Günter Merker, Christian Schwarz, Gunnar Stiesch, Frank Otto

Verbrennungsmotoren

Simulation der Verbrennung und Schadstoffbildung Günter Merker, Christian Schwarz, Gunnar Stiesch, Frank Otto

Verbrennungsmotoren

Simulation der Verbrennung und Schadstoffbildung

3., überarbeitete und aktualisierte Auflage

Mit 245 Abbildungen und 15 Tabellen

Bibliografische Information der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de> abrufbar.

Univ.-Prof. Dr.-Ing. habil. Günter Merker war bis zu seiner Pensionierung am 30.09.2005 Leiter des Instituts für Technische Verbrennung an der Universität Hannover

apl. Prof. Dr.-Ing. habil. Christian Schwarz ist Abteilungsleiter bei der BMW AG München, zuständig für Ladungswechsel und Verbrennung in der Ottomotoren-Serienentwicklung

apl. Prof. Dr.-Ing. habil. Gunnar Stiesch ist Teamleiter in der Entwicklung der MTU Friedrichshafen GmbH

Dr. rer. nat. Frank Otto arbeitet als Teamleiter im Ottomotoren-Versuch der Forschung und Vorentwicklung der DaimlerChrysler AG

1. Auflage 2001

2. Auflage 2004

3., überarbeitete und aktualisierte Auflage November 2006

Alle Rechte vorbehalten © B. G. Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden 2006

Der B.G. Teubner Verlag ist ein Unternehmen von Springer Science+Business Media. www.teubner.de

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlags unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Waren- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Umschlaggestaltung: Ulrike Weigel, www.CorporateDesignGroup.de Druck und buchbinderische Verarbeitung: Strauss Offsetdruck, Mörlenbach Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier. Printed in Germany

ISBN-10 3-8351-0080-7 ISBN-13 978-3-8351-0080-0

Vorwort

Für die zweite Auflage wurde der Inhalt der ersten Auflage vollständig überarbeitet und wesentlich erweitert. Insbesondere wurden neben den Grundlagen der Hubkolbenmaschinen die für das Verständnis und die Simulation der verbrennungstechnischen Abläufe im Motor wichtigen Kapitel Einspritzung, Gemischbildung, Verbrennungsablauf und Schadstoffbildung mit aufgenommen. Die zweite Auflage war damit gewissermaßen eine Symbiose aus den drei Büchern "G. P. Merker/U. Kessen (1999): Verbrennungsmotoren", "G. P. Merker/G. Stiesch (1999): Motorische Verbrennung" und "G. P. Merker/Ch. Schwarz (2001): Simulation verbrennungsmotorischer Prozesse".

Kapitel 2 bringt eine Einführung in die Funktionsweise von Verbrennungsmotoren. Kapitel 3 ist eine Zusammenstellung der wesentlichen reaktionskinetischen Grundlagen, Kapitel 4 beschreibt die im Brennraum ablaufenden physikalischen und chemischen Prozesse. Kapitel 5 ist den phänomenologischen Mehrzonen-Verbrennungsmodellen gewidmet; in Kapitel 6 sind die Grundlagen der Schadstoffbildung beschrieben. Kapitel 7 und 8 sind eine überarbeitete und gestraffte Darstellung der früheren Kapitel "Reale Arbeitsprozessrechnung" und "Gesamtprozessanalyse". Kapitel 9 ist eine vollständige Neufassung der entsprechenden früheren Kapitel "Dreidimensionale, instationäre Strömungsfelder" und "Verbrennungsmodelle" und wurde im Wesentlichen von Frank Otto verfasst. Es erscheint uns jedoch wichtig darauf hinzuweisen, dass sich jeder von uns für alle Kapitel verantwortlich fühlt.

Für die dritte Auflage haben wir Unklarheiten und Druckfehler behoben und den Text an einigen Stellen aktualisiert. Herrn Dr. Christian Krüger und Herrn Andreas Hermann von der Daimler Chrysler AG sowie Herrn Dr. Claus Reulein danken wir für nützliche Hinweise und das neue Bildmaterial. Wir hoffen, dass auch diese Auflage sowohl für Studenten und Doktoranden, aber auch für den in der Forschung und Entwicklung tätigen Ingenieur von Nutzen für die tägliche Arbeit sein wird.

Frau Dr. Britta Settmacher sind wir für die Erstellung des druckreifen Manuskriptes wieder zu großem Dank verpflichtet. Dem B. G. Teubner Verlag danken wir für die stets gute Zusammenarbeit.

Tettnang/München/Friedrichshafen/Stuttgart, im Oktober 2006

Günter P. Merker Christian Schwarz Gunnar Stiesch Frank Otto

Inhaltsverzeichnis

Abkürzungen und Formelzeichen		XII
1	Einleitung	1
	1.1 Vorbemerkungen	1
	1.2 Modellbildung	1
	1.3 Simulation	3
2	Einführung in die Funktionsweise von Verbrennungsmotoren	6
	2.1 Energiewandlung	6
	2.2 Hubkolbenmotoren	7
	2.2.1 Der Kurbeltrieb	8
	2.2.2 Gas- und Massenkräfte	10
	2.2.3 Arbeitsverfahren	12
	2.3 Thermodynamik des Verbrennungsmotors	13
	2.3.1 Grundlagen	13
	2.3.3 Offene Vergleichsprozesse	26
	2.4 Kenngrößen und Kennwerte	29
	2.5 Motorenkennfelder	32
	2.5.1 Ottomotoren	32
	2.5.2 Dieselmotoren	34
	2.6 Aufladung	36
	2.6.1 Aufladeverfahren	36
	2.6.2 Mechanische Aufladung	38
	2.6.3 Abgasturbo-Stauaufladung	39
	2.6.4 Abgasturbo-Stoßaufladung	42
3	Grundlagen der Reaktionskinetik	45
	3.1 Chemisches Gleichgewicht	45
	3.2 Reaktionsgeschwindigkeit	48
	3.3 Partielles Gleichgewicht und Quasi-Stationarität	49
	3.4 Brennstoffe	52
	3.4.1 Chemischer Aufbau	52
	3.4.2 Physikalisch-chemische Eigenschaften	55
	3.5 Oxidation von Kohlenwasserstoffen	58

