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Preface

This book aims to give an introduction to the methods used in non-life insurance. In
addition to providing an overview of classical actuarial methods, the main part deals
with ruin models, which is particularly interesting from a mathematical point of
view. However, ruin theory also gives a deeper insight into and understanding how
losses or an insolvency happens, if it happens at all, and what precautions may be
taken to avoid an undesirable situation. Even though “ruin in infinite time” is not
considered by the solvency rules, the theory gives an understanding of the risks
taken.

I started writing this book back in 1994, when I gave a lecture on risk theory at
Heriot—Watt University in Edinburgh. The lecture was based on notes by my
colleagues, in particular by Howard Waters. The main part of the book has its
origins in a two-semester course I gave at the University of Aarhus from 1994 to
2000. Parts of the notes to this course were also used in the book project [110]. In
the last year, I added the chapter on claims reserving and the discussions on some
aspects of solvency. I hope that all the theoretical background that an actuary may
need can now be found in this book.

Many colleagues have directly or indirectly contributed to this book. I want to
thank my Ph.D. supervisor Paul Embrechts, who started my interest in this topic;
my former colleagues in Edinburgh, in particular Howard Waters, who supported
me during my stay in Scotland’s capital; Jan Grandell and Seren Asmussen, whose
experience has increased my research skills; Hansjorg Albrecher, who drew my
attention to several interesting references; and Mario Wiithrich, whose fruitful
discussions with me on claims reserving has improved the corresponding chapter.
Last but not least, I thank my wife, who has always supported my scientific career,
even though it was often quite hard for her, in particular, when the children were
small.

Cologne, Germany Hanspeter Schmidli
September 2017
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Natural filtration of the process X

Space of bounded random variables
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Lundberg coefficient

ith occurrence time
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Negative part of x
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Event space on which probabilities are defined
Survival probability

Standard normal distribution function
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nth moment of the claim sizes
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Chapter 1
Risk Models

In this chapter we will consider a risk in a single time period. We will see how to
approximate the distribution of a compound sum, how to calculate premia, and we
will introduce risk measures.

1.1 Introduction

Let us consider a (collective) insurance contract in some fixed time period (0, T'], for
instance T = 1 year. Let N denote the number of claimsin (0, T]and Y1, Y>, ..., Yn
the corresponding claims. Then

N
S=Y%
i=1

is the accumulated sum of claims. We assume

(i) N and {Y;, Y», ...} are independent.
(i) Y3, Y», ... are independent.
(iii) Y3, Ya, ... have the same distribution function, G say.

We further assume that G(0) = 0, i.e. the claim amounts are positive. Let My (r) =
Ele™"], u, = IE[Y['] if the expressions exist and & = 1. The distribution of S can
be written as

P[S < x] = E[IP[S < x | N]]:ZIP[Sfx | N =n]lP[N = n]
n=0

=Y PN =n]G*"(x).
n=0

© Springer International Publishing AG, part of Springer Nature 2017 1
H. Schmidli, Risk Theory, Springer Actuarial,
DOI:10.1007/978-3-319-72005-0_1



2 1 Risk Models
In general, this is not easy to compute, but it is often enough to know only some
characteristics of a distribution.

N

E[S] = IE[Z Y,} = ]E[]ELZ:: Y;

i=1

N
NH =IE[ M} = E[Nu] =E[N]n
i=1

L

is called the first Wald formula, and

wr-of (£

i=1

V] =663,

i=1 j=1

]
= E[Np2 + N(N = D] = E[N’|p? + E[N] (12 — 1)
gives the second Wald formula
Var[§] = Var[N]u? + IE[N]Var[Y;].

The moment generating function of S becomes
N N N
Mg(r) = ]E[erS] = E[exp{r Z Y; ” = ]E|:1_[ e’Yf:| = ]E[]E[H e'vi
i=1 i=1 i=1

N
= ]E|:1_[ My(r)] =1 [(My(r))N] — E[eNlog(My(r))]
i=1

= My (log(My(r))) ,

dl

where My (r) is the moment generating function of N. The coefficient of skewness
E[(S —IE[S])?]/(Var[S])*/? can be calculated from the moment generating function
by using the formula

d3
E[(S — E[S])’] = ) log(M(r)) o

1.2 The Compound Binomial Model
We model N ~ B(n, p) for somen € IN and p € (0, 1). We obtain
E[S] =npu,

Var[S] = np(1 — p)u’* + np(ua — 1) = np(ua — pp’)

and
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Ms(r) = (pMy(r) +1—p)".

