

Elektrotechnik für Architekten, Bauingenieure und Gebäudetechniker

Grundlagen und Anwendung in der Gebäudeplanung

Elektrotechnik für Architekten, Bauingenieure und Gebäudetechniker

Ismail Kasikci

Elektrotechnik für Architekten, Bauingenieure und Gebäudetechniker

Grundlagen und Anwendung in der Gebäudeplanung

Ismail Kasikci Weinheim, Deutschland

ISBN 978-3-8348-0853-0 DOI 10.1007/978-3-8348-2057-0 ISBN 978-3-8348-2057-0 (eBook)

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden 2013

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Lektorat: Karina Danulat | Annette Prenzer *Korrektorat:* Dr. Martin Feuchte

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Vieweg ist eine Marke von Springer DE. Springer DE ist Teil der Fachverlagsgruppe Springer Science+Business Media. www.springer-vieweg.de

Vorwort

In vielen Studiengängen ist heute ein elektrotechnisches Grundwissen unbedingt erforderlich. Dieses Lehrbuch vermittelt die Grundlagen der Elektrotechnik für Studierende nichtelektrotechnischer Fachgebiete wie Architektur, Bauingenieurwesen, Gebäudetechnik, Informationstechnik oder auch Maschinenbau und Wirtschaftsingenieurwesen. Es ist sowohl für das Studium als auch für die anschließende Berufspraxis konzipiert und erleichtert den Einstieg in das Fachgebiet Elektrotechnik und in die elektrotechnischen Anwendungsgebiete. Als begleitendes Handbuch unterstützt dieses Buch auch die Berufstätigkeit und macht elektrotechnische Zusammenhänge verständlich.

Die Elektrotechnik spielt bei vielen Fragen der Gebäudetechnik eine wichtige Rolle wie beispielsweise bei der Gebäudeautomation und bei regenerativen Energiesysteme, deren Planung teilweise direkt mit der Gebäudeplanung verbunden ist.

Das vorliegende Lehrbuch soll das Vor- und Nacharbeiten der vorgestellten Themenschwerpunkte und Lehrinhalte erleichtern sowie ergänzende Hintergrundinformationen liefern. Auch wenn elektrotechnische Berechnungen im Rahmen der Gebäudeplanung in der Regel von Fachingenieuren oder im Falle kleinerer Bauvorhaben von Fachfirmen ausgeführt werden, sind doch die Lehrinhalte dieses Buches als Wissen für Studierende von Fächern wie Gebäudetechnik und Klimatechnik unverzichtbar und auch für Architekten und Bauingenieure zum Nachschlagen geeignet, wenn es auf ein Verständnis der Grundlagen der Elektrotechnik ankommt.

Dieses Lehrbuch behandelt schrittweise und verständlich zunächst die Grundlagen der Elektrotechnik und stellt sie in den Zusammenhang zur Technischen Gebäudeausrüstung und zur Energieumwandlung, Energieübertragung und Energieverteilung. Dabei wird die Bedeutung der Elektrotechnik für die gesamte gebäu-

detechnische Anlagenplanung erkennbar. Am besten gelingt des Verstehen der elektrotechnischen Grundlagen und Zusammenhänge, wenn Sie das Buch durcharbeiten und die Beispielaufgaben durchrechnen. Um den Stoff zu verstehen, müssen Sie üben, denn Übung macht den Meister.

Praxisnahe Beispiele in jedem Kapitel des Buches helfen, die Zusammenhänge zu erfassen. Im umfangreichen Literaturverzeichnis am Ende des Buches finden sich Empfehlungen für weiterführende Fachliteratur.

Allen meinen Fachkollegen und Bekannten, die mich durch ihre Anregungen, Kritiken und Vorschläge unterstützt haben, möchte ich herzlich danken.

Herrn Prof. Dipl.-Ing. Wolfram Pistohl, Herrn Prof. Dipl.-Ing. Franz Josef Krichenbauer, Herrn Karl-Heinz Kny und Herrn Volker Präuninger möchte ich meinen Dank für die kritische Durchsicht des Manuskriptes aussprechen.

Besonders danke ich den Firmen ABB STOTZ, Siemens, Dehn + Söhne, Trilux und Hager für die Überlassung der technischen Unterlagen.

Dank gebührt auch dem Springer Vieweg Verlag und insbesondere Frau Karina Danulat für die Unterstützung bei der Veröffentlichung des Buches.

Beim Verfassen eines Buches lassen sich an der einen oder anderen Stelle Schreibfehler nicht vermeiden, wofür ich Sie um Nachsicht bitte. Bei Fragen, Wünschen und Anregungen wenden Sie sich bitte gern an mich.

