
Advanced Sciences and Technologies for Security Applications

Reza Montasari
Hamid Jahankhani
Richard Hill
Simon Parkinson   Editors

Digital Forensic 
Investigation 
of Internet 
of Things (IoT) 
Devices



Advanced Sciences and Technologies
for Security Applications

Series Editor

Anthony J. Masys, Associate Professor, Director of Global Disaster Management,
Humanitarian Assistance and Homeland Security, University of South Florida,
Tampa, USA

Advisory Editors

Gisela Bichler, California State University, San Bernardino, CA, USA

Thirimachos Bourlai, Lane Department of Computer Science and Electrical
Engineering, Multispectral Imagery Lab (MILab), West Virginia University,
Morgantown, WV, USA

Chris Johnson, University of Glasgow, Glasgow, UK

Panagiotis Karampelas, Hellenic Air Force Academy, Attica, Greece

Christian Leuprecht, Royal Military College of Canada, Kingston, ON, Canada

Edward C. Morse, University of California, Berkeley, CA, USA

David Skillicorn, Queen’s University, Kingston, ON, Canada

Yoshiki Yamagata, National Institute for Environmental Studies, Tsukuba, Ibaraki,
Japan



Indexed by SCOPUS

The series Advanced Sciences and Technologies for Security Applications
comprises interdisciplinary research covering the theory, foundations and
domain-specific topics pertaining to security. Publications within the series are
peer-reviewed monographs and edited works in the areas of:

– biological and chemical threat recognition and detection (e.g., biosensors,
aerosols, forensics)

– crisis and disaster management
– terrorism
– cyber security and secure information systems (e.g., encryption, optical and

photonic systems)
– traditional and non-traditional security
– energy, food and resource security
– economic security and securitization (including associated infrastructures)
– transnational crime
– human security and health security
– social, political and psychological aspects of security
– recognition and identification (e.g., optical imaging, biometrics, authentication

and verification)
– smart surveillance systems
– applications of theoretical frameworks and methodologies (e.g., grounded the-

ory, complexity, network sciences, modelling and simulation)

Together, the high-quality contributions to this series provide a cross-disciplinary
overview of forefront research endeavours aiming to make the world a safer place.

The editors encourage prospective authors to correspond with them in advance of
submitting a manuscript. Submission of manuscripts should be made to the
Editor-in-Chief or one of the Editors.

More information about this series at http://www.springer.com/series/5540

http://www.springer.com/series/5540


Reza Montasari · Hamid Jahankhani · Richard Hill ·
Simon Parkinson
Editors

Digital Forensic Investigation
of Internet of Things (IoT)
Devices



Editors
Reza Montasari
Hillary Rodham Clinton School of Law
Swansea University
Swansea, UK

Richard Hill
Department of Computer Science
University of Huddersfield
Huddersfield, UK

Hamid Jahankhani
London Campus
Northumbria University
London, UK

Simon Parkinson
Department of Computer Science
University of Huddersfield
Huddersfield, UK

In 2015, Antonio Mauro, PhD (info@antoniomauro.it) filed a patent named “Forensics
Investigation in the Internet of Things (IoT) Devices”.

ISSN 1613-5113 ISSN 2363-9466 (electronic)
Advanced Sciences and Technologies for Security Applications
ISBN 978-3-030-60424-0 ISBN 978-3-030-60425-7 (eBook)
https://doi.org/10.1007/978-3-030-60425-7

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-1747-9914
mailto:info@antoniomauro.it
https://doi.org/10.1007/978-3-030-60425-7


Foreword

Watching the progressive rollout of the IOT, it would be easy to form the opinion that
we really understand what we are doing and how the network is going to perform,
but nothing could be farther from the truth! Reality is, the IOT is a new and evolu-
tionary network form that presents levels of complexity and behavior that we never
anticipated and have never seen before. Further, we do not have the tools or abilities
to model, characterize, measure, and fully understand the outcomes of our designs
and deployments. And along with almost all new systems, security is often omitted
completely, or it appears as a weak engineering afterthought. In reality, the IoT
is magnifying the attack surface of the planet to the benefit of cybercriminals and
rogue states who now see the IOT as a new opportunity and entry window for wider
incursions into the networks and facilities of organizations.

It is not possible to understate the rapidly growing cyber risks posed by The IoT or indeed
the urgency of the address required

It is, therefore, refreshing to find a book addressing this most important topic with
detailed consideration of many of the initial IoT challenges. Primarily, it asks what
happenswhen an IoT attack occurs or failure happens, and how dowe locate the point
of failure/entry to assess the potential consequences and affect repairs as quickly as
possible? In short, the term “forensics” is a perfect fit for what is needed and what
is detailed in this first book on the topic. To my mind, it represents a first and vital
step in the documentation and development of a new branch of network science and
engineering that is urgently required. As an academic, practitioner, and consultant
in the field of cyber security, I found the treatment in each chapter refreshing and
reassuring with the authors detailing their latest thoughts and research results. Best
of all, they opened my mind to new concepts and avenues in the field and left me
wanting for more. I, therefore, consider this to be “Volume 1” in the opening salvo of
our battle for IoT security supremacy, and the survival of one of our most important
components of Industry 4.0 and the realization of sustainable societies.

v



vi Foreword

And so, it is in this context, and with this background that I commend this book
to you as a provocative and foundation text in the field. Hopefully, you will find it
enlightening and useful, and it might also spur even more innovation.

