

Detlef Ridder

3D-Konstruktionen mit Autodesk Inventor 2020 und Inventor LT 2020

Der umfassende Praxiseinstieg Mit Übungsbeispielen, Aufgaben & Testfragen

Hinweis des Verlages zum Urheberrecht und Digitalen Rechtemanagement (DRM)

Der Verlag räumt Ihnen mit dem Kauf des ebooks das Recht ein, die Inhalte im Rahmen des geltenden Urheberrechts zu nutzen. Dieses Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und Einspeicherung und Verarbeitung in elektronischen Systemen.

Der Verlag schützt seine ebooks vor Missbrauch des Urheberrechts durch ein digitales Rechtemanagement. Bei Kauf im Webshop des Verlages werden die ebooks mit einem nicht sichtbaren digitalen Wasserzeichen individuell pro Nutzer signiert.

Bei Kauf in anderen ebook-Webshops erfolgt die Signatur durch die Shopbetreiber. Angaben zu diesem DRM finden Sie auf den Seiten der jeweiligen Anbieter.

Detlef Ridder

3D-Konstruktionen mit Autodesk Inventor 2020 und Inventor LT 2020

Der umfassende Praxiseinstieg

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN 978-3-7475-0081-1 1. Auflage 2019

www.mitp.de E-Mail: mitp-verlag@sigloch.de Telefon: +49 7953 / 7189 - 079 Telefax: +49 7953 / 7189 - 082

© 2019 mitp Verlags GmbH & Co. KG, Frechen

Dieses Werk, einschließlich aller seiner Teile, ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Lektorat: Lisa Kresse Sprachkorrektorat: Petra Heubach-Erdmann Coverbild: © electriceye / stock.adobe.com Satz: III-satz, Husby, www.drei-satz.de

Inhaltsverzeichnis

	Einleitung	15
I	Vorüberlegungen zu einfachen 3D-Konstruktionen	19
I.I	Die Phasen der Inventorkonstruktion	19
1.2	Wie entsteht ein 3D-Modell?	23
	1.2.1 Grundkörper	23
	1.2.2 Bewegungskörper	25
	1.2.3 Erstellung aus Flächen durch Verdicken	34
	1.2.4 Erstellung aus geschlossenem Flächenverbund	34
	1.2.5 Erstellung aus Freiform-Geometrie	35
1.3	Analyse der Aufgabe vor der Konstruktion	36
-	1.3.1 Modellierung aus Grundkörpern und	
	Bewegungskörpern.	37
	1.3.2 Modell aus zwei Extrusionen.	38
	I.3.3 Aus drei 2D-Darstellungen (Dreitafelbild)	40
I.4	Ergänzungen zum Volumenkörper: Features und	
•	Nachbearbeitungen	43
1.5	Die Bottom-Up- und Top-Down-Methoden	45
	1.5.1 Bottom-Up	45
	1.5.2 Top-Down	46
1.6	Übungsfragen	47
2	Installation, Benutzeroberfläche und allgemeine Bedienhinweise	49
2.1	Download für Test- oder Studentenversion	49
2.2	Hard- und Software-Voraussetzungen.	51
2.3	Installation	52
2.4	Installierte Programme	55
2.5	Inventor Professional 2020 und Inventor LT 2020	56
2.6	Inventor starten	57
	2.6.1 Start	57
2.7	Die Inventor-Benutzeroberfläche	59
	2.7.1 Programmleiste	60

	2.7.2	Datei-Menü	60
	2.7.3	Schnellzugriff-Werkzeugkasten	61
	2.7.4	Kommunizieren und Informieren	64
	2.7.5	Multifunktionsleisten, Register, Gruppen und Flyouts	64
	2.7.6	Dokument-Registerkarten	71
	2.7.7	Browser	71
	2.7.8	Befehlszeile und Statusleiste	73
	2.7.9	Ansichtssteuerung mit Maus	75
	2.7.10	Ansichtssteuerung mit der Navigationsleiste	75
	2.7.11	ViewCube	76
	2.7.12	Nützliche Optionen-Einstellungen	77
2.8	Wie ka	nn ich Befehle eingeben?	78
	2.8.1	Multifunktionsleisten	78
	2.8.2	Kontextmenü	80
	2.8.3	Objekte zum Bearbeiten anklicken	81
	2.8.4	Hilfe	82
2.9	Übung	gsfragen	84
3	Erste e	infache 3D-Konstruktionen	85
3.I	Einfacl	he Konstruktion mit Grundkörpern	85
-	3.I.I	Ein neues Projekt anlegen (nicht in LT)	86
	3.1.2	Der erste Quader	88
	3.1.3	Speichern	91
	3.1.4	Ansicht schwenken	92
	3.1.5	Zwei nützliche Einstellungen	93
	3.1.6	Hinzufügen eines Zylinders	94
	3.1.7	Halbkugel als Vertiefung	96
	3.1.8	Der Torus	96
3.2	Einfac	hes Extrusionsteil	97
-	3.2.I	Eine Skizze erstellen	98
3.3	Einfac	hes Rotationsteil	112
3.4	Übung	sfragen	114
4	Die Sk	izzenfunktion	115
4.I	Ein Ba	uteil neu beginnen	115
	4.I.I	Wo beginnen?	115
4.2	Funkti	onen für zweidimensionales Skizzieren	117
	4.2. I	Funktionsübersicht	118
	1.2.2	Linienarten	119