4	Motorische Verbrennung	61
	 4.1 Ottomotor 4.1.1 Gemischbildung 4.1.2 Zündung 4.1.3 Verbrennungsablauf 4.1.4 Abnormale Verbrennung 4.1.5 Kontrollierte Selbstzündung 	61 61 65 66 70 72
	 4.2 Diesemotor 4.2.1 Einspritzverfahren und -systeme 4.2.2 Gemischbildung 4.2.3 Selbstzündung 4.2.4 Verbrennungsablauf 4.2.5 Homogene Verbrennung 	74 75 82 83 86 88
	 4.3 Druckverlaufsanalyse 4.3.1 Bestimmung des Brennverlaufs 4.3.2 Verlustteilung 4.3.3 Vergleich unterschiedlicher Brennverfahren 	90 90 94 97
5	Phänomenologische Verbrennungsmodelle	100
	 5.1 Dieselmotorische Verbrennung 5.1.1 Nulldimensionale Brennverlaufsfunktion 5.1.2 Stationärer Gasstrahl 5.1.3 Paket-Modelle 5.1.4 Zeitskalen-Modelle 5.2 Ottomotorische Verbrennung 	101 101 102 106 113 115
6	Schadstoffbildung	119
Ū	 6.1 Abgaszusammensetzung 6.2 Kohlenmonoxid (CO) 6.3 Unverbrannte Kohlenwasserstoffe (HC) 6.3.1 Limitierte Schadstoffkomponenten 6.3.2 Nicht limitierte Schadstoffkomponenten 	119 119 120 121 121 125
	 6.4 Partikelemission beim Dieselmotor 6.4.1 Einführung 6.4.2 Polyzyklische aromatische Kohlenwasserstoffe (PAK) 6.4.3 Entstehung von Ruß 6.4.4 Modellierung der Partikelemission 	130 130 131 132 134
	 6.5 Stickoxide 6.5.1 Thermisches NO 6.5.2 Prompt-NO 6.5.3 Über N₂O erzeugtes NO 6.5.4 Brennstoff-Stickstoff 	135 136 142 143 143

7	7 Reale Arbeitsprozessrechnung		144
	7.1 Ein-Zonen-Zylinder-Modell7.1.1 Grundlagen7.1.2 Mechanische Arbeit7.1.3 Ermittlung des Massenstroms	durch die Ventile / Ventilhubkurven	145 145 147 147
	 7.1.4 Wärmeübergang im Zylinder 7.1.5 Wärmeübergang im Auslasskr 7.1.6 Wandtemperaturmodelle 7.1.7 Brennverlauf 7.1.8 Klopfende Verbrennung 	ümmer	150 159 160 163
	7.1.9 Innere Energie 7.2 Zwei-Zonen-Zylinder-Modell		170 180 189
	 7.2.1 Modellierung des Hochdruckt 7.2.2 Modellierung des Hochdruckt 7.2.3 Ergebnisse der NO_x-Berechnu 7.2.4 Modellierung des Ladungsweit 	eils nach Hohlbaum eils nach Heider ng mit Zwei-Zonen-Modellen chsels beim 2-Takt-Motor	189 192 195 197
	7.3 Modellierung des Gaspfades7.3.1 Modellierung peripherer Kom7.3.2 Modellbildung7.3.3 Integrationsverfahren	ponenten	199 199 201 202
	7.4 Gasdynamik7.4.1 Grundgleichungen der eindim7.4.2 Numerische Lösungsverfahren7.4.3 Randbedingungen	ensionalen Gasdynamik 1	203 203 207 210
	 7.5 Aufladung 7.5.1 Strömungsverdichter 7.5.2 Verdrängerlader 7.5.3 Strömungsturbine 7.5.4 Abgasturbolader 7.5.5 Ladeluftkühlung 		216 216 226 227 239 242
8	8 Gesamtprozessanalyse		248
	 8.1 Allgemeines 8.2 Thermisches Motorverhalten 8.2.1 Grundlagen 8.2.2 Modellierung des Rohrleitung 8.2.3 Kühlkreislauf 8.2.4 Ölkreislauf 8.2.5 Physikalische Eigenschaften v 	ssystems on Öl und Kühlwasser	248 248 248 249 251 254 259
	8.3 Motorreibung8.3.1 Reibungsansatz für den betrie8.3.2 Reibungsansatz für den Warm	bswarmen Motor lauf	261 261 262

	8.4 Moto	orsteuerung/Regelung	264
	8.4.1	PID-Regler	264
	8.4.2	Lastregelung	265
	8.4.3	Verbrennungsregelung	266
	8.4.4	Regelung der Abgasrückführung	266
	8.4.5	Regelung am Aufladeaggregat	268
	8.4.6	Fahrerregler	270
	8.5 Dars	tellung des Motors als Kennfeld	271
	8.5.1	Vorgehensweise und Randbedingungen	271
	8.5.2	Rekonstruktion des Drehmomentenverlaufs	273
	8.6 Stati	onäre Simulationsergebnisse (Parametervariationen)	277
	8.6.1	Lastvariation beim gedrosselten Ottomotor	277
	8.6.2	Einfluss von Zündung und Brenndauer	278
	8.6.3	Variation von Verdichtungsverhältnis, Last und Spitzendruck	
		am Großdieselmotor	280
	8.6.4	Untersuchungen zu vollvariablen Ventiltrieben	281
	8.6.5	Variation der Saugrohrlänge und der Ventilsteuerzeiten	• • •
	0.6.6	(Ottomotor, Volllast)	283
	8.6.6	Abgasruckfuhrung bei einem abgasturboaufgeladenen Pkw-Dieselmotor	284
	8.6./	Umblasen beim Großdieselmotor	287
	8.7 Tran	siente Simulationsergebnisse	289
	8.7.1	Lastaufschaltung beim Generatormotor	289
	8.7.2	Beschleunigung eines NFZ von 0 auf 80 km/h	291
	8.7.3	Eingriffsmöglichkeiten am Abgasturbolader	293
	8.7.4	Teillast im ECE-Zyklus	294
	8.7.5	Warmlauf im ECE-Zyklus	296
	8.7.0	vollast-Beschleunigung bei turboautgeladenen Ottomotor	297
9	Strömun	gsmechanische Simulation	301
	9.1 Dreid	dimensionale Strömungsfelder	301
	9.1.1	Strömungsmechanische Grundgleichungen	301
	9.1.2	Turbulenz und Turbulenzmodelle	307
	9.1.3	Numerik	318
	9.1.4	Rechennetze	325
	9.1.5	Beispiele	326
	9.2 Simu	lation von Einspritzprozessen	331
	9.2.1	Einzeltropfenprozesse	332
	9.2.2	Strahlstatistik	336
	9.2.3	Probleme des Standard-Strahlmodells	349
	9.2.4	Lösungsansätze	353
	9.3 Simu	lation der Verbrennung	361
	9.3.1	Allgemeines Vorgehen	361
	9.3.2	Diesel-Verbrennung	364