Weinheim, im Mai 2013

Ismail Kasikci

Inhaltsverzeichnis

Fo	orme	lzeichen	X	XI
\mathbf{A}	bkür	zungen	X	XV
In	dize	s	XXV	VII
1	Ein	leitung		1
2	Ein	führung in die Elektrotechnik		5
3	Phy	ysikalische Größen und Einheiten		9
	3.1	Physikalische Größen		9
	3.2	Physikalische Gleichungen		11
	3.3	Maß- und Einheitensysteme		13
4	Phy	ysikalische Grundbegriffe		17
	4.1	Aufbau der Materie, Ladungen		17
	4.2	Leiter, Halbleiter und Nichtleiter		21
	4.3	Elektrischer Strom		23
	4.4	Wirkungen des elektrischen Stromes		25
	4.5	Beispiele: Stromstärke		26

VIII Inhaltsverzeichnis

	4.5.1	Beispiel: Berechnung der Stromstärke	26
	4.5.2	Beispiel: Berechnung der Ladung	27
4.6	Strome	dichte	27
4.7	Beispie	ele: Stromdichte	28
	4.7.1	Beispiel: Glühlampe	28
	4.7.2	Beispiel: Fundamenterder	28
4.8	Elektr	ische Spannung	29
4.9	Beispie	ele: Elektrische Spannung	31
	4.9.1	Beispiel: Arbeit	31
	4.9.2	Beispiel: Spannung	31
4.10	Elektr	ischer Widerstand	31
4.11	Beispie	ele: Elektrischer Widerstand	34
	4.11.1	Beispiel: Stromkreiswiderstand	34
	4.11.2	Beispiel: Leitwert	34
	4.11.3	Beispiel: Widerstand eines Leiters	34
4.12	Strom-	- und Spannungzählpfeile	35
4.13	Erzeug	ger- und Verbraucherzählpfeile	35
4.14	Elektr	ische Leistung, Arbeit und Energie	35
4.15	Wirku	ngsgrad	36
4.16	Beispie	ele: Elektrische Leistung	37
	4.16.1	Beispiel: Pumpe	37
	4.16.2	Beispiel: Hebebühne	37
	4.16.3	Beispiel: Lampen parallel	38
	4.16.4	Beispiel: Lampen in Reihe geschaltet	38
4.17	Beispie	ele: Strom, Spannung und Widerstand	39
	4.17.1	Beispiel: Widerstandswerte	39
	4.17.2	Beispiel: Glühlampe	39
4.18	Analog	giebetrachtungen	39

Inhaltsverzeichnis	IX

5	Gru	indges	etze der Elektrotechnik	41
	5.1	Das O	Ohmsche Gesetz	41
	5.2	Die K	irchhoffschen Gesetze	42
		5.2.1	Erster Kirchhoffscher Satz (Knotenregel)	43
		5.2.2	Beispiel zum 1. Kirchhoff'schen Satz	44
		5.2.3	Zweiter Kirchhoffscher Satz (Maschenregel)	45
		5.2.4	Beispiel zum 2. Kirchhoff'schen Satz	46
6	Ber	echnui	ng von Gleichstromkreisen	49
	6.1	Reiher	nschaltung von Widerständen	51
		6.1.1	Beispiel: Reihenschaltung der Leitungen	52
		6.1.2	Beispiel: Reihenschaltung	52
		6.1.3	Beispiel: Berechnung der Quellenspannung	53
	6.2	Parall	elschaltung von Widerständen	54
		6.2.1	Beispiel: Parallelschaltung aus der Praxis	55
		6.2.2	Beispiel: Parallelschaltung	55
	6.3	Stern-	Dreieck-Umwandlung	56
	6.4	Whea	tstonesche Brückenschaltung	57
	6.5	Theve	enin-Theorem (Lineare Spannungsquelle)	58
	6.6	Norto	n Theorem (Lineare Stromquelle)	58
	6.7	Überla	agerungssatz (Superpositionstheorem)	59
7	Elel	ktrisch	ne Quellen	63
	7.1	Ideale	Spannungsquelle	64
	7.2	Reale	Spannungsquellen	64
	7.3	Ideale	Stromquellen	66
	7.4	Reale	Stromquellen	66
	7.5	Zweip	oltheorie	67
	7.6	Leistu	ngsbilanz im Grundstromkreis	67

X Inhaltsverzeichnis

8	Mes	sunge	n der elektrotechnischen Größen	69
	8.1	Messer	a der Stromstärke	70
	8.2	Messu	ng der Spannung und des Spannungsfalls	70
	8.3	Spann	ungsquelle und Innenwiderstand	70
	8.4	Leistu	ngsmessung bei Drehstrom	71
9	Elek	trisch	e Felder	73
	9.1	Das el	ektrische Strömungfeld	74
	9.2	Das el	ektrostatische Feld	76
		9.2.1	Elektrische Spannung und Potential	78
		9.2.2	Elektrische Verschiebungsdichte D	79
		9.2.3	Verschiebungsstrom	80
		9.2.4	Kondensator und Kapazität	80
		9.2.5	Reihen- und Parallelschaltung von Kondensatoren	81
		9.2.6	Parallelschaltung von Kondensatoren	82
		9.2.7	Energie des elektrischen Feldes	83
		9.2.8	Ladung und Entladung eines Kondensators	84
		9.2.9	Anwendung von Kondensatoren	85
	9.3	Beispi	el: Reihen- und Parallelschaltungen	86
	9.4	Beispi	el: Gemischte Schaltung	86
10	Elek	troma	gnetische Felder	87
	10.1	Station	näres magnetisches Feld	87
	10.2	Kraftv	virkungen im elektromagnetischen Feld	89
	10.3	Beispi	el: Kräfte im magnetischen Feld	90
	10.4	Bestin	nmung der Stromrichtung	91
	10.5	Magne	etische Feldgrößen	92
		10.5.1	Magnetische Feldstärke H	92
		10.5.2	Magnetische Flussdichte B	92