Let us consider another characteristic of the distribution of S, the skewness. We need
to compute E[(S — E[SD3].

d? a2 M;

a2 \pMyry+1-p
_ 4 ( pMY(r)  pPMy(r)? )
dr \pMy(r)+1—p (pMy(r) +1—p)?
< pMY(r)  3pMY(rMy(r) 2p*(My (r))? )
pMy(r)+1—p (pMy(r)+1—p)>  (pMy(r)+1—p)3) "

For r = 0 we get

E[(S — E[SD’] = n(pps — 3p*pap +2p° 1) |

from which the coefficient of skewness can be calculated.

Example 1.1 Assume that the claim amounts are deterministic, yy say. Then

3 3 2 3 3 1
E[(S — E[SD’] =nyy(p —3p° +2p°) = 2nyop(5 -p)1—p).

Thus
E[(S —E[S)*] 20 < p

0| -

VIIA

1.3 The Compound Poisson Model

In addition to the compound binomial model we assume that n is large and p is small.
Let A = np. Because

B(n, »/n) — Pois(A) asn — oo

it is natural to model
N ~ Pois(}A) .

We get
E[S] = Ap,

Var[S] = Au’ + A(uy — %) = Ao
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and
Ms(r) = exp{A(My(r) — D}.
Let us also compute the coefficient of skewness.
d? d?
@IOg(Ms(r)) = @(X(My(r) — D) =AMy (r)
and thus
E[(S — E[SD*] = Aus.

The coefficient of skewness is

E[(S —E[SD’]  us3
(Var[S])32

T

Problem: The distribution of S is always positively skewed.

Example 1.2 An insurance company models claims from fire insurance as
LN@m, ¢2). Let us first compute the moments

tn = E[Y]] = E[e"°8""] = Miogy, (n) = exp{o’n?/2 + nm}.

Thus
E[S] = Aexp{o?/2 4+ m},

Var[S] = A exp{Za2 + 2m}

d
o E[(S — E[S])?] . exp{902/2 + 3m} exp{352/2}

(Var[S]32— /a exp{602 + 6m} A
|

The computation of the characteristics of a risk is much easier for the compound
Poisson model than for the compound binomial model. Using a compound Poisson
model also has another great advantage. Assume that a portfolio consists of several
independent single risks SV, S@, ..., SU) each modelled as compound Poisson.
For simplicity we use j = 2 in the following calculation. We want to find the moment
generating function of S 4 §@.

Mg s (r) = Mgy (r)Mgo (1)

= exp{AD(Myn (r) — D}Yexp{A® (Mye (r) — 1)}
2 2@
= CXp{)\.(TMy(I) (r)+ TMy(z; (r)y— 1)} ,
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where A = A0 4+ AP Tt follows that S + §@ is compound Poisson distributed
with Poisson parameter A and claim size distribution function

A A
Gx)=—GVx)+=—G ).
A A
The claim size can be obtained by choosing it from the first risk with probability
A /X and from the second risk with probability A® /.

Let us now split the claim amounts into different classes. Choose some disjoint
sets Ay, Ay, ..., A, with P[Y; € UZLIA/(] = 1. Let pr = P[Y; € Ai] be the
probability that a claim is in claim size class k. We can assume that p; > 0 for all
k. We denote by N; the number of claims in claim size class k. Because the claim

amounts are independent it follows that, given N = n, the vector (Ny, Ny, ..., Ny,)
is conditionally multinomial distributed with parameters n, py, p2, ..., pu. We now
want to find the unconditioned distribution of (Ny, N,, ..., N,).Letny, no, ..., n,

be natural numbers and n = n; +n, + - - - + n,,.