9.3.3 9.3.4	Homogener Benzin-Motor (Vormischverbrennung) Benzinmotor mit Ladungsschichtung (Teilweise vorgemischte Flammen)	373 389
Literatur		392
Stichworty	verzeichnis	401

Abkürzungen

AGR	Abgasrückführung
AÖ	Auslass öffnet
ATI	Abgasturbo-Aufladung
AV	Auslassventil
BB	Brennheginn
DD	Blow-By
BD	Brenndauer
BB	Brennraum
	Bronnverlauf
	Controlled Auto Ignition
CED	Computational Fluid Dynamics
	Directoing prizzung (direct injection)
DE, DI	Dressell-lanne
	Eingmitzbaginn
	Einspitzbeginn
EF	Einspritzpumpe
ES ESV	
ESV	Einspritzverlauf
EV	Einlassventil
ED	Einspritzverzug
FB	Forderbeginn
FEM	Finite Elemente Methode
FES	frühes Einlass schließt
HCCI	Homogeneous Charge Compression Ignition
Kst	Kraftstoff
KW	Kurbelwinkel
LDA	ladedruckabhängiger Volllastanschlag
LES	Large-Eddy-Simulation
LLK	Ladeluftkühler
LWOT	Ladungswechsel-OT
MOT	Motorblock
MSL	Motorschlucklinie
MUP	Massenumsatzpunkt
NFZ	Nutzfahrzeug
N.N.	Neuronales Netz
OHC-GG	Sauerstoff-Wasserstoff-Kohlenstoff-Gleichgewicht
ÖK	Ölkühler
OT	oberer Totpunkt
ÖW	Ölwanne
PAK	Polyzyklische, aromatische Kohlenwasserstoffe
PDF	Wahrscheinlichkeitsdichteverteilung (probability density function)
RG	Restgas
RK	Rückblaseklappe

SES	spätes Einlass schließt
SP	Schwerpunkt
TL	Turbolader
UT	unterer Totpunkt
VSL	Verdichterschlucklinie
VTG	variable Turbinengeometrie
ZOT	Zünd-OT (oberer Totpunkt)
ZV	Zündverzug
ZZP	Zündzeitpunkt
	_

Formelzeichen

A	Fläche [m ²]
	Kinematik der Variablen α der Boltzmanngleichung
	Parameter Zacharias
	Temperaturdifferenz Heider [K]
A^{*}	Temperaturdifferenz Heider [K]
A _{id}	Zündmodellparameter
Aprem	Verbrennungsmodellparameter
AGR	Abgasrückführrate [%]
a	Konstante Vibe-Brennverlauf
	Schallgeschwindigkeit [m/s]
	Temperaturleitfähigkeit [m ² / s]
	Gradient "schiefe Koordinaten"
	Parameter Klopfkriterium
	Bezogener Öffnungsweg Thermostat
В	Funktion Heider
B_0, B_1	Modellkonstanten des Tropfenzerfallsmodells
BD	Brenndauer [Grad]
b	Lagerbreite [m]
	Parameter Klopfkriterium
b_e	spezifischer Brennstoffverbrauch [g/kWh]
Ċ	Funktion Lax Wendroff
	Konstante
	Konstante Wärmeübergang Woschni
C_1	Konstante Woschni
C_2	Konstante Woschni [m / (s K)]
$\overline{C_3}$	Konstante Vogel
-	Konstante Teilchenbahn
C_4	Konstante Teilchenbahn
C_A	Kontraktionsbeiwert
C_{gl}	Konstante Heider
C_v°	Geschwindigkeitsbeiwert
C_w	Widerstandsbeiwert

Cou	Courant-Zahl
с	Anteil Kohlenstoff [kg / kg Kst]
	Federkonstante [N/m]
	Fortschrittsvariable
	Geschwindigkeit [m/s]
	Konstante
	Länge [m]
	Parameter Klopfkriterium
	spezifische Wärme [J / (kg K)]
$C_{(i)}$	Speziesmassenbruch der Spezies Nr. <i>i</i>
ci	Stoffkonzentration
C _V	Kolbengeschwindigkeit [m/s]
$C_{\rm L}$	Konstante Reibungsansatz Lüffer
	mittlere Kolbengeschwindigkeit [m / s]
c m	spezifische Wärme bei konst. Druck $[L/(kg K)]$
c_p	Drallzahl
e_u , e_m	Modellkonstanten in Transportgleichung der Mischungsbruchvarianz
C_X	Modellkonstanten in der ε -Gleichung
$c_{\mathcal{E}_1}, c_{\mathcal{E}_2}, c_{\mathcal{E}_3}$	Konstante des Turbulenzmodells
e_{μ}	spezifische Wärme bei konst. Volumen [I / (kg K)]
D	Diffusionskonstante
D	Durchmesser [m]
	Parameter Zacharias
	Zvlinderdurchmesser [m]
$D_{\mathbf{p}}$	inverse Relaxationszeitskala eines Tronfens in turbul Strömung $[s^{-1}]$
$\frac{D}{R}$	inverse recurationszenskala emes rreprens in taroan outomang [6]
$\frac{0}{2}$	partielles Differential
01	XX7 11'1 F 1
d	Wanddicke [m]
	Durchmesser [m]
,	Dampfungskonstante [kg / s]
d_l	Lüfterdurchmesser
d_m	mittlerer Turbinendurchmesser [m]
E	Energie [J]
÷	Elastizitat des Motors [Nm s]
E	Energiestrom [J/s]
E_A	Aktivierungsenergie
E_{id}	Zündenergie [K]
E _{kin}	kinetische Strahlenergie [J]
EB	Energiebilanz
ED	Einspritzdauer [Grad]
e	Exzentrizität, Schränkung [m]
F	Kratt [N]
	Funktion
	Funktion Lax Wendroff
FA	Parameter Zacharias

