Minderversorgung des Herzmuskels führen. Die verminderte Sauerstoffversorgung schränkt die Leistungsfähigkeit des Herzens ein und führt schließlich zum irreversiblen Absterben von Herzmuskelgewebe. Deshalb ist eine frühzeitige Erkennung der Minderversorgung von großer Bedeutung; mögliche Ansätze sind der Nachweis von Gefäßverengungen (Stenosen)¹ oder einer verminderten Herzmuskeldurchblutung.

Die Koronarangiographie mit Synchrotronstrahlung wurde mit dem Ziel der Stenosenerkennung entwickelt (Kap. 2.2.1). Hierfür verwendet man heute meist Herzkatheteruntersuchungen (Kap. 2.1.3.6), die jedoch für die Patienten belastend sind. Die Koronarangiographie mit Synchrotronstrahlung nutzt das Prinzip der dichromatischen Absorptionsradiographie: Nach Injektion eines Kontrastmittels erzeugt man mit zwei monochromatischen Strahlen je eine Aufnahme des Herzens. Die beiden Strahlenergien wählt man knapp ober- bzw. unterhalb einer Absorptionskante des Kontrastmittels. Zwischen diesen Energien nimmt die Massenschwächung sprunghaft zu; diese Zunahme ergibt nach logarithmischer Subtraktion der Teilaufnahmen den Bildkontrast der kontrastmittelhaltigen Regionen. Die Intensitäten des Subtraktionsbildes sind proportional zu dem Produkt aus Kontrastmittelkonzentration und der Dicke der kontrastmittelhaltigen Schicht (Kap. 2.2.2); kontrastmittelfreie Regionen werden daher unterdrückt.

Die vorliegende Arbeit ist Teil eines im Jahr 2003 begonnenen Forschungsprojekts, dessen Ziel die Weiterentwicklung des Aufnahmeverfahrens ist. An der European Synchrotron Radiation Facility (ESRF) wurden drei Varianten des Verfahrens (Abb. 1.1) erprobt. Die damit beabsichtigte Stenosenerkennung und Messung der Myokardperfusion sind auf die Bildinformation der Herzkranzgefäße angewiesen. Deren Signalbeitrag dient als räumlicher Bezugspunkt sowie der Messung von Gefäßdurchgängigkeit und Kontrastmittelkonzentration. Deshalb beschäftigt sich die vorliegende Arbeit mit der Entwicklung von Algorithmen, die Blutgefäße von ihrer Umgebung unterscheiden und trennen können.

Die an der ESRF erzeugten Subtraktionsbilder unterscheiden sich von konventionellen Angiogrammen vor allem durch die Energiesubtraktion, die hohe Emp-

¹Allerdings sind Verengungen erst in fortgeschrittenen Krankheitsstadien erkennbar, vgl. Kap. 7.1.

Abbildung 1.1: Vergleich der eingesetzten Aufnahmeverfahren. Nichtinvasive Transmissionsaufnahmen (li.) zeigen die Koronargefäße und die Herzinnenräume; das Kontrastmittel wird über eine Vene injiziert. Selektive Transmissionsaufnahmen (Mi.) zeigen die Koronararterien und den Herzmuskel besonders kontraststark, da das Kontrastmittel direkt in die Koronararterien injiziert wird. In beiden Fällen bewegt man das Untersuchungsobjekt kontinuierlich durch den Kreuzungspunkt der Strahlen. Selektives Time Projection Imaging (TPI) (re.) zeigt die Kontrastmittelverteilung einer Herzschicht im Zeitverlauf; das Untersuchungsobjekt wird dabei nicht bewegt - die Gefäßquerschnitte zeigen sich als vertikal verlaufende Kurven.

findlichkeit und die zeilenweise Entstehung. Dies führt zu den drei Leitfragen der vorliegenden Arbeit:

- 1. Wie müssen die Aufnahmen vorverarbeitet werden, um die erwarteten Aufnahmefehler zu kompensieren?
- 2. Welche Eigenschaften besitzen die Bildinhalte unter den verwendeten Aufnahmeverfahren und worin unterscheiden sie sich?
- 3. Mit welchen Verfahren lassen sich Blutgefäße trotz überlagerter und mehrdeutiger Bildinhalte von ihrer Umgebung unterscheiden?

Die Frage der Vorverarbeitung zielt darauf ab, die auftretenden Aufnahmefehler zu identifizieren, zu beschreiben und Verfahren zu ihrer Kompensation zu entwickeln. Diese Schritte sind für alle Anwendungen der betrachteten Aufnahmeverfahren von Bedeutung. Die bislang vorhandenen Vorverarbeitungsschritte erreichen keine ausreichend hohe Bildqualität und beeinträchtigen daher die Gefäßerkennung. Die Frage nach den Bildinhalten beschäftigt sich mit den Abbildern der Blutgefäße, der Herzinnenräume und des Herzmuskels. Ihre Eigenschaften wurden für die Angiographie mit Synchrotronstrahlung bislang nur unzureichend untersucht speziell für das hier verwendete Kontrastmittel Gadolinium. Darüber hinaus stellt sich die Frage, inwieweit das verbreitete, zylindrische Gefäßmodell bei der zeilenweisen Bildentstehung gültig ist.

Untersucht wird die Frage des geeigneten Erkennungsverfahrens für die nichtinvasive Stenosenerkennung (Kap. 6.1) und für die Blutflussmessung in TPI-Aufnahmen (Kap. 7.1). Diese Anwendungen stehen für zwei grundlegende Probleme der Gefäßerkennung: In nichtinvasiven Transmissionsaufnahmen beeinträchtigen die geringe Kontrastmittelkonzentration und die überlagerten Herzinnenräume die Gefäßerkennung - dies belegen frühere Untersuchungen [DEG⁺86] [EFE⁺00]. In selektiven TPI-Aufnahmen liegt eine hohe Kontrastmittelkonzentration vor; Lage und Form des betrachteten Gefäßquerschnitts ändern sich jedoch periodisch durch die Herzkontraktion. Für beide Anwendungen fehlen automatisierte Erkennungsverfahren. Deshalb untersucht die Arbeit die Voraussetzungen der Gefäßerkennung, die Anwendbarkeit etablierter Erkennungsverfahren und die Eignung eigener Lösungsansätze.

Der Aufbau der Arbeit orientiert sich an den drei Leitfragen: Kapitel 2 beschreibt die notwendigen medizinischen und technischen Grundlagen. Kapitel 3 untersucht die auftretenden Aufnahmefehler und die Vorverarbeitung der Aufnahmen. Kapitel 4 beschäftigt sich mit den Eigenschaften der auftretenden Bildinhalte. Allgemeine Voraussetzungen, Einschränkungen und Bewertungskriterien der Gefäßerkennung beschreibt Kapitel 5. Es liefert die methodische Grundlage der beiden Anwendungen - die Gefäßerkennung in nichtinvasiven Koronarangiogrammen (Kapitel 6) und die Gefäßverfolgung in selektiven TPI-Aufnahmen (Kapitel 7). Das abschließende Kapitel 8 stellt die Ergebnisse von Vorverarbeitung, Modellierung und Gefäßerkennung in einen Gesamtzusammenhang.

Kapitel 2

Grundlagen