

Mathematik verstehen mit fischertechnik

28 faszinierende Modelle bauen, die rechnen, zeichnen und messen

Thomas Püttmann ist außerplanmäßiger Professor für Mathematik an der Ruhr-Universität Bochum. Die Modelle in diesem Buch hat er über viele Jahre in Workshops für Schülerinnen und Schüler und in universitären Seminaren erprobt und verbessert. Gemeinsam mit Dirk Fox hat er die beiden Bücher »Technikgeschichte mit fischertechnik®« und »fischertechnik®-Roboter mit Arduino« geschrieben, die ebenfalls im dpunkt.verlag erschienen sind. Er ist verheiratet und hat vier Kinder.

Coypright und Urheberrechte:

Die durch die dpunkt.verlag GmbH vertriebenen digitalen Inhalte sind urheberrechtlich geschützt. Der Nutzer verpflichtet sich, die Urheberrechte anzuerkennen und einzuhalten. Es werden keine Urheber-, Nutzungs- und sonstigen Schutzrechte an den Inhalten auf den Nutzer übertragen. Der Nutzer ist nur berechtigt, den abgerufenen Inhalt zu eigenen Zwecken zu nutzen. Er ist nicht berechtigt, den Inhalt im Internet, in Intranets, in Extranets oder sonst wie Dritten zur Verwertung zur Verfügung zu stellen. Eine öffentliche Wiedergabe oder sonstige Weiterveröffentlichung und eine gewerbliche Vervielfältigung der Inhalte wird ausdrücklich ausgeschlossen. Der Nutzer darf Urheberrechtsvermerke, Markenzeichen und andere Rechtsvorbehalte im abgerufenen Inhalt nicht entfernen.

Thomas Püttmann

Mathematik verstehen mit fischertechnik®

28 faszinierende Modelle bauen, die rechnen, zeichnen und messen

Thomas Püttmann

thomas.puettmann@rub.de

Lektorat: Dr. Michael Barabas

Projektkoordinierung/Lektoratsassistenz: Anja Weimer Copy-Editing: Alexander Reischert, www.aluan.de Satz: Ulrich Borstelmann, www.borstelmann.de Herstellung: Stefanie Weidner, Frank Heidt Umschlaggestaltung: Helmut Kraus, www.exclam.de Druck und Bindung: Schleunungdruck GmbH, Marktheidenfeld

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de
abrufbar.

ISBN:

Print 978-3-86490-936-8 PDF 978-3-96910-914-4 ePub 978-3-96910-915-1 mobi 978-3-96910-916-8

 Auflage 2023
 Copyright © 2023 dpunkt.verlag GmbH Wieblinger Weg 17
 69123 Heidelberg

Hinweis:

Der Umwelt zuliebe verzichten wir auf die Einschweißfolie.

Schreiben Sie uns:

Falls Sie Anregungen, Wünsche und Kommentare haben, lassen Sie es uns wissen: hallo@dpunkt.de.

Die vorliegende Publikation ist urheberrechtlich geschützt. Alle Rechte vorbehalten.
Die Verwendung der Texte und Abbildungen, auch auszugsweise, ist ohne die schriftliche
Zustimmung des Verlags urheberrechtswidrig und daher strafbar. Dies gilt insbesondere für
die Vervielfältigung, Übersetzung oder die Verwendung in elektronischen Systemen.
Es wird darauf hingewiesen, dass die im Buch verwendeten Soft- und HardwareBezeichnungen sowie Markennamen und Produktbezeichnungen der jeweiligen Firmen
im Allgemeinen warenzeichen-, marken- oder patentrechtlichem Schutz unterliegen.
Dies gilt insbesondere für »fischertechnik«, eine eingetragene Marke der fischertechnik GmbH,
72178 Waldachtal. Alle Angaben und Programme in diesem Buch wurden mit größter Sorgfalt
kontrolliert. Weder Autor noch Verlag können jedoch für Schäden haftbar gemacht werden,
die in Zusammenhang mit der Verwendung dieses Buches stehen.

Inhalt

Voi	Vorwort		
Wa	s du k	prauchst x	xiv
1	Der	Zirkel	1
	1.1	Fragen und Antworten	2
		Wie benutze ich den Zirkel?	2
		Was genau ist ein Kreis?	2
		Wozu soll ich Kreise zeichnen?	3
		Was ist eine geometrische Konstruktion?	4
		Wie kann ich einen Kreis mit 5 cm Radius durch zwei Punkte	
		legen?	4
		Wie kommt hierbei Symmetrie ins Spiel?	6
		Wie kann ich durch drei Punkte einen Kreis zeichnen?	8
	1.2	Ausblick	9
	1.3	Bauanleitung	10
		Zirkel	10
		Stangenzirkel	12
2	Der	Fasskreis	15
	2.1	Fragen und Antworten	16
		Was ist ein Fasskreisbogen?	16
		Zeichnet das Modell tatsächlich einen Kreisbogen?	16
		Wie viele Fasskreisbögen gibt es?	17
		Wodurch unterscheiden sich die beiden Fasskreisbögen?	17
		Gehen die Fasskreisbögen bis zu den Punkten A und B?	17
		Was ist eine Sehne?	17
		Was ist der Sehnen-Winkel-Satz?	18
		Wie kann man den Sehnen-Winkel-Satz beweisen?	18
		Was passiert, wenn der Kreisbogen 180° oder weniger	
		umfasst?	19
		Wie kann man Fasskreisbögen mit dem Zirkel zeichnen?	19
		Kann das Modell nur Fasskreise zu 60°-Winkeln zeichnen?	20
	2.2	Bauanleitung	20