F_G	Gaskraft [N]
f	allgemeine Funktion
	Kraftdichte $[N/m^3]$
	Verteilungsfunktion
f_R	Restgasanteil
G	formale Feldvariable, deren Nullstelle die Pos. der Flammfront bestimmt
	freie Enthalpie [J]
	Funktion Lax Wendroff
	Gibbs-Funktion [J]
g	spezifische freie Enthalpie [J / kg]
8 H	Enthalpie [J]
	Heizwert [J/kg]
H	unterer Heizwert [J / kg]
h h	Anteil Wasserstoff [kg / kg Kst]
	spezifische Enthalpie []/kg]
	Huh [m]
h.	Parameter Polygon-Hyperbel-Brennverlauf
h ₁	Parameter Polygon-Hyperbel-Brennverlauf
h ₂	Parameter Polygon-Hyperbel-Brennverlauf
I	Impuls [(kg m) / s]
1	Strom [A]
I	Klonfauslösender kritischer Vorreaktionszustand
1 K ila	Übersetzungsverhältnis Lüfter
11u iz	Anzahl Leitungsabschnitte
I I	Drehimpuls [N m s]
L	L'angenskala [m]
K	Brennraumahhängige Konstante (Franzke)
K ,	Differentialbeiwert
K_d	Integralbeiwert
K	Proportionalbeiwert
пp	Gleichgewichtskonstante
K.	Konstante Lagerreibung
KW	Klonfwahrscheinlichkeit
K K	Konstante $[m^3]$
K^{η}	Faktor Snaltdicke
$k^{\Gamma\rho}$	Konstante
n	turbulente kinetische Energie $[m^2/s^2]$
	Wärmedurchgangszahl $[W / (m^2 K)]$
	Zählindev
k	Behältersteifigkeit [N / m ⁵]
k _c	Geschwindigkeitskoeffizient für Vorwärtsreaktion
k n	Rohrreihungskoeffizient [m / s ²]
r R k	Geschwindigkeitskoeffizient für Rückwärtereaktion
I	Wirhellänge [m]
	stöchiometrisches Luft-Brennstoff-Verhältnis
¹ min	stoemomeursenes Luit-Diemistori- verhaunis

l	Pleuellänge [m]
	Länge [m]
l_F	Dicke der turbulenten Flammenfront [m]
l_I	integrale Längenskala
l_t	turbulente Längenskala [m]
\dot{M}	Masse [kg]
	Molmasse [kg / kmol]
	Moment [Nm]
Ma	Machzahl
m	Masse [kg]
	Vibe-Parameter
m	Massenstrom
N	Normierungskonstante
Nu	Nußelt-Zahl
n	Anzahl Mole
	Drehzahl [U/min]
	Polytropenexponent
n_A	Arbeitsspiele pro Umdrehung
n_i	Stoffmenge von <i>i</i> [mol]
Óh	Ohnesorge-Zahl
Р	Leistung [W]
	Produktionsterm in k-Gleichung [W]
Pe	Peclet-Zahl
Pr	Prandtl-Zahl
Pr _k	turbulente Prandtl-Zahl für k -Transport
\Pr_{ε}	turbulente Prandtl-Zahl für ε -Transport
p	Druck $[N/m^2]$
	Partialdruck [N / m ²]
	Wahrscheinlichkeitsdichte, Verteilungsfunktion
p_0	Schleppdruck [N / m ²]
<i>p</i> _{Gauss}	Verteilungsfunktion mit Form einer Gaussverteilung
p _{inj}	Einspritzdruck [N / m ²]
$p_{m,e}$	effektiver Mitteldruck [N / m ²]
p_{mr}	Reibmitteldruck [bar]
Pβ	Verteilungsfunktion, die die Form einer β -Funktion hat
Q	Quellterm einer Skalartransportgleichung
	Wärmemenge [J]
\mathcal{Q}	Wärmestrom [W]
\mathcal{Q}_{B} , \mathcal{Q}_{chem}	Wärmefreisetzung [kJ / KW]
q	spezifische Wärmeenergie [J / m ³]
	Wärmequelle [W]
R	elektrischer Widerstand [Ohm; Ω]
	Gaskonstante [J / (kg K)]
~	Tropfenradius [m]
R	universelle Gaskonstante