June 2020 Prof. Peter Cochrane
OBE

University of Suffolk
Ipswich, UK



Contents

Emulation Versus Instrumentation for Android Malware Detection . . . . 1
Anukriti Sinha, Fabio Di Troia, Philip Heller, and Mark Stamp

Towards a Generic Approach of Quantifying Evidence Volatility
in Resource Constrained Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Jens-Petter Sandvik, Katrin Franke, and André Årnes

Application of Artificial Intelligence and Machine Learning
in Producing Actionable Cyber Threat Intelligence . . . . . . . . . . . . . . . . . . . 47
Reza Montasari, Fiona Carroll, Stuart Macdonald, Hamid Jahankhani,
Amin Hosseinian-Far, and Alireza Daneshkhah

Drone Forensics: The Impact and Challenges . . . . . . . . . . . . . . . . . . . . . . . . 65
S. Atkinson, G. Carr, C. Shaw, and S. Zargari

Intrusion Detection and CAN Vehicle Networks . . . . . . . . . . . . . . . . . . . . . . 125
Ashraf Saber, Fabio Di Troia, and Mark Stamp

Cloud Computing Security: Hardware-Based Attacks
and Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Reza Montasari, Alireza Daneshkhah, Hamid Jahankhani,
and Amin Hosseinian-Far

Aspects of Biometric Security in Internet of Things Devices . . . . . . . . . . . 169
Bobby L. Tait

Evaluating Multi-layer Security Resistance to Adversarial
Hacking Attacks on Industrial Internet of Things Devices . . . . . . . . . . . . . 187
Hussain Al-Aqrabi and Richard Hill

Establishing Trustworthy Relationships in Multiparty Industrial
Internet of Things Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Oghenefejiro Bello, Hussain Al-Aqrabi, and Richard Hill

vii



viii Contents

IoT Forensics: An Overview of the Current Issues and Challenges . . . . . 223
T. Janarthanan, M. Bagheri, and S. Zargari

Making the Internet of Things Sustainable: An Evidence Based
Practical Approach in Finding Solutions for yet to Be Discussed
Challenges in the Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Benjamin Newman and Ameer Al-Nemrat



Emulation Versus Instrumentation
for Android Malware Detection

Anukriti Sinha, Fabio Di Troia, Philip Heller, and Mark Stamp

Abstract In resource constrained devices, malware detection is typically based on
offline analysis using emulation. An alternative to such emulation is malware anal-
ysis based on code that is executed on an actual device. In this research, we collect
features from a corpus of Android malware using both emulation and on-phone
instrumentation. We train machine learning models using the emulator-based fea-
tures and we train models on features collected via instrumentation, and we compare
the results obtained in these two cases. We obtain strong detection and classification
results, and our results improve slightly on previous work. Consistent with previous
work, we find that emulation fails for a significant percentage of malware applica-
tions. However, we also find that emulation fails to extract useful features from an
even larger percentage of benign applications. We show that for applications that are
amenable to emulation, malware detection and classification rates based on emula-
tion are consistently within 1% of those obtained using more intrusive and costly
on-phone analysis. We also show that emulation failures are easily explainable and
appear to have little to dowithmalwarewriters employing anti-emulation techniques,
contrary to claims made in previous research. Among other contributions, this work
points to a lack of sophistication in Android malware.

A. Sinha (B) · F. Di Troia · P. Heller · M. Stamp
San Jose State University, San Jose, CA, USA
e-mail: anukriti.sinha@sjsu.edu

F. Di Troia
e-mail: fabioditroia@msn.com

P. Heller
e-mail: philip.heller@sjsu.edu

M. Stamp
e-mail: mark.stamp@sjsu.edu

© Springer Nature Switzerland AG 2021
R. Montasari et al. (eds.), Digital Forensic Investigation of Internet of Things (IoT)
Devices, Advanced Sciences and Technologies for Security Applications,
https://doi.org/10.1007/978-3-030-60425-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60425-7_1&domain=pdf
mailto:anukriti.sinha@sjsu.edu
mailto:fabioditroia@msn.com
mailto:philip.heller@sjsu.edu
mailto:mark.stamp@sjsu.edu
https://doi.org/10.1007/978-3-030-60425-7_1


2 A. Sinha et al.

1 Introduction

In 2007, Google launched a mobile operating system (OS) known as Android, which
is based on the Linux kernel and other open source software. Android is used pri-
marily on touchscreen devices such as tablets and smartphones. Google distributes
Android as an open source platform, which has encouraged the use of smartphones
as a computing platform [29]. Android currently dominates the mobile OS market,
with more than a billion Android devices having been sold, and more than 65 billion
applications (apps) having been downloaded from the Google Play Store. Android
devices account for more than 80% of the overall mobile OS market [13].

The prominence of Android has not escaped the attention of malware writers.
According to McAfee, more than 3,000,000 Android malware apps were detected
in 2017, representing a 70% increase from 2016. Also, in 2017 alone, more than
700,000 malicious apps were removed from the Google PlayStore [20].

In resource constrained devices, such as Android smartphones, malware detection
is typically conducted offline, based on emulation. The objective of this research is
to explore the effectiveness of malware detection and classification using dynamic
features extracted via emulation, as compared to extracting such features via instru-
mentation (i.e., on-phone analysis).We classify Android apps using a wide variety of
machine learning techniques based on these emulator-extracted and “real” features.
We find that emulation fails for a significant percentage of apps and that, surpris-
ingly, the failure rate is higher for benign apps than malicious apps. In contrast to
claims that appear in the research literature [25], we find scant evidence that such fail-
ures are due to anti-emulation techniques being employed by sophisticated Android
malware. Instead, the evidence indicates that Android malware writers fail to take
advantage of relatively simple techniques that could serve to make the detection
problem considerably more challenging [6, 22, 34].

We note that our analysis technique closely follows that in [2]. However, we go
beyond the work in [2] in that we consider additional machine learning techniques,
we tune the parameters, and in addition to the detection problem, we also consider the
classification problem. Furthermore, we show that a simple ensemble technique can
provide essentially ideal separation for the malware detection problem. Finally, with
respect to the sophistication of Android malware, we draw diametrically opposed
conclusions, as compared to previous work such as [25].

The remainder of this paper is organized as follows. Section 2 provides an
overview of various feature analysis methods that have previously been used to
successfully detect Android malware, along with an overview of selected examples
of Android malware research. In Sect. 3, we discuss the methodology used in our
experiments. Section 4 gives our experimental results, along with some discussion
of the implications of these results. Finally, Sect. 5 concludes the paper and outlines
possible directions for future work.



Emulation Versus Instrumentation for Android Malware Detection 3

2 Background

In this section, we first discuss the relative advantages and disadvantages of static
and dynamic features for malware analysis. Then we briefly consider the potential
weaknesses of emulator-based detection for Android malware.

2.1 Static and Dynamic Features

Malware detection can be based on static or dynamic features. Features are said
to be static if they are collected without executing (or emulating) the code. On the
other hand, dynamic features require code execution or emulation. Examples of
popular static features include byte n-grams and mnemonic opcodes, while useful
dynamic features include opcodes and application programming interface (API) calls
that occur when an app executes. In general, static features can be collected more
efficiently than dynamic features. The relative advantage of dynamic features is that
detection techniques based on such features are often more robust with respect to
common obfuscation techniques [7]. In the Android malware literature, both static
and dynamic features have been extensively studied [16].

