BestMasters

Ruben Steinhoff

Kondensation und Verdampfung an strukturierten Rohren

Aufbau eines Versuchsstandes zur Untersuchung von Wärmeübergangskoeffizienten

BestMasters

Mit "BestMasters" zeichnet Springer die besten Masterarbeiten aus, die an renommierten Hochschulen in Deutschland, Österreich und der Schweiz entstanden sind. Die mit Höchstnote ausgezeichneten Arbeiten wurden durch Gutachter zur Veröffentlichung empfohlen und behandeln aktuelle Themen aus unterschiedlichen Fachgebieten der Naturwissenschaften, Psychologie, Technik und Wirtschaftswissenschaften.

Die Reihe wendet sich an Praktiker und Wissenschaftler gleichermaßen und soll insbesondere auch Nachwuchswissenschaftlern Orientierung geben.

Ruben Steinhoff

Kondensation und Verdampfung an strukturierten Rohren

Aufbau eines Versuchsstandes zur Untersuchung von Wärmeübergangskoeffizienten

Ruben Steinhoff Hannover, Deutschland

BestMasters ISBN 978-3-658-09529-1 DOI 10.1007/978-3-658-09530-7 (eBook)

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden 2015

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Fachmedien Wiesbaden ist Teil der Fachverlagsgruppe Springer Science+Business Media (www.springer.com)

Zusammenfassung

In der vorliegenden Arbeit wurde ein neuer Versuchsstand zur Untersuchung von Wärmeübergangskoeffizienten bei der Kondensation und Verdampfung auf der Außenseite von glatten und strukturierten Rohren aufgebaut. Zuvor wurde ein thermodynamisches Auslegungsverfahren für den Versuchsstand entwickelt, welches die Grundlage für dessen konstruktive Ausführung war. Wahlweise sind Untersuchungen des Wärmeübergangskoeffizienten bei der Kondensation oder der Verdampfung anhand eines Einzelrohres möglich. Vier weitere Rohre wurden korrespondierend für die Bereitstellung des Kältemitteldampfes bzw. dessen Kondensation vorgesehen. Die kältemittelberührten Bauteile wurden in Edelstahl ausgeführt und für Drücke bis 10bar ausgelegt, um die Verwendung zukünftiger Kältemittel zu ermöglichen. Für den maximalen Umlaufmassenstrom des Kältemittels wurde eine Kondensations- bzw. Verdampfungsleistung von 15kW angenommen, die einer maximalen Wärmestromdichte von 260 kW/m² an einem einzelnen untersuchten Rohr entspricht. Die Kühlung bzw. Beheizung der verbauten Rohre findet hierbei indirekt über einen Wärmeträger in Form von Wasser oder einem Wasser-Ethylenglykol-Gemisch statt.

Abstract

In the present work a new test rig for investigations on heat transfer coefficients during condensation and evaporation on the outside of plain and structured tubes was built up. Previously a thermodynamic method of design was developed for this test rig which was the basis of the constructive implementation. Investigations on the heat transfer coefficients during condensation or evaporatoration are achievable by a single tube. Four additional tubes allow for providing refrigerant vapor or alternatively condensing it. Parts wetted with refrigerant were made of stainless steel and are designed for pressures up to 10 bar to enable further refrigerants in future. The maximum mass flow of the refrigerant was derived of the power of 15 kW which is assumed for the condensation respectively the evaporation. This leads to an heat flux up to 260 kW/m^2 on a single investigated tube. Cooling and heating of all the mounted tubes is realized indirectly by a heat transfer medium in terms of water or a water-ethylene glycol mixture.

Inhaltsverzeichnis

Abbildungsverzeichnis ix										
Tabellenverzeichnis xi										
Formelzeichen x										
1	Einl	eitung		1						
2	Gru	ndlage	a	5						
	2.1	Sieder	ıı	5						
		2.1.1	Konvektives Sieden	7						
		2.1.2	Blasensieden	8						
		2.1.3	Filmsieden	14						
		2.1.4	Wärmeübergang beim Blasensieden	15						
	2.2	Konde	nsation	21						
		2.2.1	Tropfenkondensation	22						
		2.2.2	Filmkondensation	23						
		2.2.3	Wärmeübergang bei der Filmkondensation	27						
	2.3	Wärm	eübergang im Inneren von durchströmten Rohren	29						
	2.4	Wilson	1-Plot	33						
		2.4.1	Bestimmung des inneren Wärmeübergangskoeffizienten	36						
		2.4.2	Bestimmung des äußeren Wärmeübergangskoeffizienten	37						
		2.4.3	Bestimmung des Wärmedurchgangs	38						