	4.2.3	Punktfänge	120
	4.2.4	Rasterfang	122
	4.2.5	Koordinatentyp	124
	4.2.6	Objektwahl	126
4.3	Abhän	gigkeiten	126
	4.3.1	Abhängigkeits-Typen	129
	4.3.2	Lockerung von Abhängigkeiten	131
4.4	2D-Ski	zzen	133
	4.4.1	Eine erste Kontur	133
	4.4.2	Kontur mit Linien und Bögen	136
	4.4.3	Bögen in der Kontur.	139
	4.4.4	Kreise und Ellipsen in der Skizze	140
	4.4.5	Rechtecke in der Kontur	141
	4.4.6	Splines und Brückenkurven in der Kontur	145
	4.4.7	Kurven mit Funktionsbeschreibungen	147
	4.4.8	Rundungen und Fasen in der Skizze	149
	4.4.9	Texte in der Skizze	150
	4.4.10	Punkte in der Skizze	152
	4.4.11	Punkte aus Excel importieren	153
	4.4.12	Skizze aus AutoCAD importieren	154
	4.4.13	Skizzenblöcke	157
4.5	3D-Ski	zzen	159
	4.5.1	3D-Koordinateneingabe	159
	4.5.2	Kurven für 3D-Skizzen.	162
4.6	Bearbe	itungsbefehle für 2D-Skizzen	170
	4.6.1	Geometrie projizieren/Schnittkanten projizieren	170
	4.6.2	Verschieben	173
	4.6.3	Kopieren	173
	4.6.4	Drehen	174
	4.6.5	Stutzen	174
	4.6.6	Dehnen	175
	4.6.7	Trennen	175
	4.6.8	Skalieren	175
	4.6.9	Gestreckt	176
	4.6.10	Versatz	176
	4.6.11	Muster – Rechteckig	177
	4.6.12	Muster – Polar	178
	4.6.13	Muster – Spiegeln	179

4.7	Bearbe	eitungsbefehle für 3D-Skizzen	179
	4·7·1	Abhängigkeiten in 3D-Skizzen	179
	4.7.2	Die 3D-Transformation	179
4.8	Skizze	n-Bemaßung	180
	4.8.1	Bemaßungsarten	180
	4.8.2	Bemaßungsanzeige	182
	4.8.3	Maße übernehmen	186
4.9	Skizze	n überprüfen	187
	4.9.1	Freiheitsgrade	188
	4.9.2	Geometrische Abhängigkeiten	189
	4.9.3	Skizzenanalyse	191
	4.9.4	Hilfslinien, Mittellinien	194
4.10	Arbeits	selemente	194
	4.10.1	Arbeitsebenen	195
	4.10.2	Arbeitsachsen	205
	4.10.3	Arbeitspunkte	206
4.11	Übung	sfragen	206
5	Volum	enkörper und Flächen erstellen	207
5.1	Volum	enkörper erstellen	207
	5.1.1	Extrusion	208
	5.1.2	Drehung	212
	5.1.3	Erhebung	216
	5.1.4	Sweeping	222
	5.1.5	Spirale	224
	5.1.6	Prägen	226
	5.1.7	Ableiten	228
	5.1.8	Rippe	232
	5.1.9	Aufkleber	235
	5.1.10	Importieren	237
	5.1.11	Abwickeln	241
5.2	Grund	körper	242
	5.2.1	Quader	242
	5.2.2	Zylinder	243
	5.2.3	Kugel	244
	5.2.4	Torus	246
5.3	Fläche	n	247
	5.3.I	Heften	248
	5.3.2	Umgrenzungsfläche	248

