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Preface

Twelve years ago, I wrote a book [1] in Springer’s Patrick Moore’s Practical 
Astronomy Series entitled Measure Solar System Objects and their 
Movements for Yourself!, in which I worked out some planetary orbits assum-
ing that these orbits, and that of the Earth, were coplanar circles. I deliber-
ately made that restriction to keep the mathematical difficulty to approximately 
that of college freshman mathematics for science and engineering students. I 
didn’t use much calculus and used almost no vectors at all.

Of course, I was well aware that this simplifying assumption had its lim-
its. In particular, I was not satisfied with my orbital parameters for Mars, 
because the Red Planet has quite a noticeably elliptical orbit with an eccen-
tricity of almost 0.1. I now believe I got lucky: my simple method didn’t 
work for data from later years.

I quickly discovered methods for deducing the orbits of comets and aster-
oids, which work so long as they have a decent inclination to the ecliptic, 
the plane of the orbit of the Earth. Every single one of these methods fails 
when the celestial body orbits in almost the same plane as the Earth, as the 
planets do.

So, I hit a brick wall.
Meanwhile I was slowly gathering photographic position data on 

planets
Life also got in the way. For me 2010 was one of those disastrous years 

when my business and my marriage both hit the rocks. I ended up moving 
From King’s Lynn in Norfolk, England, to Bristol on the other side of the 
country to begin a new job. Difficulty selling a house in the recession, plus 



vi

the need for some major surgery, meant that I was in a rented house in 
Bristol for 5 years. In late 2015, I bought a house 34 miles from my Bristol 
office in Risca, across the border in Wales. The house was what real estate 
agents politely call a “project”: it did not even have a kitchen. I gathered no 
data for the Mars opposition of 2016 because I had to get my house fixed 
up.

At this point John Watson of Springer asked me if I had any ideas for a 
book. “Funny you should ask,” I replied, “I have this idea for a project to 
analyse the orbit of Mars.” Thus, the project was born.

By the time of Mars’ apparition of 2018, I had built an observatory, but 
unfortunately my mother unexpectedly died that summer after a short ill-
ness, and I was too shocked to attempt any astronomy. So, I got no data then 
either.

In 2019 I began to get my observatory to work well. The money from my 
parents’ estate did not go amiss – I upgraded to an 11” SCT telescope and 
bought a Celestron CGX mount, which proved to be a massive improve-
ment on its predecessor. Thus, by 2020, I was well positioned to collect 
another dataset for Mars’ apparition.

But what about that brick wall I had hit with the analysis? I made pretty 
good progress in 2019, but still didn’t have a method. The next bit of life 
that got in the way was the Covid pandemic. My pandemic fortunes were 
mixed. On the one hand I managed to pick up long Covid, and was plagued 
by fatigue. Sometimes I still am. But two pieces of good luck came my way. 
First, I now work from home, so I’m not losing 2 hours a day to commuting. 
Second, what else was there to do? Astronomy has been the perfect lock-
down hobby.

While dealing with the data analysis problem, I coined a word, for an 
activity which produced a combination of fascination and exasperation: I 
called it exasprinating. Eventually my persistence paid off, and I got a 
method to work. Fortunately for you, dear reader, explaining the method is 
much, much easier than finding it and making it work with no help was.

It is my strict policy to spell out all my mathematical working and to try 
to leave nothing as an exercise for the reader. That way, I hope you will 
experience more fascination and less exasperation than I had to put up with.

It proved to be impossible to make all the chapters self-contained. You 
will need Chap. 4 for all the least-squares fits I do, unless this is already a 
very familiar subject to you. You will also need to have read the mathemati-
cal parts of Chaps. 2 and 3 to read Chap. 7. You also need to read a small 
section of Chap. 7 while reading Chap. 6 if you have forgotten, or never 
knew, about rotation matrices.

Preface
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I have assumed that the reader is a scientist, engineer or mathematician, 
and knows something about calculus and vectors and trigonometry No 
doubt you may have forgotten much of it. Recalling half-forgotten material 
may cause some short-term pain. Please don’t expect to pick this book up 
and read it like a novel. You will need a pencil and paper. Please expect to 
have to put it down and think from time to time. In emergencies, there are 
plenty of inexpensive mathematics textbooks from which to revise.

