Entwicklung des seilgetriebenen, humanoiden Roboterprototyps HUMECH Eine Verifizierung von Aspekten der nonverbalen Kommunikation

Entwicklung des seilgetriebenen, humanoiden Roboterprototyps HUMECH

Sebastian Feldmann

Entwicklung des seilgetriebenen, humanoiden Roboterprototyps HUMECH

Eine Verifizierung von Aspekten der nonverbalen Kommunikation

Sebastian Feldmann Duisburg, Deutschland

Dissertation Universität Duisburg-Essen, 2016, u.d.T.: Sebastian Feldmann: "Entwicklung des seilgetriebenen, humanoiden Roboterprototyps HUMECH als Demonstrator zur Verifizierung von Aspekten der nonverbalen Kommunikation."

ISBN 978-3-658-18789-7 ISBN 978-3-658-18790-3 (eBook) DOI 10.1007/978-3-658-18790-3

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden GmbH 2017

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier

Springer Vieweg ist Teil von Springer Nature Die eingetragene Gesellschaft ist Springer Fachmedien Wiesbaden GmbH Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Vorwort

Im Rahmen der Mitarbeit am Lehrstuhl für Mechatronik, unter Leitung von Professor Dr. -Ing. Dr. h.c. Dieter Schramm und insbesondere aus Erkenntnissen, die aufgrund der Mitarbeit im vom Bundesministerium für Bildung und Forschung geförderten Projekt "Anthropomorphe Tutoren für Lernprozesse in mit Web 2.0-Technologie unterstützten Lehr-/Lernszenarien" entstanden, wurden die grundlegenden Forschungsansätze dieser Dissertation ermöglicht. Dieses Forschungsprojekt siedelte sich ebenfalls am Lehrstuhl Mechatronik an und basierte auf fundamentalen Erkenntnissen von Professor Dr. phil. Siegfried Frey, der mit seinem Buch "Die Macht des Bildes", auf dem Bereich der nonverbalen Kommunikation, großen wissenschaftlichen Erfolg feierte. Gerade die Mischung aus Erkenntnissen der Steuerungs- und Regelungstechnik, der Mechatronik, der Biomechanik und der Humankommunikation führten zur Entwicklung des humanoiden Roboters *HUMECH*, von ScanimFBX und einem neuartigen virtuellen Funktionsskelett. Dafür das mir dies ermöglicht wurde, möchte ich meinen größten Dank aussprechen. Insbesondere danke ich Herrn Prof. Dr. -Ing. Frank Lobeck für die Ubernahme des Koreferates, das gezeigte Interesse und die kritische Durchsicht der Arbeit. Darüber hinaus danke ich Herrn Professor Dr. -Ing. Andrés Kecskeméthy und Herrn Professor Dr. -Ing. Wojciech Kowalczyk für die fachlichen Anmerkungen und die Zusammenarbeit in weiteren wegweisenden Projekten wie die Entwicklung des medizinischen Assistenzroboters FAROMIR.

Mein Dank richtet sich außerdem an Herrn Prof. Dr.-Ing. Dipl.-Math. Peter Köhler, der mir während meiner Studienzeit, im Rahmen der Mitarbeit am Projekt *PROVER-STAND* (Produktentwicklung über verteilte Standorte), den Einstieg in das Arbeiten in der Wissenschaft ebnete und stets ein wichtiger Ansprechpartner war.

Einen ganz besonderen Dank möchte ich Frau Dipl. -Region. -Wiss. Ostasien Stefanie L. Meyer, Herrn M. Sc. Christian Rathmann, Herrn M. Sc. Marc Strehle und Herrn M. Sc. Phillip Köpe für ihre Unterstützung, Motivation und Freundschaft aussprechen, die mir während des Studiums und der Promotionszeit zuteil geworden ist.

Auch möchte ich den Mitarbeitern und Kollegen des Lehrstuhls Mechatronik danken. Viele von Ihnen standen mir stets mit Rat und Tat zur Seite und unterstützten mich auch in Zeiten, in denen der Weg auch mal ein wenig holpriger gewesen ist. Insbesondere möchte ich Herrn Dipl. -Ing. Stephan Schweig und Herrn Dipl. -Ing. Shen Wang und Herrn Dr. -Ing. Tobias Bruckmann für die fachlichen Gespräche, die wertvollen Ratschläge und die umfassende Unterstützung danken, die mir zuteil geworden ist.

Nicht zuletzt möchte ich herzlich meiner Familie und meinen Freunden für ihr Verständnis, die Motivation und Unterstützung danken. Insbesondere meine Eltern Regina und Guido Schubert haben durch stetiges Engagement und die bedingungslose Unterstützung großen Anteil an der erfolgreichen Umsetzung der Arbeit gehabt.