3	Der S	Sextant	23
	3.1	Fragen und Antworten	24 24 24 25 26 28 29 30 30 32 33 33 33 34 35
	3.3	Bauanleitung	36
4	Der I	Rechenfrosch	43
	4.1 4.2 4.3	Fragen und Antworten Wie bediene ich den Frosch? Wofür steht das Q nach der 12? Gibt es für den Frosch eine Vorlage? Warum kein Affe, sondern ein Frosch? Wie funktioniert der Frosch? Welche Geometrie steckt im Rechenfrosch? Kann der Frosch auch addieren, subtrahieren und dividieren? Ausblick Bauanleitung.	444 444 445 455 466 499 500
	4.5	Dadamerung	50
5	Der l	Rechenschieber	55
	5.1	Fragen und Antworten	56 56 56

		Kann ich auch größere Zahlen multiplizieren?	56
		Was ist die Fließkomma-Darstellung von Zahlen?	57
		Wie kann ich dividieren?	57
		Wie kann ich die Wurzel ziehen?	57
		Wie sieht ein kommerzieller Rechenschieber aus?	58
		Wie funktioniert ein Rechenschieber?	58
		Was sind die Potenzgesetze?	58
		Wie addiere ich zwei Zahlen mit zwei Geodreiecken?	59
		Was ist eine logarithmische Skala?	60
		Wieso heißen logarithmische Skalen nicht exponentielle Skalen?	60
		Was ist eine Oktave?	61
		Was hat unser Geld mit logarithmischen Skalen zu tun?	61
	5.2	Bauanleitung	62
		Kleiner Rechenschieber	62
		Großer Rechenschieber	63
6	Der	Sinuscomputer	65
	6.1	Fragen und Antworten	66
		Was kann ich mit dem Sinuscomputer machen?	66
		Wie bestimme ich Sinus und Cosinus eines Winkels?	66
		Wie genau ist der Sinuscomputer?	66
		Was sind eigentlich Sinus und Cosinus eines Winkels?	67
		Wie funktioniert der Sinuscomputer?	68
		Was ist eine Hypozykloide?	69
	6.2	Bauanleitung	70
		Sinuscomputer	70
		Deltoide	74
7	Das	Spiegellineal	75
	7.1	Fragen und Antworten	76
		Wozu ist das Spiegellineal gut?	76
		Wie benutze ich das Spiegellineal?	76
		Was sind Tangenten?	78
		Gibt es immer eine Tangente?	79
		Wie funktioniert das Spiegellineal?	80
		Wie sehen Tangenten an Kreisen aus?	81

		Darf eine Tangente eine Kurve nur in einem Punkt berühren?	82
		Was sind Schmiegkreise?	82
		Wie kann ich die Genauigkeit steigern?	83
		Wozu sind Tangenten an Funktionsgraphen gut?	84
		Was ist die Ableitung einer Funktion?	85
	7.2	Bauanleitung	86
8	Das	Planimeter	87
	8.1	Fragen und Antworten	88
		Was kann ich mit dem Planimeter machen?	88
		Wie ist das Planimeter aufgebaut?	88
		Wie messe ich den Flächeninhalt eines Gebiets?	88
		Wie sieht ein kommerzielles Planimeter aus?	90
		Was ist das größte technische Problem beim Planimeter?	91
		Warum sind die Messräder kommerzieller Planimeter viel	
		kleiner?	92
		Wie genau ist unser Planimeter?	92
		Was passiert, wenn ich die Randkurve gegen den	
		Uhrzeigersinn abfahre?	92
		Sind negative Flächeninhalte nicht unsinnig?	93
		Kann man Flächeninhalte auch anders messen?	94
		Wie kann man Flächeninhalte einfacher Figuren berechnen?	95
		Welchen Flächeninhalt überstreicht der Unterarm?	98
		Wie kommt man zum Flächeninhalt der Kurve?	
	8.2	Ausblick	
	8.3	Bauanleitung	101
9	Die	Schleppe 1	105
	9.1	Fragen und Antworten	106
		Was mache ich mit der Schleppe?	106
		Wie sehe ich, dass der Führungsstift mittig auf der	
		Kurve ist?	
		Was hat die Schleppe mit einem Fahrrad zu tun?	
		Wie kommen Tangenten ins Spiel?	
		Wie kann ich mit der Schleppe Flächeninhalte messen?	110
		Warum funktioniert diese Methode?	111

		Wie stelle ich die Schleppe möglichst gut ein?	. 113
		Wer erfand die Schleppe?	. 115
		Wieso zeichnet die Schleppe solch glatte Kurven?	. 115
		Wie kann ich mit der Schleppe grafisch integrieren?	. 115
	9.2	Ausblick	. 117
	9.3	Bauanleitung	. 118
10	Der l	Kompasswagen	121
	10.1	Fragen und Antworten	. 122
		Was macht der Kompasswagen?	. 122
		Wer erfand den Kompasswagen?	
		Ist der Wagen praktisch als Kompass zu gebrauchen?	. 122
		Welcher Name wäre besser geeignet?	. 123
		Wie dreht sich der Kompasswagen während der Fahrt?	. 123
		Wie funktioniert der Kompasswagen?	. 125
		Wie groß muss der Abstand der Räder sein?	. 126
		Kann der Wagen auch auf einer Kugel	
		parallelverschieben?	. 128
		Wovon hängt die Parallelverschiebung ab?	. 130
		Kann ich Flächeninhalte auf der Kugel mit dem	
		Kompasswagen messen?	
	10.2	Ausblick	
	10.3	Bauanleitung	. 134
11	Der S	Selbstenttwister	141
	11.1	Fragen und Antworten	. 142
		Selbstenttwistung – was soll das sein?	. 142
		Wie ist der Selbstenttwister aufgebaut?	. 142
		Kann sich die Lampe auch in der Mitte drehen?	. 143
		Wie funktioniert die Selbstenttwistung?	. 144
		Kann man den Effekt noch anders verdeutlichen?	. 146
		Was ist der Dirac-Belt-Trick?	. 147
		Was hat der Selbstenttwister mit dem Gürteltrick zu tun?	. 148
		Wer erfand den Selbstenttwister?	. 149
		Wird die Selbstenttwistung in der Praxis eingesetzt?	. 149
		Was liegt dem Effekt mathematisch zugrunde?	. 149