	5.3.3	Formen	249
	5.3.4	Regelfläche	249
	5.3.5	Stutzen	250
	5.3.6	Dehnen	251
	5.3.7	Fläche ersetzen	251
	5.3.8	Körper reparieren	252
	5.3.9	Netzfläche anpassen	252
5.4	Bema	ßungen im Bauteil	253
5.5	Übung	gsfragen	255
6	Volum	nenkörper bearbeiten	257
6.1	Featur	es	257
	6.1.1	Bohrungen	257
	6.1.2	Rundungen	261
	6.1.3	Fasen	267
	6.1.4	Wandung	269
	6.1.5	Flächenverjüngung	270
	6.1.6	Trennen	272
	6.1.7	Gewinde	274
	6.1.8	Biegungsteil	275
	6.1.9	Verdickung/Versatz	276
6.2	iFeatu	res	277
6.3	Weiter	re Ändern-Befehle	279
	6.3.1	Kombinieren	279
	6.3.2	Fläche löschen	281
	6.3.3	Körper verschieben	281
	6.3.4	Objekt kopieren	282
6.4	Direkt	bearbeiten	283
	6.4.1	Verschieben	284
	6.4.2	Größe	285
	6.4.3	Maßstab (besser: Skalieren)	286
	6.4.4	Drehen	287
	6.4.5	Löschen	287
6.5	Muste	r	288
	6.5.1	Rechteckige Anordnung	289
	6.5.2	Runde Anordnung	289
	6.5.3	Skizzenbasiert	290
6.6	Benut	zer-Koordinaten-Systeme	291

Inhaltsverzeichnis

6.7	Zwiscł	nen Bauteil und Baugruppe: Multipart-Konstruktionen	292
6.8	Konstr	uktionsbeispiel	294
6.9	Übung	gsfragen	299
7	Baugru	uppen zusammenstellen (nicht in LT)	301
7.1	Projek	t erstellen	301
7.2	Botton	n-Up – Top-Down	303
7.3	Funkti	onsübersicht Baugruppen	305
7.4	Erster	Zusammenbau	307
	7 . 4.1	Die Bauteile	307
	7.4.2	Das Platzieren	308
	7.4.3	Abhängigkeiten erstellen	311
	7.4.4	Bewegungsanzeige	314
7.5	Baugrı	uppen-Abhängigkeiten	315
	7.5.1	Passend/Fluchtend	315
	7.5.2	Hilfsmittel Freie Verschiebung/Freie Drehung	316
	7.5.3	Winkel	317
	7.5.4	Tangential	318
	7.5.5	Einfügen	318
	7.5.6	Symmetrie	318
	7.5.7	Abhängigkeiten unterdrücken	318
	7.5.8	Passend/Fluchtend-Beispiel	319
	7.5.9	Einfügen-Beispiel	324
	7.5.10	Winkel-Beispiel	325
	7.5.11	Tangential-Beispiel	327
	7.5.12	Symmetrie-Beispiel	328
7.6	Beweg	ungs-Abhängigkeiten	328
	7.6.1	Beispiel für Drehung	329
	7.6.2	Beispiel für Drehung-Translation	329
	7.6.3	Schraubbewegung	330
	7.6.4	Schraubbewegung über Parameter-Manager	331
7.7	iMates		333
7.8	Abhän	gigkeiten über die Verbindungsfunktion	336
7.9	Adapti	ve Bauteile	341
	7.9.1	Adaptivität nachrüsten	341
	7.9.2	Bauteil in Baugruppe erstellen	343
7.10	Teile a	us Inhaltscenter einfügen	346
	7.10.1	Beispiel Kugellager	346
	7.10.2	Beispiel Schrauben	350

7.11	iParts.		352
7.12	iAssemblies 3		
7.13	Übun	gsfragen	356
8	Zeich	nungen erstellen	357
8.1	Ansich	nten erzeugen	358
	8.1.1	Standard-Ansichten	358
	8.1.2	Parallel-Ansicht	361
	8.1.3	Hilfsansicht	361
	8.1.4	Schnittansicht	362
	8.1.5	Detailansicht	365
	8.1.6	Überlagerung	366
8.2	Ansich	nten bearbeiten	368
	8.2.1	Unterbrochen	369
	8.2.2	Ausschnitt	370
	8.2.3	Aufgeschnitten	371
	8.2.4	Zuschneiden	372
	8.2.5	Ausrichtung	373
8.3	Bema	Sungen	374
	8.3.1	Bemaßungsarten	374
	8.3.2	Bemaßungsstil	383
8.4	Symbo	ble	386
	8.4.1	Gewindekanten	386
	8.4.2	Mittellinien	386
	8.4.3	Bohrungssymbole	388
8.5	Besch	riftungen	389
	8.5.1	Form-/Lagetoleranzen	391
	8.5.2	Bohrungstabelle	392
	8.5.3	Stückliste	392
8.6	Übung	gsfragen	396
9	Präser	ntationen, realistische Darstellungen und Rendern	397
9.I	Funkt	ionsübersicht (nicht in LT)	397
9.2	Drehb	uch animieren (nicht in LT)	403
9.3	Darste	llungsarten	407
	9.3.1	iProperties einstellen	407
	9.3.2	Die verschiedenen visuellen Stile	408
	9.3.3	Halbschnitt	411
	9.3.4	Darstellung mit Volumen-Ausschnitt.	412