Inhaltsverzeichnis	XI

	10.5.3	Magnetischer Fluss Φ	. 93
	10.5.4	Durchflutungsgesetz	. 94
	10.5.5	Magnetischer Kreis	. 95
10.6	Magne	etische Eigenschaften der Materie	. 97
	10.6.1	Wirkung des Ferromagnetismus	. 97
	10.6.2	Wirkung des paramagnetischen Stoffes	. 98
	10.6.3	Wirkung des Diamagnetismus	. 98
11 Ver	änderli	iche magnetische Felder	99
11.1	Das In	nduktionsgesetz	. 99
	11.1.1	Rotatorische Induktion	. 101
	11.1.2	Transformatorische Induktion	. 101
	11.1.3	Lenzsche Regel	. 102
11.2	Indukt	tivität und Selbstinduktion	. 103
11.3	Gegen	induktivität und Gegeninduktion	. 103
11.4	Zusam	nmenschaltung von Induktivitäten	. 109
	11.4.1	Reihenschaltung	. 109
	11.4.2	Parallelschaltung	. 109
11.5	Beispie	ele: Magnetische Felder	. 110
11.6	Wirbe	lstrom und Skineffekt	. 111
	11.6.1	Wirbelstrom	. 111
	11.6.2	Skineffekt	. 111
11.7	Auf- u	ınd Entladevorgänge bei Induktivität	. 112
11.8	Magne	etische Energie	. 113
11.9	Anwer	ndung von Spulen	. 114
12 Gru	indbeg	riffe der Wechselstromtechnik	115
12.1	Kenng	rößen von Wechselstrom	. 116
12.2	Einfüh	nrung in das Rechnen mit komplexen Zahlen	. 118

XII Inhaltsverzeichnis

		12.2.1 Begriffe und Rechenregeln	118
		12.2.2 Rechenregeln für komplexe Zahlen	120
	12.3	Komplexe Größen der Wechselstromtechnik	120
	12.4	Einfache Sinusstromkreise	122
		12.4.1 Wechselspannung und -strom am Ohmschen Widerstand	122
		12.4.2 Wechselspannung und -strom an einer Induktivität	122
		12.4.3 Wechselspannung und -strom am Kondensator	123
	12.5	Berechnung von Sinusstromnetzwerken	123
		12.5.1 Reihenschaltung	124
		12.5.2 Parallelschaltung	127
	12.6	Leistungen im Wechselstromkreis	130
		12.6.1 Blindstromkompensation	132
		12.6.2 Leistungsfaktor	133
		12.6.3 Beispiel: Leistungen	134
10	ъ.		
13	Dre	nstromtechnik 1	L 37
	13.1	Arten der Drehstromsysteme, Bezeichnungen	137
	13.2	Schaltungen der Drehstromsysteme	138
	13.3	Schaltungen des Verbrauchers	144
	13.4	Unsymmetrische Drehstromsysteme	146
	13.5	Verkettungsfaktor	148
	13.6	Leistungen in der Drehstromtechnik	148
	13.7	Beispiel: Verbraucherströme	149
14	Nor	men und Vorschriften 1	51
		Begriffe, Definitionen und Normen	
		0 ,	
	14.2	Übersicht und Bedeutung über die Normen und Vorschriften	154
	14.2	Übersicht und Bedeutung über die Normen und Vorschriften	

Inhaltsverzeichnis XIII

		14.2.2	DKE Deutsche Kommission Elektrotechnik Elektronik und Informationstechnik im DIN und VDE	155
		14.2.3	DKE-Normungsarbeit	156
		14.2.4	Arbeitsgruppen (Working Groups)	157
		14.2.5	VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V	158
		14.2.6	DIN-VDE-Normen	159
		14.2.7	Institutionen, Verordnungen, Gesetze, Normen und technische Vorschriften	159
15	Plar	nung v	on Elektroanlagen	161
	15.1	Art de	r Einspeisung	161
	15.2	Leistu	ngsbedarfsberechnung	162
	15.3	Elektr	ische Anlagen in Wohngebäuden (DIN 18015-1-2-3-4) $$	168
		15.3.1	Begriffe	168
		15.3.2	Elektrische Anlagen in Wohngebäuden DIN 18015 Teil 1 - Planungsgrundlagen	168
		15.3.3	Elektrische Anlagen in Wohngebäuden DIN 18015 Teil 2: Art und Umfang der Mindestausstattung	173
		15.3.4	Elektrische Anlagen in Wohngebäuden DIN 18015 Teil 3: Leitungsführung und Anordnung der Betriebsmittel	178
	15.4	Elektro	otechnische Anforderungen	181
16	Inst	allatio	nstechnik	183
	16.1		cliche, behördliche und privatrechtliche Regelungen und Nor-	183
	16.2	Betriel	bsmittelvorschriften	187
		16.2.1	Beleuchtung	187
		16.2.2	Elektrische Installationen	188
		16.2.3	Arbeitsplatzinstallationen	188
	16.3	Starks	tromanlagen	189