P[Ny =ni, Ny =na, ..., Ny = ny,l
=]P[N1=n1,N2=n2,...,Nm=nm,N=n]
=P[N,=ni,Ny=ny,...,N,, =n,, | N =n]P[N = n]

| n mn
n! Y

) A
=y e =]

ny
_ P iy
nilno! - ony,! il

I’lk!

It follows that Ny, Na, ..., N,, are independent and that Ny is Pois(Apy) distributed.
Because the claim sizes are independent of N the risks

are compound Poisson distributed with Poisson parameter Ap; and claim size distri-
bution
P[Y, < x, Y € A(]

x(x) [Yi <x|Y € Al P, € ALl

Moreover, the sums {S;} are independent. In the special case where A, = (tx—1, ]

we get
_ G(x) = G(5-1)
Gr(x) = G =G (tr—1 = x < ).
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1.4 The Compound Mixed Poisson Model

As mentioned before it is a disadvantage of the compound Poisson model that the
distribution is always positively skewed. In practice, it also often turns out that the
model does not allow enough fluctuations. For instance, [E[N] = Var[N]. A simple
way to allow for more fluctuation is to let the parameter A be stochastic. Let H denote
the distribution function of A.

PIN = n] = E[P[N =n | A]] = ]E[i;—l:e"\] = /OO ge—‘f dH () .
. 0 .

The moments are

E[S] = E[E[S | »]] = E[Au] = E[AMu, (1.1a)
E[S?] = E[E[S? | A]] = E[Aps + A*u?] = E[A*1u? + E[Alx  (1.1b)

and

E[S*] = E[E[({S — Au} + An) | A1]
= B[’ 4+ 3E[A*uape + E[A]p; . (1.1c)

Thus the variance is
Var[S] = Var[A ] + E[A] s

and the third centralised moment becomes

E[(S — E[x]w)’] = EIA* 1w’ + 3E[A  uap + E[M]us
—3(E[A*11? + E[Au) EIAx + 2B 1’
= E[(» — E[A])?]x’® + 3Var[Alpop + E[A]s .

We can see that the coefficient of skewness can also be negative.
It remains to compute the moment generating function

Ms(r) = E[E [¢" | 2]] = Elexp{Ax(My (r) — D}] = My (My(r) = 1) (1.2)

1.5 The Compound Negative Binomial Model

Let us first consider an example of the compound mixed Poisson model. Assume
that A ~ I'(y, B). Then
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B

In this case N has a negative binomial distribution. Actuaries started using the nega-
tive binomial distribution for the number of claims a long time ago. They recognised
that a Poisson distribution rarely fits the real data. Estimating the parameters in a
negative binomial distribution yielded satisfactory results.

Let now N ~ NB(«, p). Then

E[S] = MM

and . | )
Varfs] = & p; P) 2y p_p (2 — 1?).

The moment generating function is

Ms(r) = (1 —a —pp)MY(r))a‘

The third centralised moment can be computed as

1 1 2 1 3
E[(S — E[S])’] = a(— - l)m + 3a<— - 1) patt + 2a(— . 1) R

4 P 4
Note that the compound negative binomial distribution is always positively skewed.
Thus the compound negative binomial distribution does not satisfy all the desired
properties. Nevertheless, in practice almost all risks are positively skewed.

1.6 A Note on the Individual Model

Assume that a portfolio consist of m independent possibly not identically distribut-
ed individual contracts (S”);,,. There can be at most one claim for each of the
contracts. Such a claim occurs with probability p. Its size has distribution func-
tion F) and moment generating function M (r). Let A = >/~ | p®). The moment

generating function of the aggregate claims from the portfolio is

Ms(r) =[]+ pP M) —1)).

i=1

The term p) (M D (r) — 1) is small for r not too large. Consider the logarithm
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log(Ms(r)) = Y _log(1+ pP (M (r) — 1))

i=1

~ Zm:p<f>(M<f>(r) - = /\(zm: %(M”)(r) - 1)) :
i=1 i=l

The last expression turns out to be the logarithm of the moment generating function
of a compound Poisson distribution. In fact, this derivation is the reason why the
compound Poisson model is very popular amongst actuaries.