The history of the orbit of Mars is worth telling because in order to pro-
vide convincing solutions, the natural philosophers of the Renaissance had 
to invent both physics and calculus. An English newspaper editor once said 
that while comment is free, facts are sacred [2]. I have tried to stick to this 
principle. For example, as a teeneager, I was much impressed by Arthur 
Koestler’s book [3] covering much the same history. Even at that tender 
eage, I had an uneasy feeling that, for this author, facts might be subordinate 
to the quality of the yarn he spun. I have tried to provide a reference for 
every factual claim I make.

The rate-determining step in astronomical progress has always been our 
ability to observe, not our cleverness at theorizing. A combination of 
Tycho’s positional data and Galileo’s telescopes did for the ancients’ view 
of the universe. The same thing happened with Hubble’s observations of the 
distances to galaxies and the redshift. Without those insights, the theorists 
could have debated until the cows come home.

I would like to thank my editors at Springer, whose chief service was to 
keep chasing me. This includes Maury Solomon and John Watson, both 
retired, who encouraged me to start, and Hannah Kaufman and Clement 
Wilson Kamalesh, whose encouragement kept me going. I would also like 
to thank my many astronomer friends, who have taught me more than they 
know. Finally, I would like to thank my best friend Pauline Thomas for her 
encouragement and friendship.

No doubt there are better ways to do what I did. If anyone finds them, 
finds a historical nugget or two, or manages to do some other interesting 
piece of celestial mechanics, please share them with me at jane.clark@
finerandd.com. Where next for me? One of my ambitions is to devise a 
method for measuring the astronomical unit in miles, based on inverting 
Rømer’s discovery [4], while obsering the Moons of Jupiter, that light has a 
finite speed. Stay tuned.

Risca, Wales, UK Jane Clark   
April 2021
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In the Beginning

Most, if not all, of the early civilizations developed their astronomy. If noth-
ing else, it gave them a way to measure and predict the seasons. Evidence 
from Australia, where Europeans discovered a native culture whose land 
management was there, but could hardly have been called agricultural in a 
Western sense, is that the first Australians had good naked-eye astronomical 
knowledge and were well aware of the planets. Europeans found that  the 
Maori in New Zealand used astronomy to predict seasons [5], even though 
they had no writing before they encountered Europeans. In other words, 
humans must have been astronomers for a very long time.

Not all the early civilizations had writing as we know it. This invention 
does not seem to have made it to Central America, for example. Yet we now 
know that, when they wanted to, the Mesoamerican civilizations could ori-
ent their buildings to indicate astronomical events. Therefore, something 
must have been recorded. The Ancient Egyptians used the disappearance of 
the star Sirius into the sunrise to know when the Nile would flood. They 
were exceptionally dependent on this, as rainfall is very rare indeed in much 
of Egypt. My father served as a draftee in the British Army along the Suez 
Canal. After it rained, he told that the locals debated whether or not the 
previous rainfall had been twenty years before. The first indication that the 
floods were coming was astronomical: there simply was no rainy season.

Civilizations on the Indus, and the Tigris and Euphrates rivers, were 
among those that kept records. One remarkably successful Macedonian 
king and general, Alexander the Great (356–323 BCE), conquered lands 
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from Greece to the Indus River. Although he died young and his empire did 
not last, one side effect was the diffusion of astronomical knowledge from 
the Indian and Babylonian civilizations to the Middle East.

(CE, or the Common Era, is a way of dating. It is exactly the same as the 
system BC and AD and is simply a more neutral name that does not imply 
either recognition or rejection of a particular religious event. BCE is 
“Before the Common Era”. One of the more curious characteristics of this 
dating system is that it has no year zero. It went from 1 BC/BCE straight to 
1 AD/CE.)

In the city of Alexandria, Egypt, one of many founded by Alexander the 
Great as he conquered his way across the Middle East, there grew up a great 
library and a research institution called the Musaeum, said to have housed 
over a thousand scholars at any time. The heyday of the Musaeum was from 
roughly 300–145 BCE.

In that time, it hosted Archimedes, Euclid, Eratosthenes and Aristarchus 
of Samos.

Eratosthenes measured the circumference of the Earth. It’s hard to know 
whether his answer was a good or brilliant first effort, because that depends 
on how we interpret the distance unit he used. He used the stadion, which 
might be anywhere from 159 m to 209 m [6]. If he used the lower end of 
the range, his Earth radius is almost smack on the modern value. He is 
popularly supposed to have done this by comparing the angles of the Sun at 
a mineshaft at Syene, modern Aswan, and in Alexandria. In fact, he was 
more careful than that, but the details are lost [7]. His own book has not 
been preserved.