R_0	universelle Gaskonstante [J / (mol K)]
R_m	molare Gaskonstante [J / (mol K)]
R_{th}	thermischer Ersatzleitkoeffizient $[W / (m^2 K)]$
\dot{R}_V	Änderung des Tropfenradius aufgrund von Verdampfung [m/s]
\dot{R}_{7}	Änderung des Tropfenradius aufgrund von Zerfall [m/s]
Re	Reynolds-Zahl
r	Kurbelwellenradius [m]
	Luftgehalt
	Radius [m]
S	Entropie [J / K]
	Strahleindringtiefe [m]
<i>S</i>	Scherungstensor [s^{-1}]
Sc	Schmidt-Zahl
SF	Spülfaktor
Sh	Sherwood-Zahl
SMD	Sauterdurchmesser (Sauter Mean Diameter) [m]
s	Kolbenweg Hub [m]
5	Flammengeschwindigkeit [m / s]
	spezifische Entropie $[I/(kg K)]$
S T	laminare Flammengeschwindigkeit [m / s]
SL(Muldentiefe [m]
S M	turbulente Flammengeschwindigkeit [m / s]
T	Tavlor-Zahl
1	Temperatur [K]
Τ.	Änderung der Tronfentemperatur aufgrund von Aufheizung [K/s]
t A	Zeit [s]
U	Innere Energie [1]
u u	spezifische Innere Energie [J / kg]
	Geschwindigkeitskomponente $[m/s]$
u'	turbulente Geschwindigkeitsfluktuation [m/s]
u/c_0	Laufzahl
V	Geschwindigkeitsskala [m/s]
	Volumen [m ³]
V_{II}	Hubvolumen [m ³]
v	Geschwindigkeit [m/s]
	spezifisches Volumen $[m^3 / kg]$
v^+	normierte Geschwindigkeit (turbulentes Wandgesetz)
Vini	Einspritzgeschwindigkeit [m/s]
v_{inj}	Schubspannungsgeschwindigkeit [m/s]
Ŵ	Arbeit [J]
Ŵ	Leistung [W]
We	Weber-Zahl
w	Geschwindigkeit [m/s]
	spezifische Arbeit [J / kg]
W:	indizierte Arbeit [kJ /]]
··· 1	

Χ	Regelgröße
	Stellgröße
X_d	Regelabweichung
x	Anteil
	Koordinate
	Weg [m]
	Zufallszahl
x_{RG}	Restgasanteil
у	Koordinate
	Anteil
y^+	normierter Wandabstand (turbulentes Wandgesetz)
y_2^*	Parameter Polygon-Hyperbel-Brennverlauf
<i>Y</i> 4	Parameter Polygon-Hyperbel-Brennverlauf
<i>Y</i> 6	Parameter Polygon-Hyperbel-Brennverlauf
Z	Anteil
	Koordinate
	Mischungsbruch
	Zahl der Zylinder
	Zufallszahl

Griechische Symbole

allgemeiner Parameter
Durchflusskoeffizient
Koeffizient Lax Wendroff
Variablensatz der strahladaptierten Boltzmanngleichung
Wärmeübergangskoeffizient [W / (m ² K)]
Modellparameter des Flammflächenverbrennungsmodells
allgemeiner Parameter
Koeffizient Lax Wendroff
reduzierter Variablensatz der strahladaptierten Boltzmanngleichung
Winkel [°]
Modellparameter des Flammflächenverbrennungsmodells
Winkel [°]
Differenz
Verbrennungsterm
Vibe-Parameter
Wirkungsgraddifferenz
Zeitinkrement [s]
Längeninkrement [m]
Brenndauer [Grad]
Dicke der laminaren Flammenfront [m]
Dissipationsrate $[m^2 / s^2]$
Kühlziffer

	Verdichtungsverhältnis
Γ	Gammafunktion
	ITNFS-Funktion (Vormischverbrennungsmodell)
η_{th}	thermischer Wirkungsgrad
η	dynamische Viskosität [(N s) $/ m^2$]
$\dot{\eta}_{II}$	Umsetzungsgrad
Θ	polares Massenträgheitsmoment [kg / m^2]
19	Temperatur [K]
ĸ	Isentropenexponent
	von-Karman-Konstante (Turbulenzmodell)
Λ	Wellenlänge im Tropfenzerfallsmodell [m]
λ	Verbrennungsluftverhältnis
	Wärmeleitfähigkeit [W/(mK)]
λ^*	Mischungsstöchiometrie
λο	Verbrennungsluftverhältnis Heider
λ_	Luftaufwand
λ_{T}	Liefergrad
$\lambda_{\rm S}$	Schubstangenverhältnis
$\lambda_{\rm D}$	Rohrreibungszahl
II.	chemisches Potential
μ.	Durchflusskoeffizient
	erster Viskositätskoeffizient (ohne Index: laminar) [(N s) $/ m^2$]
ν	kinematische Viskosität [m^2/s]
	Stoffmenge [mol]
V	stöchiometrischer Koeffizient
Π_{n}	Strangdruckverhältnis
π	Druckverhältnis
	Kreiszahl (3.14159)
π_{T}^{*}	Reziprokwert Turbinendruckverhältnis
π_V	Verdichterdruckverhältnis
0	Dichte $\left[kg / m^3 \right]$
σ	spezifische Flammfront $[m^2 / kg]$
-	Übergangsfunktion in Boltzmanngleichung
	Varianz
τ	Flugzeit [s]
•	Spannung (auch als Tensor) $[N / m^2]$
	Zeit (Zündverzug) [s]
$ au_{++++}$	Korrelationszeit der auf einen Tropfen einwirk. Geschw.fluktuation [s]
τ _{corr}	turbulente Zeitskala
τ_{Irb} $\tau_{}$	Zündverzug [s]
Φ	allgemeine Transportvariable
	Äquivalenzverhältnis
	spezifische Kühlleistung [W/K]
Ĕ	Anteil
7	zweiter laminarer Viskositätskoeffizient $(N_s) / m^2$

Λ im Tropfenzerfallsmodell [s ⁻¹]
2

Operatoren

$\langle \rangle$	Ensemblemittelung
$\langle \rangle_E$	Favre-Mittelung
, ' ' F	Fluktuation im Ensemble-Mittel
· ·	Fluktuation im Favre-Mittel

Indices

*	dimensionslose Größe
•	Ableitung nach der Zeit
_	molare Größe
0	Referenzdruck 1 atm.
	Standartzustand
~	molare Größen
0	Ruhezustand
	Schlepp
	Index Runge Kutta
01	Ruhezustand
1	eintretend
	nach Drosselstelle
	vor Strömungsmaschine
	Zone 1
	Index Runge Kutta
	bei Einlass schließt
	Konstante Reibung
1′	Fußpunkt
15	bei 15°C
2	austretend
	nach Strömungsmaschine
	Zone 2
	Index Runge Kutta
	Konstante Reibung