3	Versuchsstand						
	3.1	Thermodynamisches Auslegungsverfahren	41				
	3.2	Konstruktive Ausführung					
		3.2.1 Überblick	45				
		3.2.2 Kreisläufe des Kühl- und Heizmediums	47				
		3.2.3 Kreislauf des Kältemittels	48				
	3.3	Rohre	55				
	3.4	Inbetriebnahme und Regelung	57				
4	Mes	stechnik	59				
	4.1	Datenerfassung	59				
	4.2	Drucksensoren	50				
	4.3	Temperaturmessung	51				
	4.4	Durchflussmessung	53				
		4.4.1 Wasserkreisläufe	53				
		4.4.2 Kältemittelkreislauf	56				
5	Schl	ussfolgerungen und Ausblick	57				
Literaturverzeichnis							
Tab	Tabellen						
Kor	Konstruktionszeichnungen						

Abbildungsverzeichnis

2.1	Verlauf der Wärmestromdichte <i>q</i> als Funktion der Wandüberhitzung	
	ΔT für die Verdampfung von reinen Stoffen [59]	6
2.2	Kräftegleichgewicht an einer kugelförmigen Blase in einer	
	Flüssigkeit [2]	10
2.3	Idealisierte Oberfläche einer porösen Metallschicht [86]	12
2.4	Grenzfläche zwischen Dampf und Flüssigkeit und dessen	
	Krümmung innerhalb und außerhalb einer Kavität [86]	13
2.5	Ausbreitung eines Flüssigkeitsfilmes über eine mit Gas oder Dampf	
	gefüllte Kerbe [86]	13
2.6	Beispielhafte Ausführung zur Realisierung von Kavitäten auf	
	Rohroberflächen [14] [92] [93]	14
2.7	Vergleich der vorhergesagten Wärmeübergangskoeffizienten beim	
	Blasensieden durch die modifizierte Gorenflo-Korrelation mit	
	Messwerten [16]	16
2.8	Wärmeübergangskoeffizient und Exponent <i>n</i> beim Blasensieden als	
	Funktion des reduzierten Drucks für Halogenkohlenwasserstoffe [29]	18
2.9	(a) Mischkondensation [49] (b) Tropfenkondensation [48]	22
2.10	Grenzflächenspannungen am Tropfenrand im	
	Gleichgewichtszustand nach [2]	23
2.11	Schematische Darstellung abfließenden Kondensats an einem	
	gekühlten Rohr	25
2.12	Längsschnitt eines Rippenrohres mit glattem Teilstück [86]	25
2.13	Kondensatprofile für unterschiedlich gewellte Oberflächen [31]	26
2.14	Kondensatretention an einem Rippenrohr nach [91]	27

2.15	Beeinflussung des Wärmeübergangs durch eine abwärts gerichtete	
	Dampfströmung am horizontalen Rohr [62]	29
2.16	Schematische Darstellung eines innenberippten Rohres [90]	33
2.17	(a) Innenberippung mit $N_S = 45$, $e = 0,36 \mathrm{mm}$ und $\varphi = 45^\circ$ [90]	
	(b) Innenberippung mit $N_S = 30$, $e = 0, 43$ mm und $\varphi = 45^{\circ}$ [90]	33
2.18	Beispielhafter Wilson-Plot mit gekennzeichneter Steigung	39
3.1	Iteratives Auslegungsverfahren für den Versuchsstand	43
3.2	Gesamtschema des Versuchsaufbaus	45
3.3	Gesamtaufnahme des ungedämmten Versuchsstandes mit	
	Messrechner im Vordergrund und Rückkühler sowie Heizung im	
	Hintergrund	46
3.4	Dampfdruckkurven für R134a und Hexan [55]	48
3.5	Längsschnitt durch den Verdampfer	49
3.6	Längsschnitt durch den Kondensator	51
3.7	Mittlere Anströmgeschwindigkeit des Kondensationrohres in	
	Abhängigkeit der Bohrungsdurchmesser des Lochbleches	53
3.8	Ausbildung der Strömung im Halbmodell des Kondensators bei	
	maximaler Strömungsgeschwindigkeit des Hexandampfes	54
3.9	Gesamtaufnahme der Rohre C1-4 (oben) und B1-4 (Mitte) eines	
	Kooperationspartners und eines Glattrohres (unten)	55
3.10	Mikroskopaufnahmen der strukturierten Oberflächen von	
	Kupferrohren des Kooperationspartners	57
4.1	K-Faktoren der Turbine HM9 unter Berücksichtigung des	
	Viskositätseinflusses	65
4.2	K-Faktoren der Turbine H11 unter Berücksichtigung des	
	Viskositätseinflusses	65
B.1	Konstruktionszeichnung der Blindflansche mit 4 Bohrungen	79
B.2	Konstruktionszeichnung der Blindflansche mit 1 Bohrungen	80
B.3	Konstruktionszeichnung des Dichtungsflansches	81