An Android app consists of a package bundled as an Android Package file, which
has the file extension apk. Among other things, an apk file contains a manifest
(AndroidManifest.xml), class files (classes.dex), and external libraries.
Figure 1 lists the components of an apk bundle, while Fig. 2 gives an example of a
typical manifest file.

Fig. 1 The parts of an apk
bundle

AndroidManifest.xml

package name, version, permissions, components, . . .

assets/

(asset files)

lib/

(libs)

res/

(resource files)

META-INF/

(signatures)

classes.dex

(bytecode)

resources.arsc

(compiled resources)

Android Package



4 A. Sinha et al.

Fig. 2 Sample AndroidManifest.xml file

Many useful static features can be extracted directly from the manifest file. A
considerable amount ofmalware research has focused on staticAndroid features such
as permissions (functionality requested by the app). For example, it has been found
that number of permissions requested is a surprisingly strong diagnostic [17], with
malicious apps requestingmore permissions, on average, than benign apps. However,
notwithstanding the relative ease and computational efficiency of static analysis, this
approach has a significant drawback, as it is relatively easy for malware writers
to evade static detection by obfuscating their code. Obfuscation tools are readily
available; for example, ProGuard can change data pathnames, variable names, and
function names [23].

Dynamic analysis consists of extracting features while code is executing, either
on the device for which the code is intended or on an emulator [18]. Some popu-
lar dynamic Android features include kernel processes, API calls, and information
related to dynamic loading. Dynamic techniques often deal with analyzing internal
system calls made by an application at runtime [18]. Previous work has demonstrated
the advantage of dynamic features over static features for malware detection [7].
However, the increased efficiency of static feature extraction makes static analy-
sis preferable in cases where it can achieve results that are comparable to dynamic
analysis.

To analyze features—static, dynamic, or some combination thereof—researchers
can employ awide variety ofmachine learning techniques. Examples of suchmachine
learning techniques include k-nearest neighbors, hidden Markov models, principal



Emulation Versus Instrumentation for Android Malware Detection 5

component analysis, support vector machines, clustering, and deep neural networks,
among others [30].

From the malware writer’s perspective, it is desirable to make a malicious app
appear benign under any anticipated analysis. A variety of obfuscation techniques
(e.g.. dead code insertion and code substitution) are available to disguise malware
and are generally most effective during static analysis. A variety of anti-emulation
techniques are available for evading detection by dynamic feature extraction under
emulation. These are best understood in the context of the following discussion of
emulation.

2.2 Emulation

Android malware can access sensitive information such as call history, text and
contacts, and can tamper with phone settings. To do this, malicious apps often try to
read the background environment via API calls. Examining the result of selected API
calls can enable a malicious app to identify the environment on which the code is
executing and thereby determine how best to attack the device [2]. Emulators are not
entirely faithful to real phone APIs, and malicious apps can use these discrepancies
to detect when they are being executed in an emulated environment and therefore
should restrict suspicious behavior. An example of an API that can be used to detect
emulators is the Telephony Manager API, that is,

TelephonyManager.getDeviceId()

A call to this API typically returns 000000000000000 when an emulator is exe-
cuting the code. A real physical device, on the other hand, would not return 0 as the
device identifier. This is one of the emulator detection methods that is used by the
Pincer family of Android malware [34]. Emulator detection is a significant challenge
to security analysis, because most emulators use open source hypervisors such as
QEMU, which have detectable identifying functionality [15]. It has been claimed
that the Morpheus malware app employs more than 10,000 heuristics to classify its
runtime environment [3].

To deal with issues such as these, researchers have attempted to develop improved
emulators. Several dynamic analysis tools such asTaintDroid [9],DroidBox [9], Cop-
perDroid [32], Andrubis [19, 35], and AppsPlayground [26] have been developed. In
addition, online tools are available for Android application analysis, including Sand-
Droid [27], TraceDroid [33], and NVISO ApkScan [21]. However, these dynamic
approaches still rely on emulators or virtualized environments which malware can
detect by careful analysis [21].

Since it is possible for Android malware to detect an emulated environment, we
might assume that malware would check for emulation and behave benignly when an
emulator is detected. Indeed, it has been claimed that such is the case formostAndroid
malware [2]. However, our results indicate that the Android malware datasets used in



6 A. Sinha et al.

our experiments are not, in general, using advanced emulation avoidance techniques
to any greater degree than benign apps. This observation is based, in part, on the fact
that we find that benign apps fail to run in our emulation environment at a higher
rate than malware. In addition, we find that these failures are easily explained by
the limitations of the emulation environment, rather than advanced anti-emulation
strategies.

2.3 Selected Android Malware Research

The authors of the paper [10] study packed Android malware. These authors show
that in the time period from2010 to 2015, about 13%of theAndroidmalware that they
consider was packed, and that sophisticated Androidmalware samples often use (and
abuse) custom packers. Similar to code encryption, packing is a well-known tech-
nique for defeating signature-based and some other static detection techniques [4].
However, in this paper, we only consider dynamic analysis, which should be unaf-
fected by code packing.

The work [5] considers the problem of detecting privacy leak caused by Android
malware. The authors employ a differential analysis technique, here they vary cer-
tain key parameters and look for changes in network activity that are evidence of
private data leaking. The authors show that their technique is practical and effective.
Additional research on the privacy leak problem can be found in [31], where the
authors develop and analyze an information flow analysis tool, TaintART, which
can be viewed as an improved version of TaintDroid [37]. Such privacy leakage
and information flow work is relevant to the problem consider in this paper, and it
serves to illustrate ways that, for example, features could be collected in an Android
environment.

The research presented in [12] considers the interesting and challenging problem
of detecting Android malware that contains a “logic bomb,” which the authors define
to be malicious code that only executes under some narrow circumstance. Such
code might be used, for example, in an attack that is carefully targeted at a specific
user or other entity, and seems to be relatively common in malware developed by
nation states. This paper is focused on a narrow and apparently rare class of Android
malware, whereas our research considers the general Android malware detection
problem.