9.4	Inventor Studio	417
	9.4.1 Beleuchtung und Szene	418
	9.4.2 Kamera einstellen	419
	9.4.3 Rendern	421
9.5	Übungsfragen	422
10	Parameter – Excel – Varianten	423
10.1	Parameter nutzen	423
	10.1.1 Parameterliste und manuelle Änderungen	424
	10.1.2 Benutzerparameter	427
	10.1.3 Formeln	428
	10.1.4 Multivalue-Parameter für Varianten	429
	10.1.5 Excel-Tabelle	430
10.2	Übungsfragen	432
II	Umgebungen – Erweiterungen	433
11.1	Pack and Go	433
11.2	Blechteile	434
	II.2.I Blechstandards	436
	II.2.2 Blechteil erstellen	436
	II.2.3 Abwicklungen	445
	11.2.4 Abwicklung und gefaltetes Modell	448
	11.2.5 Zeichnung erstellen	449
	11.2.6 DXF-Ausgabe	450
11.3	Gestellgenerator	452
	11.3.1 Gestell erzeugen	453
	11.3.2 Endstopfen	455
	II.3.3 Profile bearbeiten	456
11.4	Wellengenerator	460
11.5	Schweißen	462
	11.5.1 Schweißvorbereitung	463
	11.5.2 Erstellen der Schweißnähte	464
11.6	BIM-Export	467
11.7	Übungsfragen	469
12	iLogic (nicht in LT)	471
I2.I	iLogic aktivieren	472
12.2	Das iLogic-Formular	473
12.3	Arbeiten mit Regeln	477

12.4 12.5	iLogic ohne Programmieren Übungsfragen	482 484
Α	Fragen und Antworten	485
В	Benutzte Zeichnungen	497
	Stichwortverzeichnis	521

Einleitung

Neu in Inventor 2020 und Inventor LT 2020

Jedes Jahr im Frühjahr erscheint eine neue Inventor-Version. Sowohl die Vollversion als auch die LT-Version (Light) warten immer wieder mit verbesserten und neuen Funktionen auf.

Bei der Version Inventor 2020 gibt es mehrere Schwerpunkte:

- Bereich Benutzeroberfläche und Arbeitsabläufe
 - Moderneres Erscheinungsbild mit hellerer Oberfläche und optimierten Icons
 - Für die Befehle EXTRUSION, DREHUNG, SWEEPING und GEWINDE wurde die Dialogfläche durch eine neue *Eigenschaften-Oberfläche* ersetzt wie in den Vorgängerversionen schon bei BOHRUNG und MESSEN.
 - Eine intelligente Skizzenprofil-Erkennung erleichtert die Auswahl bei komplexen Skizzen.
- Einzelne Funktionsverbesserungen
 - Sweeping ist nun auch mit Volumenkörpern möglich.
 - Verbesserungen gibt es im Gestellgenerator mit neuen Dialogflächen und einer Funktion für Endstopfen.
 - Das Abwickeln komplexer Flächen ist unabhängig von der Blechabwicklung möglich, berücksichtigt dabei aber keine Materialstärke.
 - Im Read-Only Mode kann die Test-Version als Viewer benutzt werden.
 - Gelenke können auch auf Langloch-Führungen angewendet werden.
- Fortgeschrittene Funktionalitäten
 - Datenimport und -export wurden auf weitere CAD-Formate erweitert, speziell auch zum Austausch von Dateien mit Fusion 360.
 - Verbesserungen gibt es bei Rohren und Leitungen.
 - Gestellmodellierung ist nun auch im Expressmodus möglich, der für sehr große Konstruktionen ein vollständiges Laden aller Bauteile vermeidet.
- Diverse Verbesserungen an Stabilität und Qualität
 - In zahlreichen Einzelfunktionen und Arbeitsabläufen gibt es Verbesserungen, die das Arbeiten mit der Software vereinfachen, angenehmer und logischer machen.