XIV Inhaltsverzeichnis

	16.4	Empfangs- und Verteilanlage für Ton- und Fernsehrundfunk	. 191
	16.5	Kommunikationsanlagen	. 192
	16.6	Installationsbus (KNX/EIB)	. 194
	16.7	Installationsplan	. 196
	16.8	Übersichtsschaltplan	. 196
	16.9	DIN Normen	. 197
		16.9.1 Haus-Anschlusseinrichtungen nach DIN 18012	. 197
		16.9.2 Zählerplätze für Elektrizitätszähler	. 198
		16.9.3 Schutzpotentialausgleich	. 201
	16.10	Erdungsanlagen nach DIN VDE 0100-540	. 204
		16.10.1 Auswahl und Errichtung von Erdungsanlagen	. 205
		16.10.2 Erdungsarten	. 206
		16.10.3 Fundamenterder nach DIN 18014	. 206
	16.11	Leitfaden für die Gebäudeplanung	. 207
	G 1		011
17		ıtzkonzepte	211
	17.1	Begriffe und Benennungen	. 211
	17.2	Physikalische Einwirkungen	. 212
	17.3	Physiologische Einwirkungen	213
	17.4	Wirkungen des elektrischen Stromes	. 213
	17.5	Schutzkonzept	. 214
	17.6	Art der Erdverbindung, Schutz durch automatische Abschaltung	. 214
		17.6.1 TN-Systeme	. 216
		17.6.2 TT-Systeme	. 217
	17.7	Abschaltzeiten	. 218
	17.8	Schutzklassen	. 219
	17.9	Schutzart	. 220
	17.10		

Inhaltsverzeichnis	XV
Inhaltsverzeichnis	XV

	100100	111
		17.10.1 Berechnung eines TN-Systems
		17.10.2 Berechnung eines TT-Systems
18	Nie	derspannungs-Schutzeinrichtungen 225
	18.1	Leitungsschutzschalter (MCB)
	18.2	Planungsgrundlagen von Schutzgeräten
	18.3	Schmelzsicherungen
	18.4	RCD (Fehlerstromschutzschalter)
	18.5	Auswahl und Installation von RCDs
	18.6	Anwendung der RCD in Wohngebäuden
	18.7	Hauptleitungs-Schutzschalter
	18.8	Leistungsschalter (MCCB)
	18.9	Auslöser/Schutzfunktion des Leistungsschalters
19	Übe	ertragungsmittel 237
	19.1	Freileitungen
	19.2	Kabel und Leitungen
	19.3	Kurzschlussbelastbarkeit von Kabeln
20	Ken	ngrößen elektrischer Leitungen 245
	20.1	Wirkwiderstand
	20.2	Induktivität
	20.3	Kapazität
2 1	Gru	ndregeln der Kabeldimensionierung 249
	21.1	Schutz von Kabeln und Leitungen
	21.2	Allgemeine Anforderungen
	21.3	Überstromanwendungen
	21.4	Technische Anschlussbedingungen

XVI Inhaltsverzeichnis

	21.5	Anordnung der Schutzeinrichtungen	55
	21.6	Strombelastbarkeit von Kabeln und Leitungen	56
	21.7	DIN VDE 0100-520 Beiblatt 2	34
	21.8	Kabeldimensionierung	35
	21.9	Funktionserhalt von Kabeln und Leitungen im Brandfall 20	<u> 3</u> 7
		21.9.1 Grundlegende Anforderungen	37
		21.9.2 Funktionserhalt der Leitungen	37
		21.9.3 Dauer des Funktionserhaltes	37
	21.10	Kabeltragsysteme	38
	21.1	Befestigungssysteme	<u> 3</u> 9
	21.12	Montagesysteme	39
	21.13	Kabelrinnensysteme	70
	21.14	Überbelegung einer Kabeltrasse	71
	21.15	Brandschutz	72
	21.16	Akustik	73
	~		
22	_	nungsfall in elektrischen Anlagen 27	
		Spannungsfall im Gleichstromnetz	
		Spannungsfall im Wechselstromnetz	
	22.3	Spannungsfall im Drehstromnetz	79
23	Erd	ngsanlagen 28	₹1
		Begriffe	
		Erdungsarten	
		Bedeutung des Schutzpotentialausgleichs	
	23.4	Beispiele für Erdung	90
		23.4.1 Beispiel: Erdung des Transformatorgebäudes 29	90
		23.4.2 Beispiel: Erdung eines Gebäudes	91