The main insights in the paper [11] is that Android intents are a stronger feature
than permissions. An Android intent is a messaging object that can be used to request
an action fromanother app component [14].While permissions have been extensively
studied in the literature, intents have receivedmuch less attention. The authors of [11]
also consider a combination of the two feature types—intents and permissions—and
show that this yields improved results, as compared to using intents only.

The authors of [25] have developed a tool to extract runtime features, from obfus-
cated Android malware. For example, encrypted SMS numbers cannot be detected



Emulation Versus Instrumentation for Android Malware Detection 7

via static analysis and malware that can detect an emulation environment could also
hide such data at runtime.

Finally, we note that many research papers claim that it is common for Android
malware apps to employ emulation-detection techniques to hide features, whilemany
other research papers implicitly assume that such is the case. Indeed, this assumption
is the impetus for considerable research in the Android malware domain. For exam-
ple, in [25], it is stated that “many malicious applications” use emulation-detection
techniques, but no evidence is provided as to the percentage of such applications
that actually occur in their malware dataset. Furthermore, the papers cited in [25] as
evidence of the supposed widespread use of such detection-avoidance techniques,
namely [6, 22, 34], do not provide such numbers either, and instead simply show
that it is possible (and, in fact, relatively easy) to implement such feature-hiding
capabilities. We return to this issue in Sect. 5.

3 Methodology

This section describes the process we followed to dynamically extract features
from Android apps. We extract such features from both benign and malicious apps,
using both emulation and on-phone instrumentation. But first, we briefly discuss the
datasets used in our experiments before providing details on the feature extraction
process.

3.1 Datasets

AMGP dataset This dataset is part of the Android Malware Genome Project [38],
and it has been used in numerous research papers, including [2]. Of the 2444
apps in the dataset, half are malicious apps from 49 different families, with the
remainder being benign apps from McAfee Labs [2]. We use this dataset for
binary classification experiments, where we classify samples as either malware
or benign.

Drebin dataset We also experiment with 3206 samples from the seven malware
families in the Drebin dataset [8]. The list of families and the number of samples
from each are given in Table 1. This dataset was used in experiments where we
attempted to classify samples into their respective families, as opposed to binary
classification (i.e., malware and benign) experiments



8 A. Sinha et al.

Table 1 Drebin data Family Apps

FakeInstaller 925

DroidKungfu 667

Plankton 625

Opfake 613

Iconosys 152

Fakedoc 132

Geinimi 92

Total 3206

3.2 Feature Extraction

Feature extraction is a critical aspect of this research, as our approach is based on
comparing results fromvariousmachine learning techniques, using features collected
via emulator versus features collected directly from a phone-based environment.
Therefore, feature extraction was performed for both environments, as described
below.

Phone environment The Android smartphone used for data collection was config-
ured as follows: Android 5.0 Lollipop, 1.3GHz CPU, 16 GB internal memory,
and 32 GB of external SD card storage. The phone contained a SIM card with
activated service to enable 3G data use and outgoing calls. This configuration is
consistent with that used in [2]. As discussed in [2], USB 2.0 or 3.0 was used
along with the Linux VM so as to avoid the timeout that would result from a
USB 1.0 connection with files larger than 1MB.

Emulation environment A Santoku Linux VirtualBox was used to emulate an
Android device. The environment was configured as follows: 8 GB of exter-
nal SD card memory, 2 MB of memory, 4.1.2 Jelly Bean (API level 16, Android
version). To more accurately simulate the workings of a real phone, the emulator
was enhanced with contact numbers, images, pdf files, and text files. The default
IMEI, IMSI, SIM serial number, and phone numbers were altered. After each
application was executed, the emulator was re-initialized to ensure the removal
of third party apps. This emulation process is consistent with that used in [2].

DynaLog is a dynamic framework that accepts a large number of apps as input,
launches them serially in the emulator environment, creates logs of dynamic features,
and extract these features for future processing [1]. At the core of DynaLog is the
MonkeyRunner API that is able to stimulate apps with random events that are typical
of user interactions (e.g.. pressing, swiping, and touching the screen). These simu-
lated actions are designed to stimulate a significant fraction of code functionality.

To extract dynamic features from the phone, we call DynaLog using a Python
based tool, as described in [1]. Each app was executed for 15min during which time
we logged and collect dynamic features from the phone, as well as from an emulator



Emulation Versus Instrumentation for Android Malware Detection 9

Fig. 3 DynaLog [2]

running the same apps with the same input events. Figure 3 illustrates the use of
DynaLog [2].

The data collected from the phone and emulator was saved in files in the arff
format suitable for feature vector input to machine learning platforms. The 178
features form these vectors were loaded into Weka [36]. The features were then
ranked based on information gain (InfoGain in Weka) and the top 100 features
from each analysis environment (phone and emulation) were then used to test and
train the machine learning algorithms considered in this paper.

3.3 Machine Learning Models

In this section, we briefly discuss each of the nine machine learning techniques used
in this research. These nine algorithms cover a broad range of techniques, ranging
from relatively simple statistical scores to advanced neural networks.

Support Vector Machine A support vector machine (SVM) represents data as
points in a high-dimensional space, and computes a hyperplane or manifold that
separates points of different classes. The multiclass version of an SVM is known
as a support vector classifier (SVC).

Naı̈ve Bayes This approach uses Bayes’ theorem to compute probabilities of data
points belonging to classes. To simplify computation, features are “naı̈vely”
assumed to be independent of each other even when they are actually dependent.

Simple Logistic Simple logistic is an ensemble learning algorithm that uses mul-
tiple simple regression functions to model the training data, computing weights
that maximize the log-likelihood of the logistic regression function.

Multilayer Perceptron Amultilayer perceptron (MLP) is a feedforward neural net-
work that includes an input layer, an output layer, and one or more hidden layers.
MLPs are trained by backpropagation with gradient descent to minimize errors.



10 A. Sinha et al.

IBk This is the Weka implementation of the k-nearest neighbors algorithm, using
a Euclidean distance metric to define “nearest.” Given an integer k, the algorithm
classifies a point in feature space by considering its k nearest classified neighbors.

Partial Decision Trees A partial decision tree (PART) is a simple decision tree that
contains branches to undefined sub-trees. In order to develop a partial decision
tree, construction and pruning operations are used, with the goal of finding a
sub-tree that cannot be further simplified.