Für wen ist das Buch gedacht?

Dieses Buch wurde in der Hauptsache als Buch zum Lernen und zum Selbststudium konzipiert. Es soll Inventor-Neulingen einen Einstieg und Überblick über die Arbeitsweise der Software geben, unterstützt durch viele Konstruktionsbeispiele. Es wurde absichtlich darauf verzichtet, anhand einer gigantischen Konstruktion nun unbedingt alle Details des Programms vorführen zu können, sondern die Absicht ist es, in die generelle Vorgehensweise vom Entwurf bis zur Fertigstellung von Konstruktionen einschließlich der Zeichnungserstellung einzuführen. Deshalb werden die grundlegenden Bedienelemente schrittweise anhand verschiedener einzelner Beispielkonstruktionen in den Kapiteln erläutert.

Der Leser wird im Laufe des Lesens einerseits die Befehle und Bedienelemente von Inventor in kleinen Schritten erlernen, aber darüber hinaus auch ein Gespür für die vielen Anwendungsmöglichkeiten entwickeln. Wichtig ist es insbesondere, die Funktionsweise der Software unter verschiedenen praxisrelevanten Einsatzbedingungen kennenzulernen.

In zahlreichen Kursen, die ich für die *Handwerkskammer für München und Oberbayern* abhalten durfte, habe ich erfahren, dass gute Beispiele für die Befehle mehr zum Lernen beitragen als die schönste theoretische Erklärung. Erlernen Sie die Befehle und die Vorgehensweisen, indem Sie gleich Hand anlegen und mit dem Buch vor sich jetzt am Computer die ersten Schritte gehen. Sie finden hier zahlreiche Demonstrationsbeispiele, aber auch Aufgaben zum Selberlösen. Wenn darunter einmal etwas zu Schwieriges ist, lassen Sie es zunächst weg. Sie werden sehen, dass Sie etwas später nach weiterer Übung die Lösungen finden. Benutzen Sie das Register am Ende auch immer wieder zum Nachschlagen.

Umfang des Buches

Das Buch ist in 12 Kapitel gegliedert. Der gesamte Stoff kann, sofern genügend Zeit (ganztägig) vorhanden ist, vielleicht in zwei bis drei Wochen durchgearbeitet werden. Am Ende jedes Kapitels finden Sie Übungsfragen zum theoretischen Wissen. Die Lösungen finden Sie in einem abschließenden Kapitel, sodass Sie sich kontrollieren können. Nutzen Sie diese Übungen im Selbststudium und lesen Sie ggf. einige Stellen noch mal durch, um auf die Lösungen zu kommen.

Sie werden natürlich feststellen, dass dieses Buch nicht alle Befehle und Optionen von Inventor beschreibt. Sie werden gewiss an der einen oder anderen Stelle tiefer einsteigen wollen. Den Sinn des Buches sehe ich eben darin, Sie für die selbstständige Arbeit mit der Software vorzubereiten. Sie sollen die Grundlinien und Konzepte der Software verstehen. Mit dem Studium des Buches haben Sie dann die wichtigen Vorgehensweisen und Funktionen kennengelernt, sodass Sie sich auch mit den Online-Hilfsmitteln der Software dann weiterbilden können. Stellen Sie dann weitergehende Fragen an die Online-Hilfe und studieren Sie dort auch Videos.

Für weitergehende Fragen steht Ihnen eine umfangreiche Hilfefunktion in der Software selbst zur Verfügung. Dort können Sie nach weiteren Informationen suchen. Es hat sich gezeigt, dass man ohne eine gewisse Vorbereitung und ohne das Vorführen von Beispielen nur sehr schwer in diese komplexe Software einsteigen kann. Mit etwas Anfangstraining aber können Sie dann leicht Ihr Wissen durch Nachschlagen in der Online-Dokumentation oder über die Online-Hilfen im Internet erweitern, und darauf soll Sie das Buch vorbereiten.

Über die E-Mail-Adresse DRidder@t-online.de erreichen Sie den Autor bei wichtigen Problemen direkt. Auch für Kommentare, Ergänzungen und Hinweise auf eventuelle Mängel bin ich dankbar. Geben Sie als Betreff dann immer den Buchtitel an.

Schreibweise für die Befehlsaufrufe

Da die Befehle auf verschiedene Arten eingegeben werden können, die Multifunktionsleisten sich aber wohl als normale Standardeingabe behaupten, wird hier generell die Eingabe für die Multifunktionsleisten beschrieben, sofern nichts anderes erwähnt ist. Ein typischer Befehlsaufruf wäre beispielsweise SKIZZE| ZEICHNEN|LINIE (REGISTER|GRUPPE|FUNKTION).