Kurzfassung

Das Themengebiet der Mensch-Maschine-Interaktion stellt die Wissenschaft im Bereich der humanoiden Robotik vor große Herausforderungen. Dieser Beitrag widmet sich auf Grundlage eines umfassenden Reengineering Ansatzes, der Konstruktion eines humanoiden Roboterprototyps unter Berücksichtigung neuer Erkenntnisse aus dem Forschungsbereich der Humankommunikation bzw. der nonverbalen Kommunikation. Es wurde ein neuartiger Demonstrator entwickelt, mit dessen Hilfe zukünftig das Thema der Akzeptanz eines humanoiden Roboters im Beisein eines menschlichen Interaktionspartners umfassend erforscht werden kann. Hierbei sollen unter Anleitung von Experten des Forschungsbereichs der Humankommunikation, grundlegende Aspekte menschlicher Bewegungsabläufe identifiziert werden, die eine unterbewusste Eindrucksbildung beim Menschen positiv beeinflussen. Im Rahmen des Forschungsprojekts "Anthropomorphe Tutoren für Lernprozesse in mit Web 2.0-Technologie unterstützten Lehr-/Lernszenarien" konnten über ein virtuelles Skelettmodell, Defizite der nonverbalen Kommunikation überwunden werden. Dies geschieht auf Grundlage einer weitreichenden Analyse der menschlichen Anatomie über die Animation virtueller Charaktere in der eigens entwickelten Skriptanimationssoftware ScanimFBX. Die Erkenntnisse aus der Bewegungstranskription mit ScanimFBX bilden die Basis zur Entwicklung eines ersten, abstrahierten Funktionsskeletts für virtuelle Charaktere. Über die Generierung dieses Funktionsskeletts konnten entscheidende Ansätze zur Optimierung der anatomischen Skelettstruktur bei virtuellen Charakteren identifiziert und schließlich auf den Bereich der humanoiden Robotik übertragen werden. Im Entwicklungsprozess des humanoiden Roboters HUMECH wurde ein grundlegender Paradigmenwechsel vollzogen, indem im Gegensatz zur konventionellen Herangehensweise, schon frühzeitig, während der Planungsphase die Unterstützung menschlicher, anatomischer Vorgabeparameter in den Vordergrund gerückt wurden. Rein funktionelle Aspekte treten dabei in den Hintergrund. Auf Grundlage des hieraus entstanden, neuartigen Bewegungsskeletts wurde

anschließend das technische Potential seilgetriebener Manipulatoren dahingehend verifiziert, die menschliche Bewegungsdynamik abzubilden.

In einer eingehenden Untersuchung werden simulativ Arbeitsräume und Bewegungstrajektorien der Manipulatoren des humanoiden Roboters analysiert. Der Vergleich mit konventionellen Aktuatoren liefert den Beleg, dass seilgetriebene Aktuatoren für die Konstruktion eines humanoiden Roboters zwingend in Betracht gezogen werden sollten. Insbesondere zur Verifizierung von Aspekten der nonverbalen Kommunikation ist es notwendig, hohe Anforderungen an die Bewegungsdynamik, bei gleichzeitiger Einhaltung anatomischer Abmaße des menschlichen Körpers zu gewährleisten. Seilgetriebene Manipulatorgelenke bieten die Möglichkeit, Aktuatoren zu entkoppeln und daher das dynamische Bewegungspotential des Prototyps positiv zu beeinflussen. Leichtere Gelenke mit höheren Bewegungsgeschwindigkeiten und großen Gelenkfreiheitsgraden bieten wesentliche Vorteile gegenüber konventionellen Gelenk- und Antriebsvarianten. Durch die Implementierung umfassender Sicherheitsfeatures und einem Konzept zur barrierefreien Interaktion über Sprach- und Gestenbefehle wurde zudem sichergestellt, dass zukünftig Aspekte der nonverbalen Kommunikation anhand von Probandenstudien untersucht werden können. Diese Studien sind zwingend notwendig damit analysiert und belegt werden kann, welche Aspekte der nonverbalen Kommunikation von entscheidender Bedeutung für die Steigerung der Akzeptanz eines humanoiden Roboters bei einem menschlichen Interaktionspartner sind.

Abstract

The topic of human-machine-interaction (HMI), causes in major challenges at the field of humanoid robotics. This contribution is dedicated to a comprehensive reengineering approach, to improve the design of a humanoid robot prototype by considering new findings of non-verbal communication theory. The aim is to develop a demonstrator that allows to analyse the issue of acceptance in humanoid robotics especially under presence of human interaction partners. As part of the research project "Designing virtual humans for web-based learning processes" deficits in nonverbal communication could be overcome through a virtual skeleton model formally introduced at the script animation software ScanimFBX. This model is based on extensive analysis of the human anatomy through the animation of virtual characters. Findings of this research results in an abstracted functional skeleton model. Key features of human motion characteristics were identified during the development and research with human motions, coded by ScanimFBX. The goal is now to optimize the anatomical structure of virtual skeleton models and finally to transfer this finding into the area of the humanoid robotics. During the development process of the humanoid robot HUMECH a fundamental paradigm shift has been performed. In general, the development is performed by taking account to human, anatomical parameters. Pure functional aspects recede into the background. On basis of the invented innovative motion skeleton the technical potential of rope driven manipulators was subsequently been with the goal of optimized mapping human motion characteristics. In an in-depth investigation workspaces and motion trajectories of individual manipulators were analysed by simulation. The comparison with conventional actuators provides evidence that cable driven actuators have fundamental advantages in motion dynamics. Thus they have to be considered at the early designing process of a humanoid robot prototype. In particular to verify aspects of nonverbal communication, it is necessary to ensure high demands on the motion dynamics while maintaining anatomical dimensions of the human body. Cable-driven manipulator joints offer the opportunity to outsource actuators and thus to affect the