J48 Decision Tree An implementation of the C4.5 decision tree algorithm, J48
repeatedly splits on the remaining feature with highest information gain.

Random Forest The random forest (RF) technique relies on a “forest” of deci-
sion trees. That is, multiple decision trees are trained, and a majority vote of the
trees is used for classification. The RF algorithm uses bagging, whereby subsets
of features and samples are selected to construct the component trees. Bagging
enables a random forest to greatly reduce the overfitting problem that is inherent
in elementary decision trees.

AdaBoost Boosting is a general machine learning technique that can build a strong
classifier from a number of weak classifiers. AdaBoost uses a simple adaptive
strategy to build such a classifier. The implementation ofAdaBoost thatwe employ
is based on decision tree classifiers.

3.4 Evaluation Metrics

From the point of view of this analysis, a positive classification is an identification as
malware. We tabulated true/false positive/negative rates for all analyses. Sensitivity
and recall are terms that are equivalent to true positive rate. Precision is the ratio of
true positives to the number of samples that are classified as positives. Thus, in our
binary classification experiments, precision tells us the fraction of samples classified
as malware that are actually malware. The primary metric we use in this paper is the
F-measure, which is defined as

F-measure = 2× precision× recall

recall+ precision

By combining both precision and recall into a single statistic, the F-measure provides
a useful single value for comparing machine learning approaches.

4 Experiments and Results

This section presents the results of two broad classes of experiments. Our first cat-
egory of experiments deals with evaluating the effectiveness of Android malware
detection based on features extracted via emulation, as compared to features extracted



Emulation Versus Instrumentation for Android Malware Detection 11

Table 2 AMGP dataset feature extraction success

Type Emulator Phone

Number Percentage Number Percentage

Malware 956 78.23 1211 99.09

Benign 807 66.03 1119 91.57

Total 1763 72.13 2330 95.33

Table 3 Drebin dataset feature extraction success

Emulator Phone

Number 2598 3201

Percentage 81.03 99.84

directly from a phone. In these experiments, we use the same dataset and feature
extraction tools as in [2]. Moreover, we consider additional machine learning tech-
niques, we tune the parameters of the machine learning algorithms,1 we consider
a multi-sensor solution, and we ultimately draw somewhat different conclusions
based on our results. We refer to this first set of experiments as malware detection
experiments.

Our second set of experiments involves classifyingmalware samples into families.
Again, we consider a variety of machine learning algorithms and we compare the
results obtained when using emulator and phone-based features. We refer to this
second set of experiments as malware classification experiments.

Before presenting these experimental results, we first discuss the data collection
phase in some detail. This is an important issue, since we were not able to extract
features from all apps using the automated approach considered here.

4.1 Emulation Versus Instrumentation

Table 2 gives the percentage of apps from the AMGP dataset that we were able to
analyze using emulation, as well as the percentage of apps that we could evaluate
using on-phone analysis. Table 3 gives analogous results for the Drebin dataset.
Recall that the AMGP dataset is evenly split between malware and benign apps,
with 1222 in each category; the Drebin dataset contains 3206 malware apps, with
the breakdown by family given in Table 1.

Tables 2 and 3 show that nearly 20% fewer malicious Android apps allow for
feature extraction using emulation, as compared to the on-phone environment, and
this is consistent across both datasets. This has led some researchers to conclude

1Based on our experiments, it appears that the authors of [2] consistently used the Weka default
settings for their machine learning experiments.



12 A. Sinha et al.

Table 4 Features extracted only from phone environment (AMGP dataset)

Feature Phone Emulator

System;loadLibrary 212 0

URLConnection;connect 15 0

Context;unbindService 4 0

Service;onCreate 3 0

BATTERY_LOW 1 0

SmsManager;sendTextMessage 3 0

that anti-emulation techniques must be widely used in Android malware. If such is
the case, it is not clear why benign apps would use anti-emulation techniques at an
even higher rate than malicious apps—compare the benign and malware results in
Table 2. This raises questions as to whether the results for malicious apps are really
due to anti-emulation techniques, or whether there might be another explanation.

A more plausible reason why we are able to automatically extract features from
more apps using on-phone instrumentation is simply because more APIs can be exe-
cuted on a phone environment. This is especially an issue for apps that make API
calls related to network activity or read incoming and outgoing call activity. Whether
such apps are benign or malicious, the phone is able to provide such capabilities and
thereby log the relevant API activity, while emulators are not sufficiently sophisti-
cated to simulate all necessary APIs. Manual analysis of a number of apps that fail
under emulation reveals that network and call-related issues are indeed responsible
for emulation failures for both malicious and benign apps.

Table 4 lists the features that were extracted exclusively from the phone but not
by the emulator. For example, the System.loadLibrary feature is the API call
associated with native code; it is probably not logged under emulation because the
emulator does not support native code [2]. The phone based analysis shows a much
higher effectiveness in extracting features for analysis; this is clearly an essential
benefit for machine learning classification.

4.2 Binary Classification Experiments

In this section, we give the results for binary classification experiments using the
AMGP dataset. We consider each of the nine machine learning techniques discussed
in Sect. 3.3, and compare the results for features extracted via emulation against
results for features extracted via on-phone instrumentation. All experiments were
performed using Weka with 10-fold cross validation. The models were fine-tuned
over various input parameters, with the following list giving some of the important
settings.



Emulation Versus Instrumentation for Android Malware Detection 13

Table 5 Results for emulator based features (AMGP dataset)

Model TPR FPR TNR FNR F-measure

Simple
logistic

0.902 0.097 0.903 0.098 0.901

Naı̈ve Bayes 0.599 0.098 0.902 0.401 0.734

SVM 0.914 0.094 0.906 0.086 0.908

PART 0.902 0.099 0.901 0.098 0.899

J48 0.892 0.116 0.884 0.108 0.886

RF 0.916 0.063 0.937 0.084 0.928

MLP 0.941 0.087 0.913 0.059 0.926

IBk 0.899 0.096 0.904 0.101 0.903

AdaBoost 0.901 0.101 0.899 0.099 0.900

Simple Logistic The ridge estimator for regularization is used to reduce the size
of coefficients. The model is trained until it converges.