Oft gibt es in den Befehlsgruppen noch Funktionen mit Untergruppierungen, sogenannte Flyouts, oder weitere Funktionen hinter der Titelleiste der Gruppe. Wenn solche aufzublättern sind, wird das mit dem Zeichen → angedeutet.

In der rechten Ecke des Gruppentitels findet sich oft ein spezieller Verweis auf besondere Funktionen, mit denen meist Voreinstellungen vorzunehmen sind. Das Zeichen dafür ist ein kleines Pfeilsymbol nach rechts unten, auch als *Südostpfeil* bezeichnet. Es wird im Buch mit \checkmark dargestellt.

Anstelle der Befehlsbezeichnungen sind auch oft andere umgangssprachliche Bezeichnungen üblich. In diesen Fällen werden dann neben der üblichen Bezeichnung die korrekten Befehlsnamen in Klammern und in Kapitälchen aufgeführt.

Verwendung einer Testversion

Sie können sich über die Autodesk-Homepage www.autodesk.de eine Testversion für 30 Tage herunterladen. Diese dürfen Sie ab Installation 30 aufeinanderfolgende Tage (Kalendertage) zum Testen benutzen. Der 30-Tage-Zeitrahmen für die Testversion gilt strikt. Eine Deinstallation und Neuinstallation bringt keine Verlängerung des Zeitlimits, da die Testversion nach einer erstmaligen Installation auf Ihrem PC registriert ist. Für produktive Arbeit müssen Sie dann eine kostenpflichtige Lizenz bei einem autorisierten Händler erwerben. Adressen erfahren Sie dafür unter www.autodesk.de.

Wie geht's weiter?

Mit einer Inventor-Testversion, dem Buch und den hier gezeigten Beispielkonstruktionen hoffe ich, Ihnen ein effektives Instrumentarium zum Erlernen der Software zu bieten. Benutzen Sie auch den Index zum Nachschlagen und unter Inventor die Hilfefunktion zum Erweitern Ihres Horizonts. Dieses Buch kann bei Weitem nicht erschöpfend sein, was den Befehlsumfang von Inventor betrifft. Probieren Sie daher immer wieder selbst weitere Optionen der Befehle aus, die ich in diesem Rahmen nicht beschreiben konnte. Konsultieren Sie auch die Hilfe-Funktion von Inventor, um tiefer in einzelne Funktionen einzusteigen. Arbeiten Sie viel mit Kontextmenüs und den dynamischen Icons.

Das Buch hat gerade durch die Erstellung der vielen Illustrationen viel Mühe gekostet, und ich hoffe, Ihnen als Leser damit eine gute Hilfe zum Start in das Thema Inventor 2020 zu geben. Ich wünsche Ihnen viel Erfolg und Freude bei der Arbeit mit dem Buch und der Inventor-Software.

Detlef Ridder Germering, 13.7.2019

Vorüberlegungen zu einfachen 3D-Konstruktionen

In diesem einleitenden Kapitel wird in die Vorgehensweise des Inventor-Programms und die grundlegende Benutzung eingeführt. Nach prinzipiellen Betrachtungen lernen Sie den Inventor-Bildschirm mit seinen Bedienelementen anhand mehrerer Beispiele kennen.

Zuerst geht es darum, dass Sie sich eine Vorgehensweise für das aktuelle Problem überlegen. Hierzu finden Sie am Anfang einige prinzipielle Überlegungen zur Lösung dreidimensionaler Aufgaben mit Inventor.

Zur Einleitung folgt deshalb eine Präsentation der grundlegenden Konstruktionsprinzipien bei Inventor. Sie erfahren, wie ein Modell aufgebaut werden kann. Diese vorgeschlagenen Wege sind durchaus nicht immer zwingend. Zu einer Konstruktionsaufgabe gibt es immer verschiedene Vorgehensweisen. Was Ihnen dabei als einfacher oder logischer erscheint, müssen Sie dann entscheiden. Aber schauen wir uns zuerst die Möglichkeiten an, die Inventor bietet. Danach folgen einige einfache Konstruktionen, bei denen Sie dann sofort mitmachen können.

Dabei werden Sie merken, dass abgesehen vom Grundlagenwissen noch viele weitere Details des Programms beherrscht werden müssen. Diese detaillierteren Themen werden dann in den nachfolgenden Kapiteln erläutert.