2'	Fußpunkt
3	Index Runge Kutta
	Konstante Reibung
4	Konstante Reibung
5	Konstante Reibung
6	Konstante Reibung
75	bei 75% Umsatzrate
(i), (j), (k)	Speziesnummer
A	Ausgangspunkt
	Auslass
	Strang A
	Abgas
ATL	Abgasturbolader
АÖ	Auslass öffnet
а	außen
	austretend
	axial
ab	abströmend
	abgeführt
В	Brennstoff
	Strang B
BB	Blow-By
	Brennbeginn
BD	Brenndauer
BE	Brennende
Beh.	Behälter
Br	Brennstoff
bez.	Bezug
С	Kohlenstoff
C_3H_8	Propan
CO	Kohlenmonoxid
CO_2	Kohlendioxid
С	Carnot-Prozess
	Kompression
ch, chem	chemisch
cyl	Zylinder
D	Düse
diff .	Diffusion
dx	Längeninkrement
E	Einlass
	Endgas, charakteristischer Kurbelwinkel Klopfkriterium
EB	Einspritzbeginn
ES	Einlass schließt
ESV	Einspritzverlauf
EV	Einlassventil

	Einspritzverzug
е	eintretend
	effektiv
F	Flamme, Flammenfront
FB	Förderbeginn
f	fuel
J	Fußnunkt
fl	Flüssignhase
G	Gas Gaskraft
Ges ges	gesamt
Gl	Glysantin
a a	Gasphase
8 al	global
8' Ha	Wasserstoff
H ₂	Wasser
H_2O Hub h	Hub
IIuo, n IK	klonfauslösend
i i	innere innen
ı	Zählindev
ind	indiziert
ina ini	Finspritzing (initiziert Injektion)
inj	isentron
is i	Zöhlindev
J K	Zammutx Klonfon, abaraktaristisabar Kurbalwinkal Klonfkritarium
Λ	Kolbon
	Kühler
VUR	Klonfhäufigkoitsboroich
KIID Ko Kol	Kolhen
Ko, Koi Komp	Kompression
Komp KS	Kurzachluss
KS	Kurzsemuss
Kur	Kurbal
KW KW	Kühlwasser
K#	Kurbelwelle
k	Kühlmedium
n korr	Korrektur, korrigiert
kvit	kritisch
кни. I	Lagerholzen
L	Lagerbolzen
	Luft Ladeluft
IIV	Luit, Lauciuit
LLK 1 lam	laminar
i, iuni	maahanisah
m	Mittal mittlerer
	willer
	1110141

	Mulde
max	maximal
min	minimal
N_2	Stickstoff
n	Drehzahl
	Anteil C
n. T.	nach Turbine
n. V.	nach Verdichter
nenn	Nenn-
OT	oberer Totpunkt
0	obere
	Standardzustand
OSZ	oszillierend
Р	Pleuel
р	Gleichdruckprozess
1	(konstanter) Druck
pre	premixed
а а	Quell-, Quetsch-
R	Reibung
RB	Rechenbeginn
Reib	Reibung
RG	Restgas
r	radial
	Reibung
	Rückwärtsreaktion
ref	Referenz
rot	rotierend
SP	Schwerpunkt
S	isentrop
sys	System
Т	tangential
	Temperatur
	Turbine
TG	Gastangentialkraft
TH	Thermostat
TL	Turbolader
TM	Massentangentialkraft
Tr	Tropfen
t	technisch
	turbulent
tats.	tatsächlich
th	thermisch
th., theo.	theoretisch
tr	Tropfen
turb	turbulent

U	Umfang
U,Umg.	Umgebung
UT	unterer Totpunkt
и	untere
u, unvollk	unvollkommen
u, uv	unverbrannt
V	Verdichter
	Verbrennungsgas
v	Gleichraumprozess
	spezifisches Volumen
	verbrannt
	Vergleichsprozess
	Vorwärtsreaktion
v_p	Seiligerprozess
v. T.	vor Turbine
v. V.	vor Verdichter
v. Verbr.	vor Verbrennung
verd.	verdampft
W	Wand
x	an der Stelle x
	Ausgangspunkt
x_{RG}	Restgas
У	Anteil H
Z, Zyl.	Zylinder
ZV	Zündverzug
Zyl.W	Zylinderwand
ZZP	Zündzeitpunkt
Ζ	Anteil O
	Taktzahl
zk	zu kühlendes Medium
ZU	zugeführt
	zuströmend
ZUS	Zusatz
α	konvektiv
ε	Strahlung

1 Einleitung

1.1 Vorbemerkungen

Eine der zentralen Aufgaben der Ingenieurwissenschaften ist die möglichst exakte Beschreibung technischer Prozesse mit dem Ziel, das dynamische Verhalten komplexer Systeme zu verstehen, Gesetzmäßigkeiten zu erkennen und damit zuverlässige Aussagen über das künftige Verhalten dieser Systeme zu ermöglichen. Im Hinblick auf Verbrennungsmotoren als Antriebssysteme für Land-, Wasser- und Luftfahrzeuge, für Dauer- und Notstromaggregate, sowie für Klima- und Kälteanlagen kommt dabei der Gesamtprozessanalyse bzw. -simulation eine besondere Bedeutung zu.

Bei der modellbasierten Parameteroptimierung wird das Motorverhalten durch ein mathematisches Modell beschrieben. Die Optimierung erfolgt also nicht am realen Motor, sondern an einem Modell, das alle für die konkrete Optimierungsaufgabe relevanten Effekte berücksichtigt. Die Vorteile dieses Vorhabens sind eine drastische Reduzierung des Versuchsaufwands und damit eine deutliche Zeiteinsparung bei Entwicklungsaufgaben, vgl. Kuder und Kruse (2000).

Voraussetzung für die Simulation sind mechanische, thermodynamische und chemische Modelle zur Beschreibung von technischen Prozessen, wobei für die Modellierung von motorischen Prozessen das Verständnis der Grundlagen der Thermodynamik und der chemischen Reaktionskinetik eine wesentliche Voraussetzung ist.