The compound model can be used for a large, quite homogeneous model, where
the number of claims is small compared to the number of contracts. If we imagine
the possible claims from the different contracts are in an urn, and after a claim, we
draw one of these claims, then it is very unlikely that we will draw the same claim
twice.

1.7 A Note on Reinsurance

For most insurance companies the premium volume is not big enough to carry the
complete risk. This is especially the case for large claim sizes, like insurance against
damages caused by hurricanes or earthquakes. Therefore the insurers try to share
part of the risk with other companies. Sharing the risk is done via reinsurance. Let S’
denote the part of the risk taken by the insurer and S¥ the part taken by the reinsurer.
Reinsurance can act on the individual claims or it can act on the whole risk S. Let f
be an increasing function with f(0) = 0 and f(x) < x for all x > 0. A reinsurance
form acting on the individual claims is

N
S'=3" ). SR=g5—§",
i=1

The most common reinsurance forms are

e proportional reinsurance f(x) =ax, 0 <a < 1),
e excess of loss reinsurance  f(x) = min{x, M}, (M > 0).

We will consider these two reinsurance forms in the sequel. A reinsurance form
acting on the whole risk is

St = £(9), SR=g5 s,

The most common example of this reinsurance form is the

e stop loss reinsurance  f(x) = min{x, M}, (M > 0).
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1.7.1 Proportional Reinsurance

For proportional reinsurance we have S’ = &S, and thus

E[S'] = «E[S],
Var[S'] = «®Var[S],
E[(S" — E[S'D?]  E[(S — E[S])*]

(Var[ST]32 — (Var[S])*>

and
Mg (r) = E[e"*] = Mg(ar).

We can see that the coefficient of skewness does not change, but the variance is much
smaller. The following considerations also suggest that the risk has decreased. Let
the premium charged for this contract be p and assume that the insurer gets ap, the
reinsurer (1 — «) p. Let the initial capital of the company be u. The probability that
the company gets ruined after one year is

PlaS >ap+u]=P[S > p+u/a].

The effect for the insurer is thus like having a larger initial capital.

Remark 1.3 The computations for the reinsurer can be obtained by replacing o by
(1 — o). ]

1.7.2 Excess of Loss Reinsurance

Under excess of loss reinsurance we cannot give formulae of the above type for the
cumulants and the moment generating function. They all have to be computed from
the new distribution function of the claim sizes ¥/ = min{Y;, M}. An indication
that the risk has decreased for the insurer is that the claim sizes are bounded. This is
wanted especially in the case of large claims.

For the calculation of the expected value of the payments, note that P[Y,% > x] =
PlY >x+M]=1—-G(x+ M). Thus

= [C0-Gasmya= 0= 6o
0 M

In particular,

M
E[Y/] = E[Y, — Y] = / (1-G(2)) dz.
0

1
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Example 1.4 Let S be the compound Poisson model with parameter A and Pa(«, 8)

distributed claim sizes. Assume that @ > 1, i.e. that [E[Y;] < oo. Let us compute the
expected value of the outgo paid by the insurer;

M o @
E[Y) 2/0 (,3 f—x) b= aﬁ— 1 <ﬁ°‘1—1 0 +11w)a—1)
a—1 a—1
=<1_(,BfM) )a€1=(1_<ﬂ+LM) )IE[Y"]‘
For IE[S] it follows that

E[S'] = (1 _ (ﬂ fM>a_l)]E[S].

Let
N

Nf = Z Ly~ my

i=1

denote the number of claims the reinsurer has to pay for. We denote by g = IP[Y; >
M] the probability that a claim amount exceeds the level M. What is the distribution
of N®? We first note that the moment generating function of Ljy- s is ge” + 1 —gq.

(i) Let N ~ B(n, p). The moment generating function of N ¥ is
Mye(r) = (p(ge" +1—q) +1—p)" = (pge" + 1 — pq)".

Thus N® ~ B(n, pq).
(ii) Let N ~ Pois(X). The moment generating function of N ¥ is

Myr(r) = exp{A((ge” + 1 —q) — D} = exp{ig(e” — D}.