		Wie beschreibt man Lage und Ausrichtung eines Gegenstands?	1.40
		Was ist die Drehgruppe SO(3)?	
		Wie kann man das Drehen um 720° formal beschreiben?	
		Wie wird das Drehen um 720° mathematisch aufgelöst?	
		Kann man mit Wegen rechnen?	
		Wieso gibt es nur zwei Sorten von Wegen?	
		Was ist der Twist-Bogen?	
		Wie führt der Twist-Bogen zu Formeln?	
	11.2	Ausblick	
	11.3	Bauanleitung	
		Selbstenttwister	
		Mit LEDs	. 167
		Gebogener Dirac-Gürtel	. 168
12	Die p	olatonischen Körper	171
	12.1	Fragen und Antworten	. 172
		Welche platonischen Körper gibt es?	. 172
		Was ist ein platonischer Körper?	. 172
		Welche Drehsymmetrie besitzen die platonischen Körper?.	. 173
		Was ist das Besondere an diesen Drehsymmetrien?	. 174
		Gibt es auch Spiegelsymmetrien?	. 175
		Wie kann ich die platonischen Körper aus fischertechnik	
		bauen?	
		Wie baue ich Polyeder aus gleichseitigen Dreiecken?	. 178
		Was entsteht, wenn in jeder Ecke fünf Dreiecke zusammentreffen?	170
		Was entsteht, wenn in jeder Ecke vier Dreiecke	. 170
		zusammentreffen?	. 180
		Was entsteht, wenn in jeder Ecke drei Dreiecke	
		zusammentreffen?	. 181
		Können auch mehr als fünf Dreiecke in einer Ecke zusammentreffen?	. 182
		Wie baue ich Polyeder aus Quadraten?	. 184
		Was entsteht, wenn in jeder Ecke drei Quadrate	
		zusammentreffen?	. 184
		Können mehr als drei Quadrate in einer Ecke zusammentreffen?	. 185

		Wie baue ich Polyeder aus regelmäßigen Fünfecken?	. 185
		Was entsteht, wenn in jeder Ecke drei Fünfecke zusammentreffen?	186
		Können mehr als drei regelmäßige Fünfecke in einer Ecke zusammentreffen?	
		Können andere regelmäßige n-Ecke in einer Ecke zusammentreffen?	. 187
		Kann ich spannende nichtplatonische Körper bauen?	. 188
		Was ist die Eulersche Polyederformel?	. 188
		Gilt die Formel auch für nichtkonvexe Polyeder?	. 189
	12.2	Ausblick	. 190
	12.3	Bauanleitungen	. 190
		Tetraeder	
		Hexaeder (Würfel)	
		Oktaeder	
		Dodekaeder	
		Ikosaeder	. 192
13	Der /	Abakus	193
	13.1	Fragen und Antworten	. 194
		Was macht der Abakus?	. 194
		Wozu sind die Muster gut?	
		Wozu ist die Teilung der Stange gut?	
		Wie bediene ich den Abakus?	
		Was haben die Muster mit römischen Zahlen zu tun?	
		Wie addiere ich mit dem Abakus?	
		Ist das immer so einfach?	
		Gibt es auch einen »großen Freund«?	
		Kann ich auch subtrahieren, multiplizieren und dividieren?.	
		Gibt es auch andere Abakus-Varianten?	
	13.2	Ausblick	
	13.3	Bauanleitung	. 200
14	Die k	cleine Rechenmaschine	203
	14.1	Fragen und Antworten	. 204
	14.1	Fragen und Antworten	. 204

		Wie rechne ich 83 – 56?	204
		Wie rechne ich 7 · 8?	205
		Wie rechne ich 68 : 7?	207
	14.2	Bauanleitung	208
15	Die I	Multiplikationswalzen	217
	15.1	Fragen und Antworten	218
		Was kann ich mit den Multiplikationswalzen machen?	
		Wie kann ich 7 · 569 berechnen?	
		Ist das immer so einfach?	
		Wie funktionieren die Multiplikationswalzen?	
		Wer hat die Multiplikationswalzen erfunden?	
		Was sind die Napierschen Rechenstäbchen?	
		Welchen Vorteil bieten die Walzen gegenüber den	
		Stäbchen?	222
		Woher stammt die diagonale Unterteilung auf den	
		Stäbchen?	
	15.2	Ausblick	
	15.3	Bauanleitung	224
16	Der /	Analogzähler	229
	16.1	Fragen und Antworten	230
		Was macht der Analogzähler?	230
		Wie lese ich die Anzeige ab?	230
		Wie funktioniert der Analogzähler?	231
		Wie stelle ich den Zähler ein?	232
		Wozu ist die kontinuierliche Zählung gut?	233
		Ist die Bezeichnung »Analogzähler« passend?	233
	16.2	Bauanleitung	234
17	Die F	Rechenmaschine	239
	17.1	Fragen und Antworten	240
	.,	Wie ist die Rechenmaschine aufgebaut?	
		Wie kann ich schnell etwas Spannendes mit der Maschine	0
			241
		Was kann ich mit der Rechenmaschine alles berechnen? .	242
		Kann ich mit mehr als drei Stellen rechnen?	243