1.2 Modellbildung

Der erste Schritt bei der numerischen Simulation besteht in der Erstellung des den technischen Prozess beschreibenden Modells. Unter Modellbildung versteht man eine zielorientierte Vereinfachung der Realität durch Abstraktion. Voraussetzung dafür ist, dass der reale Prozess in einzelne Prozessabschnitte zerlegt und damit in Teilprobleme aufgespaltet werden kann. Diese Teilprobleme müssen dann physikalisch beschreibbar und mathematisch formulierbar sein.

An das resultierende Modell müssen eine Reihe von Forderungen gestellt werden:

- Das Modell muss formal richtig, d.h. widerspruchsfrei sein. Zur Frage "richtig oder falsch" wäre anzumerken, dass Modelle zwar formal richtig sein können, aber nicht den zu untersuchenden Prozess beschreiben, bzw. auf diesen nicht anwendbar sind. Es gibt auch Fälle, in denen das Modell physikalisch nicht korrekt ist, aber trotzdem den Prozess hinreichend genau beschreibt, z.B. das Ptolemäische Modell zur Simulation der Dynamik des Sonnensystems, d.h. Berechnung der Planeten- und der Mondbewegung.
- Das Modell muss die Realität möglichst genau beschreiben und es muss darüber hinaus auch mathematisch lösbar sein. Man sollte sich immer bewusst sein, dass jedes Modell ei-

ne Annäherung an die Realität ist und deshalb niemals mit der Realität vollkommen übereinstimmen kann.

- Der für die Lösung des Modells erforderliche Aufwand in Hinblick auf die Rechenzeit muss im Rahmen der Aufgabenstellung vertretbar sein.
- Im Hinblick auf die Modelltiefe gilt die Forderung: So einfach wie möglich und so komplex wie nötig. So genannte Universal-Modelle sind mit Vorsicht zu betrachten.

Erst mit Hilfe von Modellvorstellungen sind wir in der Lage, physikalische Abläufe wirklich zu verstehen.

Im Folgenden wird etwas näher auf die Arten von Modellen im Hinblick auf den Verbrennungsmotor eingegangen. Zunächst ist festzuhalten, dass sowohl der eigentliche thermodynamische Kreisprozess (insbesondere die Verbrennung) als auch die Laständerung des Motors instationäre Vorgänge sind. Selbst wenn der Motor in einem bestimmten Betriebszustand stationär betrieben wird (d. h. Last und Drehzahl sind konstant) läuft der thermodynamische Kreisprozess instationär ab. Damit wird erkennbar, dass es zwei Kategorien von Motormodellen gibt, nämlich solche, die den Betriebszustand des Motors (Gesamtprozessmodelle) und solche, die den eigentlichen Arbeitsprozess beschreiben (Verbrennungsmodelle).

Im Hinblick auf Modellarten unterscheidet man zwischen:

- *Linguistischen Modellen*, d. h. auf empirisch gefundenen Regeln aufgebaute regelbasierte Verfahren, die nicht in mathematische Gleichungen erfasst sind, und
- *Mathematischen Modellen*, d.h. auf einem mathematischen Formalismus beruhende Verfahren.

Linguistische Modelle sind in der letzten Zeit unter den Begriffen "Expertensysteme" und "Fuzzy-logic-models" bekannt geworden. Dabei ist aber zu beachten, dass regelbasierte Verfahren nur interpolieren und nicht extrapolieren können. Wir werden auf diese Art von Modellen nicht weiter eingehen.

Mathematische Modelle lassen sich in:

- parametrische und
- nichtparametrische

Modelle unterteilen. Parametrische Modelle sind kompakte mathematische Formalismen zur Beschreibung des Systemverhaltens, welche auf physikalischen und chemischen Grundgesetzen beruhen und nur relativ wenige experimentell zu bestimmende Parameter aufweisen. Diese Modelle werden typischerweise durch einen Satz von partiellen oder gewöhnlichen Differentialgleichungen beschrieben.

Nichtparametrische Modelle sind durch Tabellen gegeben, welche das Systemverhalten auf spezielle Testeingangssignale festhalten. Typische Vertreter dieser Art von Modellen sind Sprungantworten oder Frequenzgänge. Mit Hilfe geeigneter mathematischer Verfahren, z. B. der Fouriertransformation kann das Verhalten des Systems auf beliebige Eingangssignale berechnet werden.

Nichtparametrische Modelle können wie auch die linguistischen Modelle nur interpolieren. Für die Simulation des motorischen Prozesses werden nur mathematische Modelle verwendet. Weil aber auch bei diesen Modellen die Modellparameter an experimentelle Messwerte angepasst werden müssen, sind diese Modelle grundsätzlich mit Fehlern behaftet. Bei der Analyse von Simulationsergebnissen sind diese Fehler kritisch zu bewerten. Auch damit wird nochmals deutlich, dass jedes Modell nur eine Approximation des betrachteten realen Systems darstellt.

1.3 Simulation

Für die Erstellung parametrischer mathematischer Modelle zur Simulation der zeitlich- und räumlich veränderlichen Strömungs-, Temperatur- und Konzentrationsfelder mit chemischen Reaktionen ist die Kenntnis der Grundlagen der Thermodynamik, der Fluiddynamik und der Verbrennungstechnik eine wesentliche Voraussetzung, siehe Abb. 1.1.

Abb. 1.1: Prozess-Simulation

Bei der Simulation von Strömungsfeldern mit chemischen Reaktionen ist zu beachten, dass physikalische und chemische Prozesse auf sehr unterschiedlichen Zeit- und Längenskalen ablaufen können. Die Beschreibung dieser Prozessabläufe ist meist einfacher, wenn die Zeitskalen sehr unterschiedlich sind, weil dann für den physikalischen oder chemischen Prozess vereinfachende Annahmen getroffen werden können, und sie ist in der Regel sehr komplex, wenn die Zeitskalen von gleicher Größenordnung sind. Dieser Sachverhalt wird durch die in Abb. 1.2 angegebenen Beispiele verdeutlicht.