Naı̈ve Bayes Default values are used for the kernel and for discretization.
Support Vector Machine The complexity parameter C is set to 1.0 and a polyno-

mial kernel is used.
Decision Trees We experimentedwith various depths for the trees (themaxDepth

parameter in Weka) and the best accuracy was obtained with a depth of 50. The
noPruning option was set to False.

Random Forest The model yielded the best accuracy with 100 trees and this is
what we use in all experiments reported here.

Multilayer Perceptron The number of hidden layers is chosen to be 3.
IBk We use the Euclidean distance with 10 neighbors.
AdaBoost The classifier we use is the decision stump algorithm.

Using features collected from the emulator, we obtain the results in Table 5. From
these results, we see that the best accuracy is achieved by a random forest with 100
trees, while an MLP yields a similar F-measure.

For our next set of experiments, we repeat the above analyses, but using features
extracted via on-phone instrumentation, with all algorithms parameterized exactly
as in the emulation case. Results for these experiments are summarized in Table 6.
As with the emulation-based results, the random forest and MLP again perform the
best.

We performed another set of experiments on the AMGP dataset using only those
apps that successfully executed in both the emulator and on-phone environments. For
these apps, the results of testing and training the various machine learning models
based on features extracted from the emulator are given in Table 7.

The results in Table 7 again show that random forest yielded the best results.
Furthermore, the random forest experiments inTable 7 yielded nearly identical results
to those in Table 5. However, for the other techniques, the results are generally



14 A. Sinha et al.

Table 6 Results for phone based features (AMGP dataset)

Model TPR FPR TNR FNR F-measure

Simple
Logistic

0.923 0.081 0.919 0.077 0.921

Naı̈ve Bayes 0.634 0.119 0.881 0.366 0.748

SVM 0.918 0.090 0.910 0.082 0.914

PART 0.907 0.098 0.902 0.093 0.905

J48 0.929 0.101 0.899 0.071 0.916

RF 0.942 0.074 0.926 0.058 0.934

MLP 0.924 0.082 0.918 0.076 0.925

IBk 0.906 0.086 0.914 0.094 0.910

AdaBoost 0.908 0.087 0.913 0.092 0.906

Table 7 Apps executed in both environments (AMGP data and emulator features)

Model TPR FPR TNR FNR F-measure

Simple
Logistic

0.887 0.104 0.896 0.113 0.891

Naive Bayes 0.542 0.169 0.831 0.458 0.663

SVM 0.896 0.116 0.884 0.104 0.889

PART 0.896 0.116 0.884 0.104 0.892

J48 0.874 0.088 0.912 0.126 0.894

RF 0.919 0.066 0.934 0.081 0.927

MLP 0.898 0.096 0.904 0.102 0.902

IBk 0.904 0.090 0.910 0.096 0.907

AdaBoost 0.901 0.093 0.907 0.099 0.902

slightly lower than either the exclusively emulator-based or instrumentation-based
experiments considered above.

In order to assess the value of analysis with multiple machine learning models,
error rates were considered as a function of the number of models. In Table 8 (a),
we give results for false negatives (FN), for both the emulator and on-phone fea-
tures. The row labeled with n in the table gives the number of malware apps that
were misclassified as benign by n or more of the nine machine learning techniques
considered, based on emulator features (middle column) or on-phone features (last
column). Table 8 (b) gives the analogous results for false positives. These results are
summarized in the form of line graphs in Fig. 4.

Suppose that we base our classification on a majority vote of the nine machine
learning models considered above. Then the numbers in Table 8 (a) and (b) imply
that when using the emulator features, we would have only 7 false negatives and 3
false positives, while the corresponding numbers for the on-phone features is 3 false
negatives and 0 false positives. The corresponding accuracies and F-measures are



Emulation Versus Instrumentation for Android Malware Detection 15

Table 8 Classification errors and machine learning models (AMGP dataset)

Number of models Features

Emulator Phone

(a) False negatives

1 104 91

2 72 64

3 36 28

4 19 11

5 7 3

6 2 0

7 0 0

8 0 0

9 0 0

(b) False positives

1 73 62

2 46 30

3 21 16

4 9 4

5 3 0

6 0 0

7 0 0

8 0 0

9 0 0

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

Number of models

M
is
cl
as
si
fic
at
io
ns

False negatives (phone)
False negatives (emulator)
False positives (phone)

False positives (emulator)

Fig. 4 Misclassifications as a function of the number of models



16 A. Sinha et al.

Table 9 Majority vote of machine learning models (AMGP dataset)

Features Accuracy F-measure

Emulator 0.9960 0.9959

Phone 0.9988 0.9988

Fig. 5 Majority vote of
models

Phone Emulator
0.0

0.5

1.0

0.
99

88

0.
99

60

0.
99

88

0 .
99

59

Accuracy F-measure

given in Table 9 and in the form of bar graphs in Fig. 5. These results—which
are virtually ideal—are far stronger than any of the individual models, and indicate
the potential strength of a multi-sensor approach. More sophisticated techniques of
combining the output of multiple machine learning models could potentially yield
equally strong resultswith fewermodels. For example, in themalware domain, SVMs
have been used to combine multiple scores into a single machine learning model [28]
and boosting techniques can produce a strong combined classifier [24].

4.3 Multiclass Experiments

In this section we give multiclass results based on a support vector classifier (SVC),
which is themulitclass version of an support vector machine (SVM). For these exper-
iments, we employ the Drebin dataset and we use a linear kernel in all cases. As in the
binary classification experiments above, the goal is to compare the performance of
models trained on features that have been extracted using on-phone instrumentation
with models trained on features extracted via emulation. We expect the multi-family
classification problem to be inherentlymore challenging than the binary classification
(malware versus benign) problem due to the larger number of classes.