		Muss ich 43-mal drehen, wenn ich 43 · 21 berechnen möchte?	243
		Wie funktioniert das Rechenwerk?	
		Wer hat die fließende Zehnerübertragung erfunden?	
		Was ist so toll an der fließenden Zehnerübertragung?	
		Was sind die Nachteile der fließenden	,
		Zehnerübertragung?	247
		Wozu ist die Aufteilung in Rechenwerk und	
		Eingaberegister gut?	
		Was sind Sprossenräder und Staffelwalzen?	247
		Warum hat Leibniz keine erfolgreiche Rechenmaschine	
		gebaut?	
	17.2	Ausblick	
	17.3	Bauanleitung	248
18	Der	Binärrechner	261
	18.1	Fragen und Antworten	262
		Was kann ich mit dem Binärrechner machen?	262
		Wie kann ich mit dem Binärrechner zählen?	262
		Wie funktioniert das Zählen genau?	264
		Funktionieren die Umwandlungen auch bei größeren	
		Zahlen?	265
		Was passiert bei der 16. Kugel?	266
		Wie kann ich mit dem Binärrechner addieren?	
		Was passiert, wenn das Ergebnis größer als 15 ist?	268
		Was ist ein Bit?	
		Wie funktioniert das Addieren genau?	269
		In welcher Reihenfolge stoße ich die Kugeln von den	
		Sockeln?	
		Kann ich auch subtrahieren?	
		Wie funktioniert das Subtrahieren?	
		Kann der Binärrechner auch mit negativen Zahlen arbeiten?	
		Was ist mit Multiplikation und Division?	
		Wer hat das binäre Rechnen erfunden?	
		Hat unser Binärrechner eine Vorlage?	
		Warum rechnen elektronische Computer binär?	
		Warum rechnen mechanische Rechenmaschinen dezimal?	
	18.2	Bauanleitung	276

19	Der l	DA-Wandler	281
	19.1	Fragen und Antworten	. 282
		Wofür steht die Bezeichnung »DA-Wandler«?	. 282
		Was kann unser DA-Wandler?	. 282
		Wie funktioniert unser DA-Wandler?	
		Was ist ein gewichtetes Mittel?	. 284
		Kann ich mehr als zwei Bit wandeln?	
		Wo werden DA-Wandler eingesetzt?	
		Wie sind elektronische DA-Wandler aufgebaut?	
		Gibt es auch AD-Wandler?	
	19.2	Ausblick	
	19.3	Bauanleitung	. 286
20	Der S	Seilcomputer	289
	20.1	Fragen und Antworten	. 290
		Wozu ist der Seilcomputer gut?	. 290
		Wie ist der Seilcomputer aufgebaut?	. 290
		Wie löse ich ein Gleichungssystem mit dem Seilcomputer?	. 291
		Gibt es ein Vorbild für den Seilcomputer?	. 293
		Kann unser Seilcomputer auch größere Systeme lösen?	. 295
		Was mache ich, wenn meine Koeffizienten nicht passen?	. 295
		Warum sind lineare Gleichungssysteme wichtig?	. 296
		Wie funktioniert der Seilcomputer?	. 297
		Warum ist der Zeiger im Seilcomputer vertikal und nicht	200
		horizontal?	
		Wo muss ich auf die Wippen drücken?	
		Was passiert, wenn ein Gleichungssystem unlösbar ist?	
		Was passiert, wenn es unendlich viele Lösungen gibt?	
		Warum sind permanent stramme Seile nicht gut?	
	20.2	Ausblick	
	20.2	Bauanleitung	
	20.5	Die Wippen	
		Das Unterteil	
		Das Oberteil	
		Die Seile	
		Zusammenbau und Einstellung der Seillängen	
		Lusammenbau und Linstellung der Sellangen	. 514

21	Der	xy-Schreiber	317
	21.1	Fragen und Antworten	318
		Wie kann ich den xy-Schreiber selber steuern?	318
		Was zeichne ich zuerst?	318
		Welche Kurven kann der xy-Schreiber zeichnen?	319
		Muss der Schreiber in der Ecke eines Tisches stehen?	319
		Kann ich auch etwas Nichtmathematisches mit dem	240
	24.2	Schreiber machen?	
	21.2	Bauanleitung	
		Das Gestell	
		Der Wagen	
		Der Schlitten	
		Die Gewichte und die Seilführung	
		Variante ohne Laufschienen	330
22	Der	Geradenzeichner	333
	22.1	Fragen und Antworten	334
		Warum soll ich Geraden mit dem xy-Schreiber zeichnen?	334
		Was ist die Steigung einer Geraden?	334
		Wie kommt die Gerade mechanisch zustande?	335
		Was hat das Ganze mit Funktionen zu tun?	336
		Wie kann ich andere Geraden zeichnen lassen?	336
	22.2	Bauanleitung	336
23	Der :	Synthesizer	339
	23.1	Fragen und Antworten	340
		Was kann der Synthesizer?	
		Wie ist der Synthesizer aufgebaut?	
		Wie lege ich mit dem Synthesizer los?	
		Was zeichne ich zuerst?	
		Was zeichne ich als Zweites?	343
		Welche Funktionen kann der Synthesizer allgemein	
		zeichnen?	
		Welche Einheiten verwende ich?	
		Was ist die wichtigste Komponente des Synthesizers?	
		Wie funktioniert ein Sinusgenerator?	345