dynamic motion potential of the prototype in a positive manner. Weight reduced joints with higher motion speed and large degrees of freedom offers significant advantages over conventional joints and drive variants. By implementing comprehensive security features and an innovative approach to barrier-free interaction via voice and gesture commands also ensures that future aspects of nonverbal communication can be examined on the basis of clinical studies. This prototype enables scientists to analyse what aspects of nonverbal communication is crucial for increasing the acceptance of a humanoid robots by human interaction partners.

Inhaltsverzeichnis

A۱	obildı	ingsverzeichnis	XV
Ta	belle	nverzeichnis	XIX
No	otatio	n	XXI
Al	rony	me	XXVII
1	Einl 1.1 1.2 1.3 1.4	eitung Grundlagen des Uncanny Valley Phänomens Detaillierte Betrachtung des Uncanny Valley Phänomens Das Uncanny Valley Phänomen in der humanoiden Robotik Zielsetzung und Thesis.	$ \begin{array}{c} 1 \\ 5 \\ 6 \\ 8 \\ 11 \end{array} $
2	Star 2.1 2.2 2.3 2.4	nd der Forschung Akzeptanzprobleme von virtuellen Charakteren Das Berner System Untersuchung von Methoden zur Bewegungstranskription Differenzierter Vergleich untersuchter Verfahren zur Bewegungskodie-	17 17 19 21
	2.5 2.6	rung Anatomische Grundlagen des menschlichen Bewegungsapparats 2.5.1 Beispiel 1: Die menschliche Schulter 2.5.2 Beispiel 2: Das menschliche Hüftgelenk Der menschliche Körper als Vorbild in der humanoiden Robotik Reuserungsdungenite des menschlichen Bewegungsappa	23 28 30 31 33
	2.1	nats	34

	2.8	Betrachtung konventionell aufgebauter humanoider Roboterprototy-					
	2.9	Neubetrachtung des Entwicklungsprozesses humanoider Roboterpro- totypen					
		6065 pcn.					
3	Ree	ngineering-Ansatz übertragen auf die humanoide Robotik					
	3.1	Grundlagen des Reengineering					
	3.2	Abstrahierung des menschlichen Körperskeletts in ein virtuelles Funk- tionsskelett					
	3.3	Features des Programms zur Bewegungstranskription ScanimFBX					
	3.4	Erweiterte Verwendungsmöglichkeiten der transkribierten Bewe- gungsdatensätze					
	3.5	Modifizierung des Funktionsskeletts zur Überwindung des Uncanny Valley					
	3.6	Versuchsreihe 1: Überwindung des Uncanny Valley Phänomens					
	3.7	Identifizierung grundlegender Features der menschlichen Bewegung					
4	Syst	emmodellierung					
	4.1	Kinematik					
	4.2	Transformation homogener Koordinaten					
	4.3	Freiheitsgrade im Versuchsaufbau					
	4.4	Vorwärtstransformation (Vorwärtskinematik)					
		4.4.1 Auftretende Singularitäten der Transformationskette bei der Verwendung von Euler-Winkeln					
	4.5	Versuchsreihe 2: Arbeitsraumvergleich					
		4.5.1 Das Denavit-Hartenberg-Verfahren					
		4.5.2 Analyse der korrespondierenden Vorwärtstransformation des menschlichen Arms am Beispiel des traditionellen Roboterpro- totyps und HUMECH					
		4.5.3 Herleitung der Vorwärtstransformation anhand der anatomi- schen Abstrahierung des menschlichen Arms					
		4.5.4 Herleitung der Vorwärtstransformation am Beispiel des Arm- manipulators eines konventionell konstruierten humanoiden Roboterprototyps					
		4.5.5 Herleitung der Vorwärtstransformation am Beispiel des Arm- manipulators des humanoiden Roboterprototyps HUMECH					
		4.5.6 Vorwärtskinematik des Manipulators					
		4.5.7 Herleitung der expliziten Lösung der inversen Kinematik des HUMECH-Manipulators					
	4.6	Numerischer Lösungsansatz					
	4.7	Betrachtung auftretender Singularitäten					
		4.7.1 Vereinfachte Berechnung über die Vektormethode					