Darüber hinaus sind aber auch Kenntnisse über Modellierungsmethoden erforderlich. Obwohl sich dafür einige allgemein gültige Regeln angeben lassen, lässt dieser Schritt der Kreativität und dem Einfallsreichtum des Modellierers einen erheblichen Freiraum. Im Wesentlichen lässt sich das Vorgehen bei der Modellierung in folgende Schritte unterteilen:

1. Schritt: Das System definieren und von der Umwelt abgrenzen, relevante Speicher sowie Massen- und Energieströme zwischen diesen festlegen.

- 2. Schritt: Bilanzgleichungen aufstellen nach dem einheitlichen Schema: zeitliche Änderung des Speichers ist gleich dem Zufluss minus dem Abfluss.
- 3. Schritt: Mit Hilfe von physikalischen Gesetzen die Massen- und Energieströme beschreiben.
- 4. Schritt: Das resultierende Modell ggf. durch Vernachlässigung von Nebeneinflüssen vereinfachen.
- 5. Schritt: Das Modell numerisch integrieren, d. h. Simulation durchführen.
- 6. Schritt: Das Modell validieren, berechnete Daten mit experimentell ermittelten vergleichen und das Modell ggf. modifizieren.

Abb. 1.2: Prozess-Simulation

Bei der Verwendung eines vorhandenen Simulations-Programms zur Lösung neuer Aufgabenstellungen sind stets die Voraussetzungen, die bei der Erstellung des Modells getroffen wurden, kritisch zu überprüfen. Dabei ist zu klären, ob und wie weit das vorhandene Programm zur Lösung des neuen Problems tatsächlich geeignet ist. Man sollte sich dabei immer der Tatsache bewusst sein, dass "schöne bunte Bilder" eine enorme Suggestivkraft auf den "unkritischen" Betrachter ausüben.

Voraussetzung für die Akzeptanz dessen, was wir heute mit Computersimulation bezeichnen, war eine allmähliche Veränderung im philosophischen Denken und im Begreifen und Verstehen der Welt, in der wir leben. Der Mensch hat die Welt und die in ihr ablaufenden Prozesse in der Vergangenheit überwiegend als linear und kausal aufgefasst und wir begreifen allmählich, dass entscheidende Prozesse nichtlinear und chaotisch ablaufen. Erst mit dem Aufblühen der Naturwissenschaften und mit der Entwicklung ihrer methodischen Ansätze wurden die Grundlagen für die Computersimulation geschaffen.

Die numerische Simulation eröffnet ungeahnte Möglichkeiten. Wir bekommen eine Ahnung dessen, was uns auf diesem Gebiet in der Zukunft erwartet, wenn wir uns die stürmische Entwicklung auf dem Informationssektor vor Augen halten und den heutigen Stand von "E-Mail" und "Internet" mit dem vor 10 Jahren vergleichen.

Im Hinblick auf den technischen Fortschritt und die damit verbundenen ökologischen Perspektiven sei der interessierte Leser auf Jischa (1993) verwiesen. Einen interessanten Einblick in das Thema Simulation haben Kaufmann und Smarr (1994) gegeben.

2 Einführung in die Funktionsweise von Verbrennungsmotoren

2.1 Energiewandlung

Bei der Energiewandlung kann man im Sinne einer hierarchischen Ordnung zwischen allgemeiner, thermischer und motorischer Energiewandlung unterscheiden.

Unter *allgemeiner Energiewandlung* wird dabei die Umsetzung von Primär- in Sekundärenergie durch einen technischen Prozess in einer Energiewandlungsanlage verstanden, siehe Abb. 2.1.

Abb. 2.1: Schema der allgemeinen Energiewandlung

Die *thermische Energiewandlung* unterliegt den Hauptsätzen der Thermodynamik und kann formal, wie in Abb. 2.2 gezeigt, beschrieben werden.

Abb. 2.2: Schema der thermischen Energiewandlung

Der Verbrennungsmotor bzw. die Gasturbine sind spezielle Energieumwandlungsanlagen, bei denen im Brennraum bzw. in der Brennkammer die im Brennstoff gebundene chemische

Energie zunächst in thermische und diese anschließend durch das Triebwerk in mechanische Energie gewandelt wird. Bei der stationären Gasturbinenanlage wird diese dann durch den nachgeschalteten Generator in elektrische Energie umgewandelt.

Abb. 2.3: Schema der Energiewandlung im Verbrennungsmotor bzw. in der Gasturbine

2.2 Hubkolbenmotoren

Verbrennungsmotoren sind Kolbenmaschinen, bei denen man je nach Ausbildung des Brennraums bzw. des Kolbens zwischen Hubkolbenmotoren und Rotationskolbenmotoren mit rotierender Kolbenbewegung unterscheidet. Abb. 2.4 zeigt Prinzipskizzen möglicher Bauformen des Hubkolbenmotors, wobei heute praktisch nur noch die Varianten 1, 2 und 4 gebaut werden.

Abb. 2.4: Bauarten des Hubkolbenmotors

Für eine ausführliche Beschreibung anderer Ausführungen des Verbrennungsmotors sei z. B. auf van Basshuysen und Schäfer (2003), Maas (1979) und Zima (1987, 2005) verwiesen.

2.2.1 Der Kurbeltrieb

Das Triebwerk setzt die oszillierende Bewegung des Kolbens in die rotierende Bewegung der Kurbelwelle um, siehe Abb. 2.5. Der Kolben kehrt seine Bewegung im oberen Totpunkt (OT) und im unteren Totpunkt (UT) um. In diesen beiden Totpunkten ist die Geschwindigkeit des Kolbens jeweils gleich Null, die Beschleunigung hat dort jedoch ein Maximum. Zwischen dem oberen Totpunkt und der Unterseite des Zylinderkopfes verbleibt das Kompressionsvolumen V_c (bei Hubkolbenverdichtern auch der so genannte schädliche Raum).

Abb. 2.5: Triebwerk des Hubkolbenmotors

Abb. 2.6 zeigt die Kinematik eines Kurbeltriebs mit Schränkung, bei dem sich die Kurbelwellenlängsachse nicht mit der Zylinderlängsachse schneidet, sondern um die Länge e versetzt ist.