We know of Aristarchus of Samos directly and indirectly. Directly we 
know of his book “On the sizes and distances of the Sun and Moon” [8]. 
Indirectly we know from a book by Archimedes, the Sand Reckoner, that

“Aristarchus has brought out a book consisting of certain hypotheses, 
wherein it appears, as a consequence of the assumptions made, that the 
universe is many times greater than the ‘universe’ just mentioned. His 
hypotheses are that the fixed stars and the sun remain unmoved, that the 
earth revolves about the sun on the circumference of a circle, the sun lying 
in the middle of the orbit, and that the sphere of the fixed stars, situated 
about the same center as the sun, is so great that the circle in which he sup-
poses the earth to revolve bears such a proportion to the distance of the fixed 
stars as the center of the sphere bears to its surface” [9]. There is no evi-
dence that Aristarchus ever made his hypotheses quantitative [10], although 
I find it hard to believe that his idea was purely qualitative.

Archimedes goes on to dismiss Aristarchus’ idea. Unfortunately for pos-
terity, so did just about everyone else.

1 In the Beginning
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What the world got instead was a textbook by Claudius Ptolemy, known 
as Ptolemy. Ptolemy’s view was firmly geocentric. Why was this? It was 
partly down to the baleful influence of Aristotle.

Aristotle lived from 384 to 322 BCE. I am clearly not qualified to judge 
how good a philosopher Aristotle was. But I am suitably qualified and expe-
rienced to judge his physics. I cannot say it loudly enough: he was a lousy 
physicist. “In reality [Aristotle] does little but analyze the meanings of 
every-day experience and words in order thereby to solve the problems of 
nature.” So says J. L. E. Dreyer in his “History of Astronomy from Thales 
to Kepler” [11]. Because he had such a following for his other endeavours, 
people unfortunately assumed that he know what the heck he was talking 
about. Well, he didn’t. His idea that everything was made of four elements, 
Earth, Air, Fire and Water, was hogwash. His ideas on motion misled people 
for centuries. The likes of Huyghens, Galileo and Newton took a careful, 
experimental and quantitative view of motion, unlike Aristotle, and got 
much nearer to what we now believe to be the truth. Aristotle, on the other 
hand, tried to argue his physics from philosophical reasoning. He also pos-
tulated an idea totally untainted by evidence either for or against: that the 
heavens above the earth were made of a fifth element, which was “perfect”. 
This frankly bizarre idea took a lot of dislodging by means of evidence.

One of Aristotle’s fetishes was “prefect circular motion”, that is, uniform 
circular motion about a point. There is a useful characteristic of circular 
motion: the centripetal force required to keep the motion of a point particle 
circular is always perpendicular to the distance moved. In an infinitesimal 
time dt, the work done is

 dT = =F dx 0centripetal •  (1.1)

because F and dx are always perpendicular. In other words, no work is 
done to maintain circular motion. The extension to finite bodies is obvious. 
You simply integrate over the volume. This no energy input is required to 
keep a planet moving in a circular orbit in a vacuum. It also requires no 
energy input to keep a solid planet rotating about its axis. Of course, 
Aristotle did not have the modern vocabulary to describe the phenomenon 
of circular motion not changing kinetic energy. Nevertheless, he overdid it. 
As we shall see, it took the world millennia to move on from the fetishiza-
tion of perfect circular motion.

He acquired over the centuries a tremendous following to the point where 
it became dangerous to question his claims. We shall see this later in our 
story.

1 In the Beginning
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Ptolemy was strongly influenced by Aristotle, although it would be 
somewhat unfair to accuse him of being a slavish follower. He modified 
Aristotle’s idea that uniform circular motion was some kind of perfect state.

 Ptolemy’s Model: Salient Features

Ptolemy lived in Alexandria, rather later than the heyday of the Musaeum, 
from about 100 to 170 CE.

His was one of the first mathematical models of the universe and one of 
the earliest mathematical models of a natural phenomenon of any kind. To 
that extent it was a remarkable achievement. He based it on an earlier, but 
simpler model, due to Hipparchus. The model was published in a textbook, 
which we now know by its Arabic name, “the Almagest” [12]. This was 
partly because some parts survived in the original Greek, while other parts 
only survived in Arabic translation.