		Wie werden die beiden Sinusfunktionen überlagert?	346
		Was ist in Abbildung 23–2 dargestellt?	346
		Kann ich mehr als zwei Sinusfunktionen überlagern?	347
		Welcher Zusammenhang besteht zum Musikinstrument?	347
		Woher stammt das Funktionsprinzip des Synthesizers?	347
	23.2	Ausblick	
	23.3	Bauanleitung	349
24	Der I	Ellipsenzeichner	357
	24.1	Fragen und Antworten	358
		Was ist eine Ellipse?	
		Wie ist der Ellipsenzeichner aufgebaut?	
		Wie kann ich eine Ellipse zeichnen?	
		Wo liegen die Achsen dieser Ellipse?	
		Wie kann ich die gezeichnete Ellipse mathematisch	
		beschreiben?	361
		Kann ich die Ellipse ohne Sinus und Cosinus beschreiben?	362
		Was passiert, wenn die Rotoren nicht 90° gegeneinander	
		verdreht sind?	
		Was sind die Scheitelpunkte einer Ellipse?	
		Was ist ein Zylinderschnitt?	
		Wie konstruiert ein Gärtner eine Ellipse?	
		Wie passen die Konstruktionen zusammen?	367
		Was sind die Dandelinschen Kugeln?	368
		Was ist ein Kegelschnitt?	370
		Warum heißen die Brennpunkte Brennpunkte?	
	24.2	Ausblick	373
	24.3	Bauanleitung	374
25	Der I	Harmonograph	381
	25.1	Fragen und Antworten	382
		Was kann ich mit dem Harmonographen machen?	382
		Wie zeichne ich Lissajous-Figuren mit dem	
		Harmonographen?	
		Welche weiteren Lissajous-Figuren kann ich zeichnen?	
		Kann ich der Figur das Frequenzverhältnis ansehen?	
		Was sind Multiplizitäten?	385

		Wie hat Lissajous die Kurven untersucht?	385			
		gemein?	387			
		Wie kann ich Lissajous-Figuren mathematisch beschreiben?				
	25.2	Ausblick	389			
	25.3	Bauanleitung	389			
26	Der Isograph 39					
	26.1	Fragen und Antworten	392			
		Was ist ein Isograph?	392			
		Was kann unser Isograph?	393			
		Wie zeichne ich die Kurven mit dem Isographen?	394			
		Warum steht ein z in den Gleichungen und kein x?	395			
		Was sind komplexe Zahlen?	395			
		Wie addiere ich komplexe Zahlen?	396			
		Wie multipliziere ich komplexe Zahlen alternativ?	397			
		Was ist die Polardarstellung einer komplexen Zahl?	398			
		Welche Kurven zeichnet der Isograph?	398			
		Wie löse ich eine Gleichung mit dem Isographen?	399			
		Was sagt der Fundamentalsatz der Algebra?	404			
		Woran erkenne ich eine doppelte Nullstelle?	404			
		Was genau ist die Umlaufzahl?	405			
		Wie kann ich die Umlaufzahlen schnell bestimmen?	405			
		Was nutzt mir die Umlaufzahl?	406			
		Warum zeichnen? Gibt es keine Lösungsformel?	406			
	26.2	Ausblick	407			
	26.3	Bauanleitung	408			
		Erste Variante	408			
		Zweite Variante	409			
27	Der l	kgV-Kurbler 4	111			
	27.1	Fragen und Antworten	412			
		Wie bediene ich den kgV-Kurbler?				
		Was ist das kgV?				
		Wie funktioniert der kgV-Kurbler?				
		Wie knapp verpassen sich die Raupenbeläge				
		zwischendurch?	416			

		Was ist der ggT?	417
		Was passiert, wenn der ggT = 1 ist?	417
		Was haben kgV und ggT miteinander zu tun?	418
		Wie kann ich den ggT zweier Zahlen berechnen?	420
		Wann verpassen sich die Raupenbeläge am knappsten?	421
		Wie wende ich kgV und ggT in der Bruchrechnung an?	421
		Welche Anwendungen des kgV gibt es?	422
	27.2	Bauanleitung	423
28	Der I	Faktorisierer	429
	28.1	Fragen und Antworten	430
		Wozu ist der Faktorisierer gut?	
		Gibt es ein Vorbild für den Faktorisierer?	
		Warum gibt es zwei Varianten des Faktorisierers?	432
		Wie bediene ich die kleine Variante?	
		Was sind die binomischen Formeln?	435
		Was hat das Faktorisieren mit Quadratzahlen zu tun?	435
		Was ist der Vorteil der Quadratzahlen?	436
		Steckt im Faktorisierer das Fermat-Verfahren?	437
		Wie schließt der Faktorisierer aus, dass eine Zahl eine	
		Quadratzahl ist?	
		Was haben die Ketten mit Teilen mit Rest zu tun?	
		Was sind die quadratischen Reste im 28er-System?	
		Auf welche Kettenglieder kommen Raupenbeläge?	
		Wie spielen die Ketten zusammen?	
		Bis zu welchem Zählerstand muss ich höchstens kurbeln?.	
		Was ist Parallelisierung?	
		Wie oft liefert der Faktorisierer Fake-Kandidaten?	443
		Kann ich beim großen Faktorisierer weitere Ketten	112
		ergänzen?	
	28.2		
	28.3	Ausblick	
	20.3	Kleine Variante	
		Programmierung der kleinen Variante	
		Große Variante	
		Motor und Elektronik	
		Programmierung der großen Variante	
		riogrammerung der groben variante	437

Inhaltsverzeichnis

Anhang A		
Die Namen der Einzelteile	463	
Anhang B	469	
Bildnachweise	469	

Vorwort

Liebe Leserin, lieber Leser,

herzlich willkommen in der Welt der mathematischen Modelle aus fischertechnik!

Dieses Buch stellt dir in 28 Kapiteln ganz verschiedene mathematische Instrumente, Apparate und Gegenstände vor und lädt dich zum Bauen und Experimentieren ein.

Natürlich soll dir das Bauen und Experimentieren in erster Linie Spaß machen. Auch wenn du eigentlich nur an fischertechnik interessiert bist und mit Mathematik nicht viel am Hut hast, wirst du hoffentlich einige Modelle finden, die dein Interesse wecken.