		4.7.2	Arbeitsraumvergleich Mensch, humanoider Roboterprototyp HUMECH und traditionelle Roboterstruktur	
	4.8	Erwei 4.8.1	terung der Bewegungsmöglichkeiten am humanoiden Roboter Betrachtung des Kugelgelenkprototyps im Belastungszustand	
5	Sim 5.1	ulative Versu 5.1.1	Untersuchung geeigneter Aktuatorvarianten chsreihe 3: Simulation konventioneller Aktuatorkonzepte Manipulatoraktuierung über entkoppelte seilgetriebene Gelen-	
		5.1.2	ke Einheitliches Modell zur Validierung der Antriebskonzepte mit Dymola®	
		$5.1.3 \\ 5.1.4$	Implementierung und Simulation des Armmodells Herleitung der Grundlagen des Seilmodells	
		5.1.5	Analyse und Auswertung Simulationsergebnisse	
6	Prot 6.1	totypise Model	che Implementierung der Simulationsergebnisse llaufbau des humanoiden Roboterprototyps	
		0.1.1	MECH	
		619	Esterna Defensionen der Manierlatunglaube	
	6.2	Versue Proto	chsreihe 4: Validierung der Bewegungstranskription am realen typ	
	6.3	Benut bung	zerinterface und Programmstruktur der dSpace Echtzeitumge-	
	6.4	Versu	chsauswertung	
	0.0	Benut 6.5.1	Konstruktiver Ansatz zur Beseitigung von Gefährdungspoten- zialen in der Mensch-Maschine-Kommunikation	
		6.5.2	Beseitigung von Gefährdungspotenzialen über die Implemen- tierung einer umfassenden softwareseitigen Sicherheitsarchitek-	
		6.5.3	Struktureller Aufbau und Funktionalitäten des Benutzerinter- face	
		6.5.4	Experimentelle Verifikation des zugrundeliegenden Sicherheits- konzepts beim humanoiden Roboter HUMECH	
	6.6	Imple	mentierung eines Modus zur Remotesteuerung	
7	Schl 7.1	Schlussbetrachtung		
	7.2	Ausbl	ick	
Li	terati	urverze	ichnis	
А	Disł	cussion	auftretender Singularitäten der DH-Transformation	

В	Simulationsmodelle Dymola		
	B.1	Detaillierte Darstellung des DC-Motormodells in Dymola	234
	B.2	Strukturelles Simulationsmodell des rechten Arms	235
	B.3	Strukturelles Simulationsmodell des rechten Arms HUMECH- Elek-	
		trische Zylinderantriebe, Dymola	236
	B.4	Strukturelles Simulationsmodell des rechten Arms HUMECH- seilge-	
		triebene Aktuatoren, Dymola	237
	B.5	Strukturelles Simulationsmodell des HUMECH-Torsos, Dymola	238
С	Ken	nwerte PA2200-Kunststoff	239
D	Stev	erungslogik des humanoiden Roboterprototyps HUMECH	241
	D.1	Simulink Programmstruktur	242
	D.2	Simulink Steuerungslogik	243
Е	Rep	räsentation des Steuerungs-GUI	245
	E.1	Darstellung des dSpace [®] Benutzerinterfaces in Control-Desk	246

Abbildungsverzeichnis

373777

0.1	Notation für physikalische Vektoren	XXII
1.1	Leonardo Da Vinci's Modell eines seilgetriebenen, humanoiden Robo-	
	ters	2
1.2	Creeping Baby Doll	4
1.3	Zwei Generationen humanoider Roboterprototypen	4
1.4	Das Uncanny Valley Phänomen	7
1.5	Gemenoid Actroid-F	10
2.1	Einfluss der Lateralflexion - Madonna del Magnifican	19
2.2	Einfluss der Lateralflexion - Elisabeth-Louse Vigèe Lebrun	20
2.3	Motion-Capturing über den Time-of-Flight Sensor, Microsoft Kinect	24
2.4	Vicon Marker Platzierung	27
2.5	Motion-Capturing über Vicon	29
2.6	Übertragung der Vicon Bewegungsdaten auf einen virtuellen Avatar	30
2.7	Kinematisches Modell der menschlichen Schulter	31
2.8	Kinematisches Modell des menschlichen Hüftgelenks	32
2.9	Humanoider Roboter MAHRU-1	37
2.10	Humanoider Roboter KHR-2	38
2.11	Mechatronischer Entwicklungsansatz in der humanoiden Robotik $.$	42
3.1	Der Reengineering-Ansatz übertragen auf die humanoide Robotik .	47
3.2	Reengineerte Skelettstruktur	49
3.3	Funktionsumfang von ScanimFBX	52
3.4	ScanimFBX	53
3.5	Kodierprozess einer Werkstattszene	54
3.6	Abstrahierung des menschlichen Skelettmodells	56
3.7	Character-Rigging Prozess	57

1.

.....