1.1 Die Phasen der Inventorkonstruktion

In INVENTOR werden dreidimensionale Mechanikteile in folgenden Schritten erstellt:

- 1. Erstellung der einzelnen 3D-Volumenkörper,
- 2. *Zusammensetzen* der Körper zur Baugruppe einschließlich der Bewegungsmöglichkeiten und
- 3. *Ableiten der Zeichnungsansichten* einzelner Komponenten und/oder des gesamten Mechanismus als Baugruppe.
- 4. Erstellen einer *animierten Explosionsdarstellung*, auch als PRÄSENTATION bezeichnet.

Bei der Programmversion INVENTOR LT gibt es *keine Möglichkeit zum Zusammenbau* von Baugruppen. Die Schritte reduzieren sich dann auf die beiden ersten:

- 1. Erstellung einzelner Volumenkörper und
- 2. Ableiten der Zeichnungsansichten einzelner Körper.

In jedem Schritt des Konstruktionsablaufs entstehen dadurch auch Dateien mit ganz spezifischen Endungen:

 Die Volumenkörper werden in *.ipt-Dateien gespeichert. Hinter der Abkürzung steht der Begriff »Inventor-ParT«, kurz IPT oder deutsch Bauteil (Abbildung I.I).

Abb. 1.1: Ein Bauteil (*.ipt-Datei)

2. Für die *Baugruppen* heißen die Dateien *.iam, das steht für »*Inventor-AsseMbly*« (Abbildung 1.2).

Abb. 1.2: Eine Baugruppe (* . i am-Datei, nicht in Inventor LT) im Halbschnitt

3. Die abgeleiteten *Zeichnungsdateien* sind *.dwg-Dateien, eigentlich das Dateiformat von AutoCAD (DWG steht für »*DraWinG*«), das Format *.idw für »*Inven*- *tor-DraWing*« ist nicht mehr die Standard-Vorgabe, weil das DWG-Format universeller ist. Zeichnungsdateien können von Bauteilen und/oder Baugruppen erstellt werden (Abbildung 1.3, Abbildung 1.4)

Abb. 1.3: Die technische Zeichnung eines Bauteils (* . dwg-Datei)

Abb. 1.4: Zeichnung für eine Baugruppe mit Stückliste und Positionsnummern

4. Die Explosionsdarstellung entsteht in einer *.ipn-Datei. Die Endung steht für *»Inventor-PresentatioN«*, kurz IPN (Abbildung 1.5). Auch aus einer Präsentation kann eine Zeichnung erstellt werden (Abbildung 1.6).

Zunächst soll in den ersten Kapiteln die Erstellung von 3D-Bauteilen geschildert werden. Dann folgt die Zeichnungsableitung und am Ende die Darstellung für den Zusammenbau der Baugruppen.

Abb. 1.5: Präsentation mit Animationspfaden und Drehbuch (unten)

Abb. 1.6: Zeichnung der Explosionsansicht mit Positionsnummern und Stückliste

1.2 Wie entsteht ein 3D-Modell?

Um einen komplexen dreidimensionalen Gegenstand konstruktiv zu erstellen, ist es notwendig, sich eine Vorstellung vom schrittweisen Aufbau aus einfacheren Grundelementen zu machen. Dazu ist es natürlich nötig, diese Grundelemente zu kennen.

1.2.1 Grundkörper

Inventor bietet vier einfache *Grundkörper* an: QUADER, ZYLINDER, KUGEL und TORUS (Abbildung 1.7).

Abb. 1.7: Grundkörper in Inventor

Die Gruppe GRUNDKÖRPER ist allerdings vorgabemäßig nicht aktiv. Um sie zu aktivieren, können Sie auf einen der *Gruppentitel* am unteren Rand der *Multifunktionsleiste* mit der rechten Maustaste klicken, im Menü dann GRUPPEN ANZEIGEN anklicken und GRUNDKÖRPER mit einem Häkchen versehen (Abbildung 1.8).

Abb. 1.8: Gruppe GRUNDKÖRPER aktivieren

Beim ersten Volumenkörper müssen Sie aus den drei orthogonalen Ebenen die gewünschte Konstruktionsebene aussuchen und anklicken. Hier wird üblicherweise die xy-Ebene gewählt. Danach ist noch der Mittelpunkt des Körpers anzugeben, beim ersten Element meist der Nullpunkt. Dann folgen die Abmessungen wie Länge, Breite oder Radius und die Höhe in z-Richtung.