Das Ziel dieses Buchs ist es natürlich auch, Mathematik zu vermitteln. Zunächst einmal ohne viele Worte, sondern durch Hand und Auge in den Kopf. Hast du ein Modell nach der Bauanleitung am Ende eines Kapitels zusammengebaut, so findest du am Anfang des Kapitels meist direkt eine Bedienungsanleitung. Damit kannst du loslegen, d.h. mit den Modellen zeichnen, messen, rechnen. Dabei werden sich automatisch einige Fragen sowie viele kleinere oder größere Aha-Effekte ergeben.

Erst danach erkläre ich den mathematischen Hintergrund und gebe dir weitere Informationen. Durch die Strukturierung in Fragen und Antworten kannst du dabei das herauspicken, was dich am meisten interessiert, und das überspringen, was dir noch zu schwierig erscheint.

Einige der Apparate und Objekte kennst du bestimmt, von anderen hast du vielleicht schon einmal gehört. Ich konnte allerdings auch einige übersehene Schätze bergen: Die Schleppe, der Selbstenttwister, der Seilcomputer, der Isograph und der Faktorisierer haben aus unterschiedlichen Gründen nie einen größeren Bekanntheitsgrad erreicht. Ich stelle sie in diesem Buch detailliert vor und hoffe, dass sie als Lernobjekte einen bleibenden Wert haben werden.

Besonders wichtig ist mir, dass alle Modelle tatsächlich funktionieren. Einige haben sogar einen hohen Gebrauchswert. Ich selbst verwende keinen anderen Zirkel mehr und nutze gerne meine Schleppe, wenn ich gelegentlich einen Flächeninhalt messe, oder meinen Sextanten bei Himmelsbeobachtungen. Einer meiner Söhne hat wochenlang seine Grundschulrechenaufgaben mit den Multiplikationswalzen durchgeführt.

Mathematik durch Modelle und Exponate zu vermitteln ist nicht neu. Bahnbrechend in den letzten Jahrzehnten war die Gründung des mathematischen Mitmachmuseums *Mathematikum* in Gießen durch Albrecht Beutelspacher im Jahre 2002, in dessen Folge weltweit eine ganze Reihe ähnlicher Institutionen entstanden ist. Ein Besuch des Mathematikums lohnt sich auf jeden Fall!

Das gilt auch für viele andere Museen. Im *Arithmeum* in Bonn und im *Heinz-Nixdorff-MuseumsForum* in Paderborn zum Beispiel findest du neben phänomenalen Sammlungen von Rechenhilfsmitteln, Rechenmaschinen und Computern schöne und lehrreiche Exponate zum Ausprobieren.

Auch an einigen Universitäten sind mathematische Modellsammlungen in den letzten Jahren wieder liebevoll entstaubt und ergänzt worden. Eine der ersten solcher Sammlungen stammte von dem bedeutenden Mathematiker *Felix Klein* (1845–1925), der sich entschieden für den Einsatz von Modellen in der Lehre einsetzte. Von ihm stammt der Satz:

»Wie heute, so war auch damals der Zweck des Modells, nicht etwa Schwäche der Anschauung auszugleichen, sondern eine lebendige, deutliche Anschauung zu entwickeln, ein Ziel, das vor allem durch das Selbstanfertigen von Modellen am besten erreicht wird.«

Durch das »Selbstanfertigen« lernst du die Modelle in allen Details kennen und begreifst, wie die einzelnen Einheiten zusammenspielen und was dabei wesentlich ist. Oft verstehst du genau dadurch auch die Feinheiten eines mathematischen Konzepts.

Damit die komplexeren Modelle auch funktionieren, musst du beim Zusammenbau zwangsläufig sehr gut mitdenken. Daher präsentiere ich dir die Bauanleitungen in Form von über 600 Fotos, die das Verständnis für die Funktionseinheiten unterstützen.

Das Zusammenbauen und Zum-Laufen-Bringen der komplexeren Modelle schult dein Durchhaltevermögen und deine Frustrationstoleranz – beides Eigenschaften, die in einem naturwissenschaftlichen oder ingenieurwissenschaftlichen Studium, einem technischen Beruf oder einer handwerklichen Ausbildung sehr hilfreich sein können.

Die Modelle in diesem Buch hätte ich so nicht bauen können ohne die vielen Tricks und Kniffe, die ich auf Ausstellungen, in der ft:pedia, im Clubblatt des fischertechnikclub Niederlande, im Bilderpool der ftcommunity und in persönlichen Gesprächen von anderen fischertechnik-Begeisterten gelernt habe. Dafür möchte ich mich herzlich bedanken!

Viele Modelle können lehrplankonform im Schulunterricht eingesetzt werden. Ich selbst habe sie in mehr als 30 Workshops für Schülerinnen und Schüler erprobt und verbessert. Oft haben nur kleine Änderungen an den Modellen für einen deutlich reibungsloseren Ablauf der Lehreinheiten gesorgt. Mein Dank gilt hier den Lehrerinnen und Lehrern der Schulklassen für die gute Zusammenarbeit und Raphaela Meißner und Klaus Trimborn vom Bochumer zdi-Netzwerk IST.bochum für die Koordination und Förderung.

Vor diesem Buch habe ich zusammen mit Dirk Fox die beiden Bücher Technikgeschichte mit fischertechnik® und fischertechnik®-Roboter mit Arduino geschrieben, die ebenfalls im dpunkt.verlag erschienen sind. Durch die Zusammenarbeit mit Dirk habe ich vieles gelernt, das in das aktuelle Buch eingeflossen ist. Auch dafür sage ich gerne danke!

Abschließend möchte ich mich noch beim freundlichen Team vom dpunkt.verlag für die konstruktive Zusammenarbeit bedanken und bei meiner Familie für die Unterstützung.