Table 10 shows the results for our multiclass experiments, with Fig. 6 giving these
same results in the form of line graphs. This table and figure include results for both
feature extraction environments (emulation and on-phone instrumentation). Note that



Emulation Versus Instrumentation for Android Malware Detection 17

Table 10 Family classification results (Drebin dataset)

Families Combinations Emulator Phone

2 21 0.9278 0.9364

3 35 0.9182 0.9276

4 35 0.9113 0.9202

5 21 0.9079 0.9184

6 7 0.8982 0.9064

7 1 0.8890 0.8997

0

10

20

30

40

C
om

bi
na
tio

ns
2 3 4 5 6 7

0.8

0.85

0.9

0.95

1

Families

C
la
ss
ifi
ca
tio

n
ac
cu
ra
cy

Phone features
Emulator features
Combinations

Fig. 6 Family classifications

there are seven families in the Drebin dataset (see Table 1), and we have conducted
experiments with each of the 127 nontrivial combinations of these families. The
accuracy reported in Table 10 and Fig. 6 for k families is the average of all

(7
k

)

possible combinations of k families. From these results we see that the on-phone
features yield consistently better results than the emulation features, but—as with
the binary classification experiments discussed above—the differences are slight. It
is interesting that the classification accuracies are so high, which seems to indicate
that the families in this dataset may differ substantially from one another.

5 Conclusion and Future Work

In this research, we have considered Android malware detection and classification.
Our primary focus was to compare the effectiveness of features extracted on-phone
with features extracted using emulation and to consider the implications of these



18 A. Sinha et al.

results. In our binary classification experiments we considered nine machine learn-
ing techniques (support vector machines, random forest, naı̈ve Bayes, multilayer
perceptron, simple logistic, J48 decision tree, PART, IBk, and AdaBoost). We used
support vector machines in our classification experiments.

In all cases, we obtained strong results as measured by the F-measure statistic.
Although the on-phone features performed marginally better than the emulation
features, we conclude that the additional overhead of on-phone analysis is unlikely
to be worthwhile in most situations. That is, the incremental reduction in error rates
is unlikely to be cost-effective.

A simple majority vote of our nine classifiers yielded essentially perfect detection
and F-score results, as given in Table 9. These results exceed those found in previous
work, such as [2].

Our results also call into question the oft-stated claim that Android malware
frequently uses anti-emulation techniques. Instead, we believe that these experiments
offer evidence that Android malware is actually much less sophisticated than is
sometimes claimed. In fact, this is easily confirmed by a manual analysis of apps—
malware and benign—that fail in the emulation environment. We find that such apps
fail simply due to the inability of the emulator to handle call, networking, and similar
APIs.

Future work could include a similar analysis on larger and more recent Android
malware datasets. While it is not the case that anti-emulation was effectively used
by the malware in our datasets, it would not be difficult for a moderately skilled
malware writer to generate apps that would be much more challenging to detect.
Work involving a more recent dataset would be a way to determine whether Android
malware writers have started taking advantage of such techniques.

References

1. Alzaylaee MK, Yerima SY, Sezer S (2016) DynaLog: an automated dynamic analysis frame-
work for characterizing Android applications. In: 2016 international conference on cyber secu-
rity and protection of digital services, Cyber Security 2016, pp 1–8. arXiv:1607.08166

2. Alzaylaee MK, Yerima SY, Sezer S (2017) EMULATOR vs REAL PHONE: Android malware
detection using machine learning. In: Proceedings of the 3rd ACM on international workshop
on security and privacy analytics, IWSPA ’17, pp 65–72

3. AmosB, Turner HA,White J (2013) Applyingmachine learning classifiers to dynamicAndroid
malware detection at scale. In: 9th international wireless communications and mobile comput-
ing conference, IWCMC 2013, pp 1666–1671

4. Aycock J (2006) Computer viruses and malware. Advances in information security. Springer
US

5. Continella A, Fratantonio Y, Lindorfer M, Puccetti A, Zand A, Krügel C, Vigna G (2017)
Obfuscation-resilient privacy leak detection for mobile apps through differential analysis. In:
24th annual network and distributed system security symposium, NDSS, 2017. http://www.s3.
eurecom.fr/~yanick/publications/2017_ndss_agrigento.pdf

6. Coogan K, Debray S, Kaochar T, Townsend G (2009) Automatic static unpacking of malware
binaries. In: 16th working conference on reverse engineering, WCRE 2009, pp 167–176

http://arxiv.org/abs/1607.08166
http://www.s3.eurecom.fr/~yanick/publications/2017_ndss_agrigento.pdf
http://www.s3.eurecom.fr/~yanick/publications/2017_ndss_agrigento.pdf


Emulation Versus Instrumentation for Android Malware Detection 19

7. Damodaran A, Di Troia F, Visaggio CA, Austin TH, Stamp M (2017) A comparison of static,
dynamic, and hybrid analysis for malware detection. J Comput Virol Hacking Tech 13(1):1–12

8. The Drebin dataset. https://www.sec.cs.tu-bs.de/~danarp/drebin/
9. DroidBox Google archive. https://code.google.com/archive/p/droidbox/
10. Duan Y, Zhang M, Bhaskar AV, Yin H, Pan X, Li T, Wang X, Wang X (2018) Things you may

not know about Android (un) packers: a systematic study based on whole-system emulation.
In: 25th annual network and distributed system security symposium, NDSS, pp 18–21. https://
www.informatics.indiana.edu/xw7/papers/ndss18-paper296.pdf

11. Feizollah A, Anuar NB, Salleh R, Suarez-Tangil G, Furnell S (2017) AndroDialysis: analysis
of Android intent effectiveness inmalware detection. Comput Secur 65:121–134. http://www0.
cs.ucl.ac.uk/staff/G.SuarezdeTangil/papers/2017cosec-androdialysis.pdf

12. Fratantonio Y, Bianchi A, Robertson W, Kirda E, Kruegel C, Vigna G (2016) Triggerscope:
towards detecting logic bombs in Android applications. In: 2016 IEEE symposium on secu-
rity and privacy, SP 2016, pp 377–396. https://sites.cs.ucsb.edu/~vigna/publications/2016_SP_
Triggerscope.pdf

13. Global smartphone shipments by OS. https://www.statista.com/statistics/263437/global-
smartphone-sales-to-end-users-since-2007/

14. Intents and intent filters: Android developers guide. https://developer.android.com/guide/
components/intents-filters

15. Jing Y, Zhao Z, Ahn G-J, Hu H (2014) Morpheus: automatically generating heuristics to
detect Android emulators. In: Proceedings of the 30th annual computer security applications
conference, ACSAC ’14, pp 216–225,

16. KangH, Jang J,MohaisenA (2015)KimHK(2015)Detecting and classifyingAndroidmalware
using static analysis along with creator information. Int J Distrib Sens Netw 7(1–7):9