3.8	Rigging-Prozess	57
3.9	Typische Repräsentation kodierter Bewegungsabläufe	59
3.10	Realitätsgetreue Bewegung von Scapula im virtuellen Funktionsskelett	60
3.11	Validierung anhand der Bewegungstrajektorien aus ScanimFBX	62
3.12	Darstellung der räumlichen Bewegungstrajektorie	63
4.1	Schematischer Aufbau des HUMECH Oberkörpermodells	73
4.2	Schematische Modellrepräsentation des geplanten Aufbaus des humanoi-	
	den Roboters HUMECH	74
4.3	Substitution einer sphärischen Gelenkverbindung durch eine 3-gelenkige	
	kinematische Kette	75
4.4	Substitution einer kinematischen Kette mit 3 Freiheitsgraden \ldots	77
4.5	Auswirkung von inneren Singularitäten	80
4.6	Grundlagen der Denavit-Hartenberg Konvention	82
4.7	DH Anordnung der Grundachsen beim Menschen	86
4.8	DH Anordnung der Grundachsen bei KHR-2	89
4.9	Anordnung der Grundachsen nach Denavit Hartenberg	91
4.10	Synthetische Bestimmung der Gelenkwinkel	103
4.11	Funktionsablaufdiagramm des synthetischen Suchalgorithmus	104
4.12	Hayati-Mirmirani-Transformation	107
4.13	Vereinfachte Darstellung der Struktur des HUMECH-Manipulators	110
4.14	Resultierender Arbeitsraum des menschlichen Arms	113
4.15	Resultierender Arbeitsraum des Roboterprototyps HUMECH	114
4.16	Resultierender Arbeitsraum des untersuchten traditionell konstruierten	
	Roboterprototyps	114
4.17	Arbeitsraum des menschlichen Arms der vom humanoiden Roboterpro-	
	totyp nicht abgedeckt wird	116
4.18	Arbeitsraum HUMECH der vom menschlichen Arm nicht abgedeckt	110
4.10		110
4.19	Arbeitsraum des menschlichen Arms der vom traditionellen Roboterpro-	117
4.90	Arbeitareum vom treditionellen Debetermetetaren der vom menschli	117
4.20	chen Arm nicht abgedeckt wird	117
4.21	Genereller Aufbau des entwickelten, seilbasierten Kugelgelenkprototyp	119
4.22	Schematische Analyse der kinematischen Zusammenhängen des seilba-	
	sierten Kugelgelenkprototyps	120
4.23	Auftretende Kräfte am Kugelgelenkprototyp	122
4.24	Konstruktive Wanddickenanalyse des Gelenkprototyps	124
4.25	Analytische Betrachtung des auftretenden Spannungstensors $\ .\ .$.	124
4.26	Auftretende Spannungen am Prototypen des Kugelgelenk s $\ \ldots\ \ldots$	126
4.27	Elastische Verformung am Prototypen des Kugelgelenks	127
4.28	Finale Implementierung des Kugelgelenks in den Torso des humanoiden	
	Roboterprototyps	127

5.1	Darstellung der Antriebsvarienten des humanoiden Roboterprototyps	120
5.2	Simulation einer typischen Bewegungsabfolge des Dymola Simulations-	130
	modells	133
5.3	Analytische Betrachtung der seilgebundenen Gelenkverbindung	135
5.4	Steuerungsstruktur des HUMECH-Manipulators unter Verwendung ei-	
	nes PID-Reglers	136
5.5	Betrachtung des zylindrischen Verbindungselements des Armmanipula-	
	tors	138
5.6	DC-Motor Kennwerte	140
5.7	Vereinfachtes Modell des Dyneema Seils	141
5.8	Standardisiertes Modell des Maxon RE40 DC-Motors	142
5.9	Standardisiertes Modell des Maxon RE35 DC-Motors	142
5.10	Allgemeine Herleitung der Gleichgewichtsbedingungen am infinitesima-	
	len Seilelement	145
5.11	Absolute Bruchbelastung im Verhältnis zum nominalen Seildurchmes-	
	ser	148
5.12	Seildehnung im Verhältnis zur relativen Bruchbelastung	149
5.13	Dyneema Messdaten zur elastischen Längenänderung im Belastungszu-	
	stand	151
5.14	Iterativer Lösungsansatz von <i>a</i> _{transzendent}	152
5.15	Versuchsaufbau zur experimentellen Bestimmung der Seillinie	153
5.16	Simulationsergebnis der Rotation bei innerer/äußerer Schulterdrehung -	
	Winkelgeschwindigkeiten	157
5.17	Simulationsergebnis der Rotation bei innerer/äußerer Schulterdrehung -	
	Winkelbeschleunigungen	157
5.18	Auswertung der Simulationsergebnisse bezüglich auftretender Seilkräfte	158
5.19	Simulationsergebnis der Rotation bei innerer/äußerer Schulterdrehung -	
	Trajektorienverlauf	159
	·	
6.1	Charakteristische Merkmale des humanoiden Roboters HUMECH .	162
6.2	Modulare Darstellung der Hardwarestruktur	164
6.3	Motorkennline des 5918M3008-Schrittmotors	171
6.4	Blockschaltbild des erweiterten Regelkreises	172
6.5	Ubergeordnete Programmstruktur in Simulink	176
6.6	Schematische Clusterung der integrierten Steuerungs- und Sicherheitslo-	
	gik	177
6.7	Versuchsauswertung zur Ubertragung von Motion-Capturing Daten auf	
	den humanoiden Roboterprototypen HUMECH	180
6.8	Versuchsauswertung zur Ubertragung von Motion-Capturing Daten auf	
	den humanoiden Roboterprototypen HUMECH	181
6.9	Erweitertes Schema zum Mensch-Maschine-Dialog	182
6.10	Schematische Darstellung des MMI-Systems	183
6.11	Zonenabdeckung des implementierten Sicherheitsalgorithmus	184
6.12	Erfassungsbereich des eingesetzten Tiefensensors	186