Bochum, 6. Juli 2022

Thomas Püttmann

Was du brauchst

Zuerst einmal brauchst du natürlich fischertechnik. Die benötigten Teile für jedes Modell findest du in den Teilelisten auf der Webseite zum Buch unter:

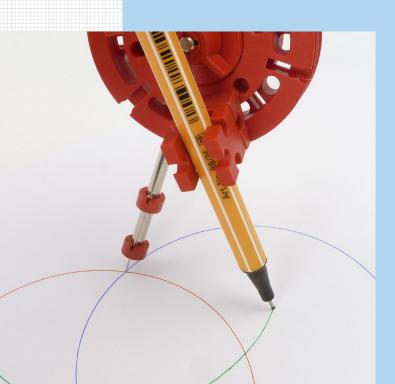
http://mathematik-mit-fischertechnik.de

Falls du fischertechnik-Neuling bist oder zu wenige Teile besitzt, stelle ich dir auf dieser Internetseite auch Möglichkeiten vor, wie du an die Teile kommen kannst.

Viele Instrumente und Apparate verfügen über Skalen oder Beschriftungen. Die dafür benötigte Datei zum Ausdrucken findest du unter:

http://mathematik-mit-fischertechnik.de/Druckmaterial.pdf

Darüber hinaus brauchst du:


- Stabilo-Fineliner in verschiedenen Farben (Kapitel 1, 2, 9, 21–26)
- eine Stecknadel (Kapitel 1)
- Leinen- oder Ramiezwirn (Kapitel 20–26)
- doppelseitiges transparentes Klebeband (Kapitel 3, 6, 8, 14, 15, 16, 18, 19, 20, 27, 28)
- bedruckbare Overhead-Folie (Kapitel 6, 10)

Die Stabilo-Fineliner kannst du in jedem Schreibwarengeschäft bekommen, die Stecknadel und den Leinenzwirn in fast jeder Kurzwarenabteilung. Als doppelseitiges Klebeband kann ich das Klebeband Knorr prandell 217901105 sehr empfehlen, das du im Online-Versandhandel beziehen kannst. Die Breite von 15 mm passt genau zum fischertechnik-System. Es eignet sich hervorragend zum Anbringen der Skalen und Beschriftungen.

Der Zirkel

Du möchtest Kreise in leuchtenden Farben statt im matten Grau der Zirkelminen? Dann bau dir diesen präzisen Zirkel aus fischertechnik. Ob bei Konstruktionen im Unterricht oder beim Zeichnen und Basteln zuhause, überall unterstützen die Farben deine Ideen und deine Kreativität.

- Anzahl der Teile: 19 (Zirkel)
- Größte Schwierigkeit: Ausrichten der Stecknadel
- Bauzeit: 10 min
- Lehrplanbezug: Kreise und ihre Eigenschaften, Konstruktionen mit Zirkel und Lineal

1.1 Fragen und Antworten

Wie benutze ich den Zirkel?

Du stellst den gewünschten Radius des Kreises ein, indem du die beiden Drehscheiben gegeneinander verdrehst. Der Radius ist der Abstand zwischen der Spitze der Stecknadel und der Spitze des Stiftes. Mit der Stecknadel stichst du in einen Punkt auf dem Blatt Papier, setzt den Stift auf und drehst ihn ohne Druck am Stiftende um den Einstichpunkt.

Abb. 1-1: Der Zirkel im Einsatz

Was genau ist ein Kreis?

Ein Kreis mit Mittelpunkt M und Radius r besteht aus allen Punkten, die von M die Entfernung r besitzen. Genau dieses mathematische Konzept setzt der Zirkel mechanisch um. Allerdings etwas indirekt: Du stellst den Radius (einen Abstand) über einen Winkel ein. Direkter ist es beim Stangenzirkel. Bei ihm stellst du die Entfernung des Stiftes zum Mittelpunkt direkt durch Verschieben ein. Ein Stangenzirkel ist für große Radien oder für den Einsatz von Schneidwerkzeugen sehr gut geeignet. Der Stift bzw. das Werkzeug steht nämlich stets senkrecht auf dem Untergrund.

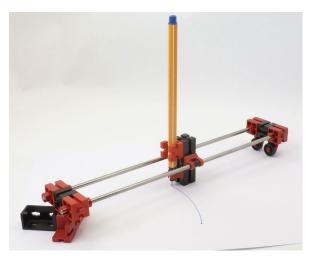


Abb. 1–2: Der Stangenzirkel

Wozu soll ich Kreise zeichnen?

Zunächst, weil es Spaß macht. Probiere doch einmal Folgendes aus: Du zeichnest einen Kreis. Ohne den Radius zu verändern, stichst du die Nadel danach in einen Punkt der Kreislinie und zeichnest einen weiteren Kreis. Die beiden Kreise schneiden sich in zwei Punkten. Um diese Punkte zeichnest du wieder zwei Kreise. Mit weiteren Kreisen um die Schnittpunkte kannst du die Zeichnung zu einer wunderschönen Rosette vervollständigen. Ist es nicht faszinierend, mit welcher Präzision sich mehrere Kreislinien in einem Punkt schneiden?

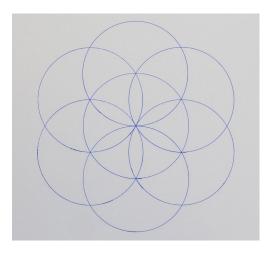


Abb. 1-3: Eine Rosette - mit unserem Zirkel gezeichnet

Kreise zu zeichnen, ist natürlich auch nützlich. Beim Basteln aller möglichen Gegenstände aus Papier, Karton oder Holz kannst du einen Zirkel häufig sehr gut gebrauchen.

Schließlich ist ein Zirkel neben dem Geodreieck das wichtigste Werkzeug im Geometrieunterricht. Es gibt spannende Konstruktionen, die leider heutzutage in der Schule oft viel zu kurz kommen. Dabei gibt es nichts Besseres, um mathematisches Denken zu erlernen.