nhaltsverzeichnis	XVII
-------------------	------

24	Blitz	zschutzanlagen 29	3
	24.1	Begriffe und Definitionen	93
	24.2	Planung von Blitzschutzanlagen	96
	24.3	Blitzschutzklassen	99
		24.3.1 Erdungsanlage)1
		24.3.2 Werkstoff, Form und Mindestmaße von Erdern 30)3
	24.4	Trennungsabstand	10
	24.5	EMV (Elektromagnetische Verträglichkeit) Blitzschutzzonen-Konzept 3	12
		24.5.1 Planungsangaben zu Überspannungsableiter n $\ldots \ldots 31$	14
		24.5.2 Anforderungsklassen für Überspannungsschutzeinrichtungen	15
	24.6	Prüfungsmaßnahmen	16
	24.7	Montagebeispiel	17
	24.8	Dokumentation	19
25	Tage	es- und Kunstlicht 32	21
25	_	es- und Kunstlicht 32 Begriffe und Definitionen	
25	25.1		21
25	25.1 25.2	Begriffe und Definitionen	21 24
25	25.1 25.2 25.3	Begriffe und Definitionen	21 24 25
25	25.1 25.2 25.3 25.4	Begriffe und Definitionen	21 24 25 26
25	25.1 25.2 25.3 25.4 25.5	Begriffe und Definitionen	21 24 25 26 27
25	25.1 25.2 25.3 25.4 25.5 25.6	Begriffe und Definitionen	221 224 225 226 227
25	25.1 25.2 25.3 25.4 25.5 25.6	Begriffe und Definitionen 32 Beleuchtungskonzepte 32 Lichttechnische Gütemerkmale 32 Wartungswert der Beleuchtungsstärke 32 Beleuchtungsstärken 32 Begrenzung der Direktblendung 32	221 224 225 226 227 227 228
25	25.1 25.2 25.3 25.4 25.5 25.6	Begriffe und Definitionen32Beleuchtungskonzepte32Lichttechnische Gütemerkmale32Wartungswert der Beleuchtungsstärke32Beleuchtungsstärken32Begrenzung der Direktblendung32Beleuchtungsarten32	221 224 225 226 227 227 228 228
25	25.1 25.2 25.3 25.4 25.5 25.6	Begriffe und Definitionen32Beleuchtungskonzepte32Lichttechnische Gütemerkmale32Wartungswert der Beleuchtungsstärke32Beleuchtungsstärken32Begrenzung der Direktblendung32Beleuchtungsarten3225.7.1 Allgemeinbeleuchtung32	21 24 25 26 27 27 28 28 29
25	25.1 25.2 25.3 25.4 25.5 25.6 25.7	Begriffe und Definitionen32Beleuchtungskonzepte32Lichttechnische Gütemerkmale32Wartungswert der Beleuchtungsstärke32Beleuchtungsstärken32Begrenzung der Direktblendung32Beleuchtungsarten3225.7.1 Allgemeinbeleuchtung3225.7.2 Arbeitsplatzorientierte Allgemeinbeleuchtung32	21 24 25 26 27 27 28 28 29

XVIII Inhaltsverzeichnis

	25.10	Beleuchtungsplanung
		25.10.1 Berechnung mit der Lichtstärkemethode
		25.10.2 Lichtstrommethode (Wirkungsgradverfahren)
		25.10.3 Wirkungsgrade
		25.10.4 Richtwerte für die Beleuchtungsplanung
	25.11	Leuchten
	25.12	Tageslichtplanung
26	Scha	tanlagen 343
	26.1	Transformatoren
		26.1.1 Hauptbauformen
		26.1.2 Belüftung von Tranformatoren
	26.2	Schaltanlagenräume
		26.2.1 Druckentwicklung in Schaltanlagenräumen
		26.2.2 Anordnung von Schaltfeldern
	26.3	Niederspannungsanlagen
		26.3.1 Verteileraufbau von NS-Schaltanlagen
		26.3.2 Checkliste für NS-Schaltanlagen
27	Plar	ıng eines Wohngebäudes 355
	27.1	Einleitung
	27.2	Wohnsituation
	27.3	Einspeisung
	27.4	
	27.5	Hausanschluss
	27.6	Zählerplätze und Räume
	27.7	Unterverteiler
	27.8	Stromkreisverteilung
	27.0	Festlegung des Ausstattungswertes 350

Inhaltsverzeichnis	XIX
27.10 Kommunikationstechnik	360
27.11 Brandschutz und Sicherheitstechnik	360
27.12 Anschlusswerte und Verbraucher-Tabelle	360
27.13 Festlegung der Bemessungswerte von Leitungen	361
27.14 Erdungsanlagen	361
27.15 Blitzschutz	362
27.16 Auslegung der Unterverteiler	362
27.17 Zusätzlicher Schutz durch RCDs	362
27.18 Vergleich der Berechnungen mit Simaris	363
27.19 Ermittlung des Leistungsbedarfs	363
27.20 Auslegung der Endstromkreise	367
27.21 Dimensionierung der Anlage	367
27.22 Berechnung des Spannungsfalls	368
27.23 Berechnung der Abschaltbedingungen	369
27.24 Selektivität	371
Literaturverzeichnis	373
Stichwortverzeichnis	381