6.13	Generierung von Tiefeninformationen einer räumlichen Oberfläche	187
6.14	Algorithmus zur sicheren Verwendung von Sprachbefehlen	190
6.15	Qualitative Darstellung der finalen Programmstruktur	191
6.16	Funktionsschema des implementierten MMI-Konzepts	193
6.17	Interaktionsgesten zur Ansteuerung der implementierten Funktionsmo-	
	di	194
6.18	Ablaufschema des implementierten Interaktionsalgorithmus	194
6.19	Benutzerinterface des automatischen Betriebsmodus	196
6.20	Benutzerinterface des manuellen Betriebsmodus	197
6.21	Zonenabdeckung des implementierten Sicherheitsalgorithmus	199
6.22	Relative Fehlerrate der auditiven- und gestenbasierten Benutzerführung	200
6.23	Integration des Remotemodus in die bestehende GUI	202
6.24	Schematische Darstellung des Integrationskonzepts	203
6.25	Benutzeroberfläche des webbasierten Benutzerinterfaces	204
6.26	Darstellungsvarianten des Remote Control-Interface	205
7.1 7.2 7.3	Handmanipulator des humanoiden Roboters HUMECH Bewegungstrajektorie zum Anlernen der neuronalen Netze Funktionsablaufdiagramm zur Verwendung neuronaler Netze in MMI-	211 212
	Szenarien	214
B.1	Detaillierte Darstellung des DC-Motormodells	234
B.2	Modell rechter Arm, HUMECH, Servogetriebener Aktuatoren, Dymola.	235
B.3	Modell rechter Arm, HUMECH, elektrische Zylinderantriebe, Dymola.	236
B.4	Modell rechter Arm, HUMECH, seilgetriebene Aktuatoren, Dymola.	237
B.5	Simulationsmodell des HUMECH-Torsos in Dymola	238
C.1	Materialkennwerte des Materials PA2200, verwendet für den Kugelge- lenkprototypen des humanoiden Roboter HUMECH.	240
D 1	Übergeendnete Dregrenningtruktur Simulink	949
D.1 D.2	Schematische Clusterung der integrierten Steuerungs- und Sicherheitslo- gik	242 243
	0	J
E.1	Darstellung des Benutzerinterfaces in dSpace	246

Tabellenverzeichnis

2.1	Analyse der Beugung des menschlichen Unterarms - Langsame Bewe-	24
22	Analyse bei Beugung des menschlichen Unterarms - Mittlere Bewegungs-	34
2.2	geschwindigkeiten	35
2.3	Analyse bei Beugung des menschlichen Unterarms - Schnelle Bewegungs-	00
	geschwindigkeiten	35
2.4	Freiheitsgrade des humanoiden Roboters MAHRU-1	37
2.5	Freiheitsgrade beim humanoiden Roboter KHR-2	39
2.6	Systemspezifikationen Actroid-F	40
3.1	Skelett-Charakteristika des Funktionsskelettes	65
3.2	Bewegungsrestriktionen des menschlichen Arms	66
3.3	Potenzielle Differenzen der physikalischen Bewegungsbeschränkungen	67
4.1	Innere Singularitäten der Rotationsachsen eines 3-Achsen-Gelenks .	79
4.2	Definition der DH Parameter	84
4.3	Darstellung einer kinematischen Kette über DH-Parameter	84
4.4	DH-Parameter des Menschen	88
4.5	DH-Parameter des konventionellen Roboters	90
4.6	DH-Parameter HUMECH	93
4.7	Quantitative Auswertung der Arbeitsraumsimulation	118
5.1	Kennwerte der untersuchten Aktuatorkonzepte beim humanoiden Robo-	
	ter HUMECH	132
5.2	Experimentelle Kenngrößen des Dyneema Zugversuchs	147
5.3	Experimenteller Laborversuch zum Seildurchhang	152
5.4	Auswertung der Versuchsergebnisse aus Dymola	156

6.1	Übersicht funktionaler Schnittstellen	165
6.2	Systematische Analyse der Operationsmodi	166
6.3	0-Punktreferenzierung der Manipulatorgelenke	170
6.4	Koeffizientenbestimmung über die Ziegler-Nichols Methode	174
6.5	Einstellparameter des verwendeten PI-Reglers nach der ZN Methode	174
6.6	Auswertung Versuchsergebnisse des Roboterprototyps HUMECH	179
6.7	Unterteilung implementierter Sicherheitskonzepte	188
6.8	Distanzparameter des Feldversuchs zur Zonenabdeckung	198

Notation

Darstellung von Symbolen

Zwecks Übersichtlichkeit geschieht die Repräsentation von Variablennamen und physikalischer Größen in *kursiver* Schrift. Die Bezeichnungen von Orten (Punkten), Komponenten und Namen von Koordinatensystemen, Zahlen sowie Standardfunktionen wie z.B. "sin" oder "cos", werden nicht kursiv geschrieben, vgl. Schramm u. a. (2013). Vektoren werden durch **fett** gedruckte und *kursive* Kleinbuchstaben, Tensoren und Matrizen durch **fett** gedruckte und *kursive* Großbuchstaben dargestellt. Zeitliche Ableitungen werden durch Punkte über die jeweiligen Größen gekennzeichnet. Der Nullvektor und die Nullmatrix werden ohne Dimensionsangaben als "**0**" dargestellt.