Für jeden weiteren Körper ist wieder eine Konstruktionsebene – meist eine Fläche eines bestehenden Körpers – und eine Position zu wählen. Dann sind die Abmessungen einzugeben, dabei ist auch die Richtung für die z-Ausdehnung zu beachten, und dann ist anzugeben, in welcher Art der neue Körper mit bereits vorhandenen kombiniert werden soll. Es gibt insgesamt vier Möglichkeiten. Die ersten drei davon werden auch als *Boolesche Operationen* bezeichnet, weil sie aus der Mengenlehre stammen:

- VEREINIGUNG ein Volumenkörper wird additiv hinzugefügt, wobei eine Überlagerung von Volumen ignoriert wird,
- DIFFERENZ ein Volumenkörper wird subtraktiv hinzugefügt, das heißt, das Volumen wird abgezogen, wo Überlappung auftritt. Man kann das auch als Ausklinkung bezeichnen.
- SCHNITTMENGE von den neuen und dem bereits existierenden Volumenkörper wird nur der Bereich beibehalten, wo beide überlappen.
- NEUER VOLUMENKÖRPER 🖃 das neue Volumen bleibt von bestehenden getrennt, wobei eventuelle Überlappungen zu keinem Fehler führen. Eine Kombination mit den booleschen Operationen kann dann auch *später* erfolgen.

So können diese Körper nun zu einem Gesamtkörper zusammengefügt werden (Abbildung 1.9). Für den ersten Volumenkörper gibt es nur die Option NEUER VOLUMENKÖRPER 📧.

Abb. 1.9: Zusammensetzung eines 3D-Modells aus Grundkörpern

Abb. 1.10: Schrittweiser Zusammenbau aus den Grundkörpern

1.2.2 Bewegungskörper

Die meisten 3D-Teile werden aus zweidimensionalen geschlossenen *Profilen* durch *Bewegung* erzeugt. Generell nennt man solche Modelle auch *Bewegungskörper*. Im Prinzip sind auch die Grundkörper so entstanden.

Profile

Das wichtigste Element eines Bewegungskörpers ist ein *Profil*. Darunter versteht man eine oder mehrere einfach geschlossene Konturen. *Einfach* bedeutet, dass sich jede Einzelkontur nicht selbst überschneiden darf, also beispielsweise nicht die Form einer Acht haben darf. In den Icons der Bewegungsbefehle sind die zugrunde liegenden *Profile* durch eine weiße Fläche angedeutet (siehe Abbildung 1.11).

Mehrere Konturen

Wenn ein Profil aus mehreren Konturen besteht, muss jede für sich einfach sein. Um ein Gebilde in Form einer Acht zu verarbeiten, muss nur dafür gesorgt sein, dass es zwei einzelne Konturen sind, die sich zwar punktuell berühren dürfen, aber keine übergreifenden Begrenzungskurven aufweisen.

Abb. 1.11: Bewegungskörper in Inventor

Das *Profil* wird als zweidimensionale Konstruktion erstellt und als SKIZZE bezeichnet. Inventor achtet besonders darauf, dass diese Skizze vollständig bemaßt ist und auch sonst durch seine geometrischen Abhängigkeiten vollständig und eindeutig bestimmt ist. Sobald jeweils ein Teil der Kontur geometrisch durch Maße und/oder Abhängigkeiten eindeutig bestimmt ist, zeigt die Farbe das an, indem sie von Grün nach Dunkelblau wechselt (bei Benutzung des Standard-Farbschemas).

Abb. 1.12: Zweidimensionale vollständig bestimmte Skizze mit angezeigten geometrischen Abhängigkeiten

Extrusion

Die häufigste Art der Bewegung ist die lineare Bewegung eines Profils. Diese 3D-Modellierung wird als *Extrusion* is oder auch *Austragung* bezeichnet.

Abb. 1.13: Extrusion eines 2D-Profils zum 3D-Volumenkörper

Drehung

Ein zweidimensionales Profil kann aber auch um eine Achse gedreht werden, um einen 3D-Volumenkörper zu erzeugen. Die Achse kann die Begrenzung des Teils bilden oder außerhalb liegen. Die Aktion wird üblicherweise als *Drehung* abezeichnet oder auch als *Rotation*.

Abb. 1.14: Zweidimensionales Profil mit einer Rotationsachse mit vollständiger Bemaßung und geometrischen Abhängigkeiten

Kapitel 1 Vorüberlegungen zu einfachen 3D-Konstruktionen

Abb. 1.15: Mit Funktion DREHUNG erzeugtes Rotationsteil

Sweeping

Ein komplexerer Volumenkörper kann durch Bewegung eines *Profils* entlang eines zwei- oder dreidimensionalen *Pfads* erzeugt werden. Hierfür ist der englische Begriff *Sweeping* 🗣 üblich.