Formelzeichen

A	Fläche, Querschnitt
a	Beschleunigung, Abstand
B	magnetische Flussdichte
B	Blindleitwert
b	Breite
C	Kapazität oder Konstante
c	Lichtgeschwindigkeit im Vakuum
d	Durchmesser oder Abstand der Leiter
d	Abstand der Ladung Q1 zu Q2
D	elektrische Flussdichte
E	elektrische Feldstärke
e	Elementarladung
e	Basis des natürlichen Logarithmus
F	Kraft
f	Frequenz
G	Wirkleitwert, Leitwert
H	magnetische Feldstärke
H_c	Koerzitivfeldstärke
h	Höhe
I	elektrische Stromstärke
i	Augenblickswert des Stromes
j	imaginäre Einheit
J	Stromdichte
κ	spezifischer Leitwert
L	Induktivität
l	Länge
m	Masse
M	Drehmoment

XXII Formelzeichen

N	Windungszahl
n	Drehzahl
P	Wirkleistung
Q	Blindleistung, elektrische Ladung
\dot{R}	elektrischer Widerstand
r	Radius
S	Scheinleistung
S	Querschnitt
s	Streufaktor
T	Periodendauer
t	Zeit
U	elektrische Spannung
u	Augenblickswert der Spannung
V	Volumen
v	Geschwindigkeit
W	Energie, Arbeit
W_m	magnetische Feldenergie
X	Blindwiderstand, Reaktanz
Y	Scheinleitwert
\underline{Y}	komplexer Leitwert (Admittanz)
Z	Scheinwiderstand, Impedanz
\underline{Z}	komplexer Widerstand (Impedanz
α	Winkel
ϵ	Permittivität
ϵ_0	elektrische Feldkonstante
ϵ_r	Permittivitätszahl
η	Wirkungsgrad
Θ	Durchflutung
ϑ	Temperatur
λ	Leistungsfaktor
Λ	magnetischer Leitwert
μ	Permeabilität
μ_0	magnetische Feldkonstante
μ_r	Permeabilitätszahl
ρ	Dichte
ρ	spezifischer Widerstand
σ	Streuung
au	Zeitkonstante
Φ	magnetischer Fluss
φ	Potential, Phasenwinkel
Ψ	elektrischer Fluss
ω	Winkelgeschwindigkeit

Formelzeichen XXIII

ω Kreisfrequenz

 $\begin{array}{ll} \kappa & \text{spezifischer Leitwert, Stoßfaktor} \\ \rho_m & \text{Dichte des Leitungsmaterials} \\ \cos\varphi & \text{Verschiebungsfaktor, Wirkfaktor} \end{array}$

 $\sin \varphi$ Blindfaktor

Abkürzungen

Al Aluminium

As Arsen

ASR Arbeitsstättenrichtlinien

B Bor

BGV Berufsgenossenschaftliche Vorschriften

BKZ Baukostenzuschuss

CEE Commission on the Rules for the Approval of the

Electrical Equipment (Steckersystem)

Cl Clor

CGPM Generalkonferenz für Maß und Gewicht

DIN Deutsches Institut für Normung

DS Dauerschaltung

EMV Elektromagnetische Verträglichkeit

ETSI European Telecommunications Standards Institute

Ga Gallium G Generator

HAK Hausanschlusskasten HEK Haupterdungsklemme

HOAI Honorarordnung für Architekten und Ingenieure

In Indium

K, L, M, N Schale des Atommodels

KNX Feldbus für die Gebäudeautomation

LS Leistungsschalter LTS Lasttrennschalter LED Leuchtdioden LWL Lichtwellenleiter

MCB Leitungsschutzschalter

MLAR Muster Leitungsanlagen Richtlinie

XXVI Abkürzungen

MSR Mess,- Steuer- und Regelungstechnik

 $egin{array}{lll} Na & & {
m Natrium} \\ NB & & {
m Netzbetreiber} \\ NS & & {
m Niederspannung} \\ \end{array}$

 $egin{array}{ll} NTC & ext{Heißleiter} \\ PTC & ext{Kaltleiter} \\ P & ext{Phosphor} \\ \end{array}$

RCD Fehlerstrom-Schutzeinrichtung

Si Silizium Sb Antimon

SI internationales Einheitensystem

 $egin{array}{ll} SA & ext{Schutzart} \\ SK & ext{Schutzklasse} \\ \end{array}$

SPA Schutzpotentialausgleich

SS Sammelschiene

UGR Unified Glare Rating-Verfahren (Blendwert)

USV Ununterbrochene Stromversorgung $\ddot{U}SE$ Überstromschutz-Einrichtung

VdS Verband deutscher Sachversicherer

Indizes

ac Wechselstrom (Alternating Current)

dc Gleichstrom (Direct Current)

e Elektron fiktiv n Nennwert

r Bemessungswert

G Generator, Wirkleitwert, Gesamt HV Hochspannung (High Voltage) LV Niederspannung (Low Voltage)