Spezielle Notation für physikalische Vektoren

Die Regeln zur Notation für physikalische Vektoren und Tensoren erfolgt entsprechend den folgenden Regeln, vgl. Schramm u. a. (2013):

- Ein rechts unten stehender Index dient als Bezeichnungs- und Zählvariable. Er kennzeichnet z.B. den Körper oder das Koordinatensystem der betreffenden Größe.
- Bei Größen, die relativ zu anderen Größen beschrieben werden, kennzeichnet ein Index links unten den Bezugskörper oder das Bezugskoordinatensystem. Ein fehlender Index kennzeichnet das Inertialsystem als Bezugssystem.
- Für den Fall, dass ein physikalischer Vektor oder Drehtensor in Koordinaten angegeben wird, erfolgt die Angabe des Koordinatensystems, durch einen linken oberen Index. Ist kein Index angegeben, so handelt es sich um einen physikalischen Vektor oder Drehtensor ohne Angabe eines spezifischen Koordinatensystems.
- Operatoren wie Potenzen, Transponierung, Invertierung sowie Ableitungen nach anderen Größen als der Zeit, werden durch ein entsprechendes Zeichen rechts oben gekennzeichnet.

Über der jeweiligen Variablen wird die Ableitung nach der Zeit gekennzeichnet. Dort können auch weitere Kennzeichnungen erfolgen, wie z.B. Überstriche "-" oder Tilden "-".

Abbildung 0.1: Notation für physikalische Vektoren.

Verwendete Symbole

Formelzeichen	Einheit	Bedeutung
Teteinieche		
Duchatahan		
A ducinstation:	m2	Quorgebrittafläche Figerkorn
AFe	111	Allemaine Transformationsmatrix DH Konventi
A_i	-	on
$A_{i,HU}$	-	Transformationsmatrix menschlicher Arm - DH-Konvention
$A_{i,HK}$	-	Transformationsmatrix Konventioneller Manipulator - DH - Konvention
$A_{i,HM}$	-	Transformationsmatrix HUMECH Manipulator - DH - Konvention
A_{HU}	-	Gesamtmenge der betrachteten Punkte des Arbeits- raums - Mensch
A_{MU}	$Grad/s^2$	Winkelbeschleunigung Ellbogengelenk
An	- /	Translationsmatrix entlang des Vektors p
a_{Pi}	-	Beschleunigungsvektor des Punkts P_i
A_{x,ξ_1}	-	Rotationsmatrix um die x-Achse mit Winkel ξ_i
A_{u,ξ_1}	-	Rotationsmatrix um die y-Achse mit Winkel ξ_i
A_{z,ξ_1}	-	Rotationsmatrix um die z-Achse mit Winkel ξ_i
B	-	Positiv definite Diagonalmatrix der Motorträghei-
		ten
\hat{B}	Т	Scheitelwert der Flussdichte (in Tesla)
B_i	-	Allg. Orientierungsmatrix
B_{HM}	-	Gesamtmenge der betrachteten Punkte des Arbeitsraums-HUMECH
C_{HK}	-	Gesamtmenge der betrachteten Punkte des
- 111		Arbeitsraums- Konventioneller Prototyp
$C(q_i, \dot{q}_i)$	-	<i>n</i> -dimensionaler Vektor der Zentrifugal- und Corio- liskräfte
d_{el}	Ns/m	Viskose Dämpfung
D_{el}	-	Positiv definite Diagonalmatrix der Seilviskosität
D_k^{α}	-	Operatormatrix, welche die Transformation des Po-
		sitionsvektors des Punkts P_k in den Geschwindig- keitsvektor beschreibt
F_{AB}	N	Wirkende Kraft auf den Ankerleiter im Erregerfeld
f:	-	Freiheitsgrade des Manipulatorgelenks i
F	_	Gesamtfreiheitsgrade eines Manipulators
f ges Fr	Ν	Resultierender Kraftvektor Seilkraft
F _a	N	Wirkende Seilkraft Kugelgelenkprototyp
Fuenen	N	Vorspannung Seilelement
- oorsp	- •	·F