Thus N® ~ Pois(Aq).
(iii) Let N ~ NB(«, p). The moment generating function of N ¥ is

Ptqa—rq

Myr(r) = (1 - —p)ger = _q))“ _ (1 - <1p_+qpqp )er>a.

R P
Thus N NB(«, erqipq).
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1.8 Computation of the Distribution of S
in the Discrete Case

Let us consider the case where the claim sizes {Y;} have an arithmetic distribution.
We can assume that IP[Y; € IN] = 1 by choosing the monetary unit appropriately.
We define p; = IP[N = k], fir = IP[Y; = k] and g, = IP[S = k]. For simplicity let
us assume that fy = 0. Let f* =IP[Y, + Y, + - -- ¥, = k] denote the convolutions
of the claim size distribution. Note that

k—1
(n+1)
k* n — Z f;‘*nfk—i .
i=1

We get the following identities:

8o =P[§=0]=P[N =0] = po,

g =PS=nl=E[P[S=n|NI=> pf*.
k=1

We have explicit formulae for the distribution of S, but the computation of the f*’s
is messy. An easier procedure is called for. Let us now make an assumption on the
distribution of N.

Assumption 1.5 Assume that there exist real numbers a and b such that

Pr = (a + g)prfl

forr € IN'\ {0}.

Let us check the assumption for the distributions of the models we have considered
so far.

(i) Binomial B(n,p)

P memP =P —rdbp
Tl -] — p)yrtl —
Pr—1 (r—l)!(n—r+1)!p (1 p) V(l p)
___F (n+1Dp
Thus
4 n+Dp
a=——7, b = .
1—p -
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(ii) Poisson Pois(A)

Mo
Pr _ r_!e * _ A
-l IR -
Pr—1 it 2 r
Thus
a=0, b=A

(iii) Negative binomial NB(«, p)

pr ot P =D (@+r—D{-p)
T o L@tr=D a1 opy—1
Pt P =) g
a— 1D -
S+ ( )r( p) .

Thus
a=1—p, b=(—1)(1—-p).

These are in fact the only distributions satisfying the assumption. If we choose a = 0
we get by induction p, = pob” /r!, which is the Poisson distribution.

If a < 0, then because a + b/r is negative for r large enough there must be an
no € IN such that b = —any in order that p, > O for all r. Letting n = np — 1 and
p = —a(l — a) we get the binomial distribution.

Ifa > 0 we need a + b > 0 in order that p; > 0. The case a + b = 0 can
be considered as the degenerate case of a Poisson distribution with A = 0. Suppose
therefore that @ + b > 0. In particular, p, > O for all r. Let k € IN \ {0}. Then

k

k k k
err = Z(ar —I—b)pr_] :CIZ(I" — 1)pr—] + (Cl +b)2pr—l

r=1 r=1 r=1 r=1
k—1 k—1
=ay rp+@+b)y p.
r=1 r=0
This can be written as

k—1 k—1

kpe=(a—1Y rp+@+b Y pr.
r=1 r=0

Suppose a > 1. Then kp; > (a+b) po and therefore py > (a+b) py/ k. In particular,

oo o0 1
l=po=) pz@+bp) —.
r=1 r=1
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This is a contradiction. Thusa < 1. If wenowlet p =1 —aanda = a~'(a + b)
we get the negative binomial distribution.
We will use the following lemma.

Lemma 1.6 Letn > 2. Then

’

(i) ]E|:Y1

i ng
=
I
!
| I |
I
S |

.. *n __ bk x(n—1)
(ii) S = Z(d+ . )fkpnlf,_k -

115[1/1

el

(i) Note that ;""" = 0. Thus

*n : bk x(n—
- lz(a Y gt = g Yok Y

k=1
r bk - n

= pai (a+—>IP Yl_k,ZYj_r—k}
k=1 r L j=2
r bk - n

an—lZ<a+_>IP Y]—k,ZYj—r]
k=1 r L j=1
r bk - n

= pa_1 <a+—>IP Yi =k Zszr]fr*”
k=1 r L j=1

bY | « .
= po1Ela+ — Yj:rfrn
Jj=1

O

We now use the second formula to find a recursive expression for g,. We know
already that gy = po.