L Leitung

K Kabel, Kurzschluss

L1, L2, L3 Leiter des Drehstromnetzes

N Neutralleiter

M Motor

MV Mittelspannung (Medium Voltage) N Neutralpunkt des Drehstromnetzes

p Proton

Q Anschlusspunkt der Netzeinspeisung

str Strang

 $\begin{array}{ll} T & Transformator \\ - & Gleichstrom \\ \sim & Wechselstrom \\ \Delta & Dreieckschaltung \\ Y & Sternschaltung \end{array}$

1 Einleitung

Die integrierte Planung von Gebäuden umfasst die Konzeption, Planung, Vorbereitung und Koordination der Ausführung, den Betrieb sowie die Modernisierung gebäudetechnischer und gebäudeklimatischer Systeme. Eine besondere Herausforderung ist dabei die Abstimmung der einzelnen Gewerke untereinander.

Dazu gehören im Wesentlichen Heizung, Lüftung, Klima- und Kältetechnik, Brandschutz, Einbruchschutz, Gebäudeleittechnik und elektrische Energieverteilung. Das Gebäude muss dabei ganzheitlich betrachtet und die Funktionalität der Prozesse definiert werden.

Die Gebäudeautomatisierung und der Vernetzungsgrad zwischen den einzelnen Gewerken nehmen immer stärker zu. Dadurch können die Kosten für Investor, Nutzer und Betreiber des Gebäudes reduziert werden. Während der Planung eines Vorhabens müssen die Elektroinstallationen von Anfang an berücksichtigt werden.

Dieses Buch soll den Architekten, Bauingenieuren und Gebäudetechnikern helfen, die Komponenten der elektrischen Gebäudeausrüstung, der Energieverteilung und der Energieverbraucher besser zu verstehen.

Die nachfolgende Zusammenstellung gibt einen Überblick über die Teilgewerke der Elektrotechnik mit Anmerkungen [1], [2].

- 1. Mittelspannungsanlagen (Standort und Spannungshöhe),
- 2. Transformatoren (Standort und Bemessungsleistung),
- 3. Niederspannungshauptverteilungen (Standort und Abmessungen),
- 4. Kabel und Leitungen (Länge und Querschnitte),
- $5. \ \ Netzers at zanlagen/USV \ (Standort, Verbraucher art \ und \ Anschlussleistungen),$
- $6. \ \ Erdungsanlagen\ und\ Schutzpotentialausgleich\ (Erdungsart),$
- 7. Verlegesysteme von Kabel und Leitungen,
- 8. Installationsgeräte (Anforderungen),

2 1 Einleitung

9. Gebäudeautomation/Bussysteme (Schnittstellen, Anzahl der Daten, Art der Mess- und Regeltechnik),

- 10. Sonnenschutz (Steuerung und Umfang),
- 11. Blitzschutzanlagen, Überspannungsschutz (Anforderungen, Integration in das Gebäude)
- 12. Allgemeinbeleuchtung/Tageslichtnutzung (Anschlussleistungen, Raumplan),
- 13. Sicherheitsbeleuchtung (Anschlussleistungen, Raumplan),
- 14. Brandschutz- und Einbruchmeldeanlagen (Standort und Leistung),
- 15. Zutrittskontrollen/Zeiterfassung,
- 16. Antriebstechnik (Anschlussleistungen, Aufzüge, Pumpen, Anlaufverhalten)
- 17. Sprechanlagen (Anschlussleistungen, Ort),
- 18. ELA-Anlagen (Anschlussleistungen, Ort),
- 19. TV- und Antennenanlagen (Anschlussleistungen, Ort),
- 20. Uhrenanlagen (Anschlussleistungen, Ort),
- 21. LAN-Schränke und Datentechnik (Anschlussleistungen, Ort),
- 22. Heizung, Lüftung und Klimatechnik (elektrische Leistung, Standort).

Bild 1.1 gibt einen Gesamtüberblick der Systemkomponenten der wichtigsten konventionellen Betriebsmittel elektrischer Energieversorgungsnetze, die zu Beginn erläutert werden. Die einfache Beschreibung und Zusammenhänge wird in den darauf folgenden Kapiteln vermittelt.

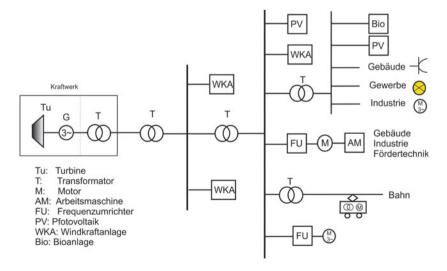


Bild 1.1: Elektrische Energiewandlung

1 Einleitung 3

Elektrische Energie wird in Kraftwerken durch Energieumwandlung bereitgestellt. Dabei werden Drehstromgeneratoren durch Wasser-, Dampf-, Gas- oder Windturbinen angetrieben. Die Spannung des Generators wird dann durch Blocktransformatoren hochtransformiert und über Übertragungsfreileitungen übertragen. Die Netztransformatoren verbinden die Verteilungsnetze mit unterschiedlichen Spannungen der Verbraucheranlagen. Der größte Teil der erzeugten Elektroenergie wird in Beleuchtungsanlagen und in elektrischen Asynchronmotoren in mechanische Energie ungewandelt.