Was ist eine geometrische Konstruktion?

Eine geometrische Konstruktion ist wie ein Krimi. Du bist der Detektiv. Du musst beobachten, Fragen stellen, vermuten und diese Vermutungen entweder als falsch erkennen oder durch Kombinieren beweisen. Immer wieder betreten neue Figuren die Bühne und du musst einschätzen, ob sie für deinen Fall wichtig oder unwichtig sind und welche Rolle sie spielen. Du musst dich in Beziehungsgeflechte eindenken. Anders als im Krimi geht es allerdings nie um Missetaten oder Schlechtigkeiten, sondern immer um positive Eigenschaften. Außerdem ist es vollkommen ungefährlich. Hast du den Fall am Ende gelöst, ist das ein erhebendes Gefühl. Viel stärker, als wenn du ein Puzzle mit 1000 Teilen zusammengesetzt hast!

Ich zeige dir ein paar einfache Beispiele. Am besten nimmst du dir deinen Zirkel, ein Lineal sowie ein Blatt Papier und konstruierst einfach mit.

Wie kann ich einen Kreis mit 5 cm Radius durch zwei Punkte legen?

Auf das Blatt Papier zeichnest du zwei Punkte und nennst sie *A* und *B*. Wie kannst du einen Kreis zeichnen, der durch die beiden Punkte verläuft und den Radius 5 cm hat?

Abb. 1–4: Wie zeichnet man einen Kreis mit 5 cm Radius durch A und B?

Vielleicht weißt du zunächst nicht, wie du anfangen sollst. Dann versuche herauszufinden, was genau du nicht weißt. Hier ist es recht einfach: Du weißt nicht, wo du deinen Zirkel einstechen sollst.

Wenn man keine Idee hat, sollte man deswegen nicht in Untätigkeit verfallen. Wie im Sport ist die Bewegung in der Mathematik das Wichtigste. Spiele ein bisschen mit dem herum, was in der Aufgabe steht. Wenn dir nichts

anderes direkt einfällt, zeichne doch einfach Kreise mit einem Radius von 5 cm um die Punkte A und B. Es sind ja bis jetzt keine anderen Punkte da!

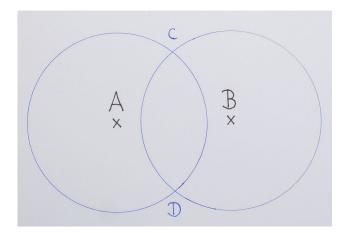


Abb. 1–5: Kreise mit einem Radius von 5cm um die Punkte A und B

Vermutlich schneiden sich deine beiden Kreise in zwei Punkten. Nenne diese Punkte C und D. Das sind neue Mittelpunkte für deinen Zirkel! Stich gleich in diese Punkte ein und zeichne zwei weitere Kreise mit einem Radius von 5 cm. Diese Kreise verlaufen durch die Punkte A und B. Wie aus dem Nichts ist dein Problem gelöst! Und du hast nicht nur *eine* Lösung für dein Problem gefunden, sondern gleich *zwei*.

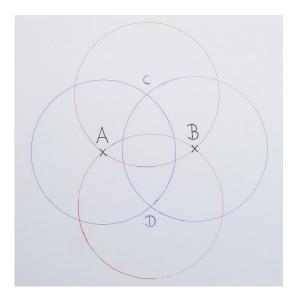


Abb. 1-6: Die Kreise mit 5cm Radius um C und D verlaufen durch A und B.

Warum funktioniert diese Konstruktion nun? Der Punkt C liegt auf dem Kreis um A mit Radius 5 cm und auf dem Kreis um B mit Radius 5 cm. Er ist also von beiden Punkten 5 cm entfernt. Wenn wir nun einen Kreis mit einem Radius von 5 cm um C schlagen, so muss dieser durch die Punkte A und B gehen. Ebenso der Kreis mit einem Radius von 5 cm um D.

Was aber, wenn sich die beiden ursprünglichen Kreise um *A* und *B* in Abbildung 1–5 gar nicht schneiden? Das könnte nur dann passieren, wenn *A* und *B* weiter als 10 cm voneinander entfernt sind. In diesem Fall gibt es keinen Kreis mit Radius 5 cm durch *A* und *B*.

Wie kommt hierbei Symmetrie ins Spiel?

Zeichne die Gerade durch C und D.

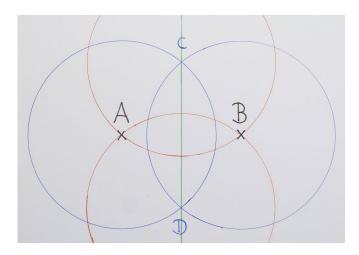


Abb. 1-7: Die Gerade durch die Punkte C und D

Falte die linke Hälfte des Papiers auf die rechte Hälfte sorgfältig entlang dieser grünen Geraden. Was stellst du fest?

Genau: Der Punkt *A* landet auf dem Punkt *B*, die beiden blauen Kreise landen aufeinander, die beiden roten jeder auf sich. Alles, was du gezeichnet hast, ist symmetrisch zur grünen Geraden. Warum ist das so?

Du kannst sagen, das sei offensichtlich. Aber das ist kein Beweis. Ein stichhaltiges Argument anzugeben, ist am Anfang nicht leicht. Es wird aber leichter mit jeder Konstruktion, die du gesehen hast, und mit jeder Minute, die du in solche Probleme investierst.

Der entscheidende Punkt ist, dass die Punkte C und D auf dem Falz liegen. Um das zu verstehen, falte das Blatt auseinander, drehe es auf die Rückseite, suche die Einstichstellen von C und D, stich dort noch einmal mit dem Zir-