17. Kapratwar A, Di Troia F, StampM (2017) Static and dynamic analysis of Android malware. In:
Mori P, Furnell S, CampO (eds) Proceedings of the 3rd international conference on information
systems security and privacy, ICISSP 2017, Porto, Portugal. SciTePress, pp 653–662, 19–21
Feb 2017

18. Lindorfer M, Neugschwandtner M, Platzer C (2015) MARVIN: efficient and comprehensive
mobile app classification through static and dynamic analysis. In: IEEE 39th annual computer
software and applications conference, COMPSAC 2015, pp 422–433

19. Lindorfer M, Neugschwandtner M, Weichselbaum L, Fratantonio Y, van der Veen V, Platzer C
(2014) Andrubis–1,000,000 apps later: a view on current Android malware behaviors. In: Pro-
ceedings of the international workshop on building analysis datasets and gathering experience
returns for security, BADGERS 2014, Wroclaw, Poland, Sept 2014

20. McAfee threats report 2017. https://www.mcafee.com/us/resources/reports/rp-quarterly-
threats-dec-2017.pdf

21. NVISO Apkscan. https://apkscan.nviso.be/
22. Petsas T, Voyatzis G, Athanasopoulos E, Polychronakis M, Ioannidis S (2014) Rage against

the virtual machine: hindering dynamic analysis of Android malware. In: Proceedings of the
seventh European workshop on system security, EuroSec ’14, pp 5:1–5:6

23. Pincer Android attacks. https://www.fsecure.com/weblog/archives/00002538.html
24. Raghavan A, Di Troia F, Stamp M (2019) Hidden Markov models with random restarts versus

boosting for malware detection. J Comput Virol Hacking Tech 15(2):97–107
25. Rasthofer S, Arzt S, Miltenberger M, Bodden E (2016) Harvesting runtime values in Android

applications that feature anti-analysis techniques. In: 23rd annual network and distributed
system security symposium,NDSS, 2016. https://www.bodden.de/pubs/ssme16harvesting.pdf

26. Rastogi V, ChenY, EnckW (2013)AppsPlayground: automatic security analysis of smartphone
applications. In: Proceedings of the third ACM conference on data and application security
and privacy, CODASPY ’13, pp 209–220

27. SandDroid—an automatic Android application analysis system. http://sanddroid.xjtu.edu.cn/
28. Singh T, Di Troia F, Visaggio CA, Austin TH, Stamp M (2016) Support vector machines and

malware detection. J Comput Virol Hacking Tech 12(4):203–212

https://www.sec.cs.tu-bs.de/~danarp/drebin/
https://code.google.com/archive/p/droidbox/
https://www.informatics.indiana.edu/xw7/papers/ndss18-paper296.pdf
https://www.informatics.indiana.edu/xw7/papers/ndss18-paper296.pdf
http://www0.cs.ucl.ac.uk/staff/G.SuarezdeTangil/papers/2017cosec-androdialysis.pdf
http://www0.cs.ucl.ac.uk/staff/G.SuarezdeTangil/papers/2017cosec-androdialysis.pdf
https://sites.cs.ucsb.edu/~vigna/publications/2016_SP_Triggerscope.pdf
https://sites.cs.ucsb.edu/~vigna/publications/2016_SP_Triggerscope.pdf
https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://developer.android.com/guide/components/intents-filters
https://developer.android.com/guide/components/intents-filters
https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-dec-2017.pdf
https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-dec-2017.pdf
https://apkscan.nviso.be/
https://www.fsecure.com/weblog/archives/00002538.html
https://www.bodden.de/pubs/ssme16harvesting.pdf
http://sanddroid.xjtu.edu.cn/


20 A. Sinha et al.

29. Smartphone OS market share worldwide 2009–2017. https://www.statista.com/statistics/
263453/global-market-share-held-by-smartphone-operating-systems

30. Stamp M (2017) Introduction to machine learning with applications in information security.
Chapman and Hall/CRC, Boca Raton

31. Sun M, Wei T, Lui JC (2016) TaintART: a practical multi-level information-flow tracking sys-
tem for Android runtime. In: Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, CCS ’16, pp 331–342. https://www.cse.cuhk.edu.hk/~cslui/
PUBLICATION/CCS16.pdf

32. Tam K, Khan SJ, Fattori A, Cavallaro L (2015) CopperDroid: automatic reconstruction of
Android malware behaviors. In: NDSS symposium, NDSS 2015, pp 8–11

33. Tracedroid. https://github.com/ligi/tracedroid
34. Vidas T, Christin N (2014) Evading Android runtime analysis via sandbox detection. In: Pro-

ceedings of the 9th ACM symposium on information, computer and communications security,
ASIA CCS ’14, pp 447–458

35. Weichselbaum L, Neugschwandtner M, Lindorfer M, Fratantonio Y, van der Veen V, Platzer
C (2014) Andrubis: Android malware under the magnifying glass. Technical Report TR-
ISECLAB-0414-001, Vienna Univeristy of Technology, 5

36. Weka 3: machine learning software in Java. https://www.cs.waikato.ac.nz/ml/weka/index.html
37. Yan L-K, Yin H (2012) DroidScope: seamlessly reconstructing the OS and Dalvik seman-

tic views for dynamic Android malware analysis. In: USENIX security symposium,
USENIX 2012, pp 569–584. http://www.cs.columbia.edu/~lierranli/coms6998-11Fall2012/
papers/droidscope_usenixsec2012.pdf

38. Zhou Y, Jiang X (2012) Android malware genome project. http://www.malgenomeproject.org

https://www.statista.com/statistics/263453/global-market-share-held-by-smartphone-operating-systems
https://www.statista.com/statistics/263453/global-market-share-held-by-smartphone-operating-systems
https://www.cse.cuhk.edu.hk/~cslui/PUBLICATION/CCS16.pdf
https://www.cse.cuhk.edu.hk/~cslui/PUBLICATION/CCS16.pdf
https://github.com/ligi/tracedroid
https://www.cs.waikato.ac.nz/ml/weka/index.html
http://www.cs.columbia.edu/~lierranli/coms6998-11Fall2012/papers/droidscope_usenixsec2012.pdf
http://www.cs.columbia.edu/~lierranli/coms6998-11Fall2012/papers/droidscope_usenixsec2012.pdf
http://www.malgenomeproject.org