Formelzeichen	Einheit	Bedeutung
$I(\mathcal{L})$		Commentation and the second se
$J(\xi_i)$	- N//m	Federateifalveit
κ_{el}	11/111	Pederstelligken Desitiv definite Diegenelmetniv der Seileteifgheit
K_{el}	-	Diagonale (n x n) Matnix der Internationalvonstante
K_i	-	Diagonale $(n \times n)$ Matrix der Integrationskonstante
Λ_p	-	Diagonale $(n \times n)$ Matrix der Proportionalen ver- stärkungen
L	m	Seillänge Herleitung
l_{si}	-	Seillänge i des Kugelgelenkprototyps
M_{Dc}	Nm	Resultierendes Drehmoment - Abtriebsachse
M _m	-	Wirkendes Gesamtmoment am Kugelgelenkproto-
mg		typ
$M(q_i)$	-	Massenmatrix um die i-te Achse eines kinemati-
(10)		schen Manipulatorpaares
Ms	_	Wirkendes Seilmoment am Kugelgelenkprototyp
$P_{F_{e}}$	W/ka	Eisenverluste
P_H	W	Hystereseverluste
Pi	-	Positionsvektor
P_{ik}^{i}	m	Lokale Bone Koordinaten
P_{iR}	-	Gewichtete Summe über alle Bones
P_W	W	Wirbelstromverluste
P(x, y, z)	-	Punkt P im Koordinatensystem x, y, z
R_{off}	_	Resultierende Gesamttransformation des seilgetrie-
- ~eJ J		benen Gelenks von HUMECH - Euler Notation
r _{D:} :	_	Positionsvektor des Punktes <i>P</i> . zugehörig zu Gelenk
· <i>r i</i> , <i>i</i>		i
R	_	Bestimmtheitsmaß
R(RPY)	_	Rotationsmatrix in der "Roll", "Pitch" und "Yaw"-
10(101 1)		Notation
$R_{c_{nk}}$	rad	Sphärische Rotation Kugelgelenk - Euler Notation
RIII	rad	Sphärische Rotation HUMECH-Gelenk -Euler No-
1000	1 666	tation
ΔT_{T}	K	
T_d	-	Diagonale $(n \times n)$ Matrix der Differenzierungskon-
- u		stanten
$T_{f_m}(a_i, \dot{a}_i)$	_	Auftretende Beibung/Dämpfung
T_{MU}	ms	Zeitdauer Bewegungsausführung Ellbogengelenk
V _{MU} mar	Grad/s	Maximale Winkelgeschwindigkeit Ellbogengelenk
W -max	J/m^3	Energiedichte bei elastischer Verformung Ellbogen-
	\$ / 110	gelenk
W _{Streu}	W	Streulaufverluste
x_{hl}	-	Menschenähnlichkeit
y_{symp}	-	Sympathie, Akzeptanz

Formelzeichen Einheit Bedeutung

Griechische		
Buchstaben:		
$\frac{\delta G(q_i)}{\delta q_i}$	-	Potentielle Energie des Manipulators
ϵ_{ij}	-	Elastische Verformung des Körpers in ϵ_{ij} -Richtung
μ	-	Erwartungswert
ν_{Pi}	-	Geschwindigkeitsvektor des Punkts P_i
ξ_i	rad	Rotationswinkel - Manipulatorgelenk
ρ	-	Materialdichte
σ	-	Varianz
$ au_{i,m}$	$kg \cdot m^2 \cdot$	Trägheitsmoment
	s^{-1}	
$\hat{\Phi}$	Wb	Scheitelwert des magnetischen Flusses
$\phi(z \Psi)$	-	Wahrscheinlichkeitsdichte
$w_{i(k)}$	-	Gewichtung des Vertex i bezüglich Bon e k

Akronyme

Akronym	Bedeutung
3.D	2 Dimonsional
$\Delta T R$	Intelligent Robotics and Communication Laboratories
	Application Programming Interface
Rnn	Rits per pivel
BMBE	Bundesministerium für Bildung und Forschung
BVH	Biovision Hiorarchy
	Controller Area Network
COR = ID	Communication Object Identifier
COD = ID CPU	Control Processing Unit
DC	Cleichstrommeter Kommutatormaschine
	Denovit Hortophorg Konvention
D_{11} $D_{2}F$	Demonstration
	Enviriante Envichelecture
	Erweiterte Bruchbelastung
FACS	Facial Action Coding System
	Filmbox
FGL	Formgedachtnisiegierungen
FPS	Frames pro Sekunde
FGWA	Flachengrenzwertalgorithmus
GUI	Graphical User Interface
GHz	Giga Hertz
HPPE	High-Performance Polyethylene
HTTP	Hypertext Transfer Protocol (world wide web protocol)
IR	Infrarot
ISO	International Standardization Organization
IoT	Internet of Things
MBL	Minimale Bruchbelastung
MMI	Mensch-Maschine-Interaction

Akronym	Bedeutung
MP	Mega Pixel
MySQL	My Structured Query Language (database management system)
NASA	National Aeronautics and Space Administration
Nitinol	Nickel-Titanium/Naval Ordnance Laboratory
OSI	Open Systems Interconnection
PHP	Hypertext Preprocessor
PWM	Pulsweitenmodulation
PZwA	Pixel-Zustandswechsel-Algorithmus
RE	Raumeinheiten
R.U.R	Rossum's Universal Robots
SDK	Software Development Kit
ToF	Time of Flight
UDP	User Datagram Protocol
UI	User Interface
URES	Resultierende Verschiebung
WLAN	Wireless LAN
XAMPP	X (cross-platform), Apache HTTP Server, MySQL, PHP,
	Perl
ZN	Ziegler Nichols