Der Drehstrom-Transformator ist ein Betriebsmittel zur Übertragung und zum Transport von elektrischer Energie. Er besteht aus galvanisch getrennten Wicklungen auf einem Eisenkern, der mit einem oberen und unteren Joch miteinander verbunden ist. Die Transformatoren werden als Öl- oder Trockentransformatoren hergestellt.

Zur Übertragung dienen die Freileitungen, Kabel oder Sammelschienen. Bei Hochund Höchstspannungsleitungen werden Aluminium-Stahl-Seile verwendet. Die Bauform und das Material der Freileitungsmasten sind Holz-, Beton- und Stahlgitter-Masten. In Niederspannungsanlagen kommen Starkstrom-Kabel aus Kupfer oder Aluminium zum Einsatz. Die Grundtypen von Starkstrom-Kabeln sind Einleiter-Kabel, Gürtel-Kabel und Dreimantel-Kabel.

Kondensatoren werden in elektrischen Energieversorgungsnetzen zur Blindleistungskompensation eingesetzt. Der Leistungsfaktor der Anlage wird mindestens nach technischen Anschlussbedingungen (TAB) auf 95% erhöht. In Hochspannungsnetzen kommen reihen- oder parallel geschaltete Kondensatoren vor.

Für einen sicheren und zuverlässigen Betrieb einer Energieversorgungsanlage müssen außerdem Schalt- und Schutzgeräte wie Leistungsschalter, Lastschalter, Trenner und Sicherungen installiert werden.

Weitere Betriebsmittel sind die Stromrichter, die in der Leistungselektronik zum Einsatz kommen. Gleich- oder Wechselrichter bei PV-Anlagen, Windkraftanlagen, USV-Anlagen oder Haushaltgeräte sind heute nicht mehr wegzudenken.

Im **Bild 1.2** ist ein Niederspannungssystem beispielhaft mit einem Motor und einer Steckdose gezeigt, die zwischen den Außenleitern bzw. dem Außenleiter und dem Neutralleiter angeschlossen sind. Eine Niederspannungsanlage wird normalerweise von der Hochspannung mit 20 kV oder 10 kV versorgt. Die Transformatoren werden direkt geerdet. Das Energieversorgungssystem wird entweder mit einem Vierleiter- oder Fünfleiter-System herausgeführt. Die Niederspannung beträgt 400 V/230 V, 50 Hz.

4 1 Einleitung

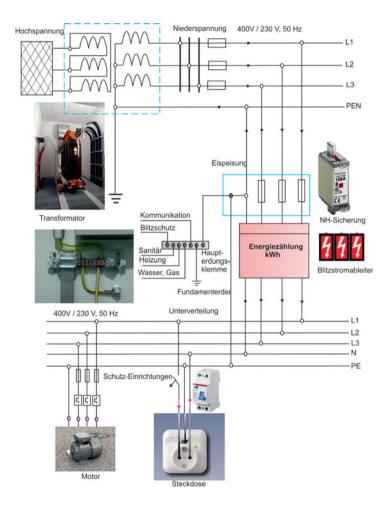


Bild 1.2: Drehstromsystem

2 Einführung in die Elektrotechnik

In diesem Kapitel werden die wichtigsten Grundlagen der Elektrotechnik beschrieben und ein Überblick über die Zusammenhänge der einzelnen Komponenten gegeben [1], [3], [5].

- 1. die elektrischen Komponenten der Elektrotechnik,
- 2. die Bedeutung der Elektrizität,
- 3. die Anwendungsgebiete der Elektrizität und
- 4. die Grundformeln.

Elektrotechnik und Mathematik sind zwei Fächer, vor denen man als Student und Studentin am meisten Angst hat. Elektrotechnik kann man nicht mit unseren Sinnesorganen wahrnehmen. Die elektrischen und magnetischen Erscheinungen der Elektrotechnik sind überall sichtbar. Ihre Auswirkungen erleben wir tagtäglich im Hausthalt und in der Industrie.

Wir alle kennen die Begriffe Strom, Spannung, Widerstand und Leistung. Sie werden auch außerhalb der Elektrotechnik im täglichen Leben verwendet. Wir wissen auch, dass Strom sehr nützlich, aber auch gefährlich ist, wenn man mit ihm in Berührung kommt.

Wie kann man Elektrotechnik beschreiben? Elektrotechnik ist die Wissenschaft von der technischen Anwendung der Elektrizität. Wir können nur die Auswirkungen erkennen.

Was ist die Elektrizität?

Elektrizität beschreibt alle Vorgänge und Erscheinungen in der Natur und in der Technik, die von elektrischen Ladungen und Strömen und damit verbundenen elektrischen und magnetischen Feldern hervorgerufen werden. Schon die alten