A discussion of the Almagest appears in the self-published online book 
by Fitzpatrick [13].

It has been superseded by better models. Nowadays, we think that that’s 
how scientific theory advances. New observations and measurements come 
along which no longer fit the old paradigm, so a new paradigm is required.

That concept came along much later than Ptolemy’s model. Even on its 
own terms, it only approximately matched the then known data. Nowadays 
we have statistical tools to handle approximation, but that was not true until 
well after the time of Newton, let alone the time of Ptolemy.

Without tools to help you choose which data to accept, and which to 
reject, and without much prior experience to go on, Ptolemy was on his own 
and had to do the best he could. Many scholars have tried to take him down 
by claiming that he made “convenient” choices of data. Owen Gingerich 
[14], in an essay entitled “Was Ptolemy a fraud?”, argues that that’s being a 
little harsh and judging him by modern standards.

The model he developed had the Earth “not moving”, with everything 
else moving around it. Ancient Greek concepts of space and of motion and 
stationariness were, of course, pre-Newtonian and very different from ours.

As we now know, the problem the planetary astronomers had to solve 
was how to model and predict the motion of planets, including the one upon 
which we live, as they follow elliptical paths. Not only did Ptolemy not 
know that, but the data available to him were not accurate enough to distin-
guish elliptical paths from plausible alternatives.

The path of a superior planet (Mars, Jupiter or Saturn) in Ptolemy’s 
model is shown in Fig. 1.1. The Earth is at a fixed point. The sold circle is 

1 In the Beginning
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called the “deferent” of the planet. Note that its centre is not at the Earth. 
Another circle, the “epicycle”, shown dashed, rotates around the centre at a 
variable rate such that an observer at the Equant would see a uniform rate 
of rotation. The planet itself rotates around the epicycle.

The time to go around the deferent is what we would now call the orbital 
period of the superior planet. The time to go around the epicycle is roughly 
an Earth year.

The plane of this arrangement is that of the Ecliptic, the apparent orbit of 
the Sun.

Fig. 1.1 Ptolemy’s model of the path of a superior planet, that is, Mars, Jupiter or 
Saturn. The Earth is at a fixed point. The sold circle is called the “deferent” of the 
planet. Note that its centre is not at the Earth. Another circle, the “epicycle”, shown 
dashed, rotates around the centre at a variable rate such that an observer at the Equant 
would see a uniform rate of rotation. The planet itself rotates around the epicycle. 
The plane of this arrangement is that of the Ecliptic, the apparent orbit of the Sun. 
(Image: Author)

Ptolemy’s Model: Salient Features
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The sun in Ptolemy’s model also rotates about the Earth in a similar man-
ner, except that the Equant is at the centre of the deferent, and there is no 
epicycle. The epicycle is not needed because the Sun does not undergo 
retrograde motion when observed from the Earth. This model is credited to 
Hipparchus of Nicaea (c. 190–120 BCE) although this author’s writings do 
not survive. Hipparchus is also credited with being the “father” of trigonom-
etry and with discovering the precession of the equinoxes by comparing his 
data against that from Babylon [15].

Through modern eyes, we might say that the deferent represents the 
planet’s orbit and the epicycle represents the effect of the orbit of the Earth. 
Of course, we cannot expect Ptolemy to have thought like that.

A quantitative assessment of the calculating capability of this model will 
be made a little later in our story.

 The Copernican Revolution: The Pun That Keeps oving

No doubt this pun has elevated Copernicus’ role beyond the admittedly very 
high level it deserves (Fig. 1.2). It is a myth that he put the Sun at the centre 
of his system. He almost, but not quite, did this. But he did have the Earth 
moving around the Sun. 

In fact, he was a dedicated Aristotelian, who was offended by the way 
that Ptolemy’s system did not employ uniform motion about the centers of 
circles. He embarked upon his study with a view to rectifying this situation. 
In the process, he noticed that some of his epicycles would cancel out if he 
had the Earth go round the Sun, rather than vice versa.

His model for a heliocentric planet looks like Fig. 1.3.
Part of the conceptual leap that Copernicus had to make was to consider 

whether the Earth is a planet. He certainly discussed this question [16]. He 
also worried about the implications of his theory for gravity. If the Earth 
was but a planet, could it be the sole source of gravity? Did the Sun also 
exert gravitational pull? What about other bodies? [16]

This model actually made less accurate predictions of planetary motions 
than Ptolemy’s model.

Before Galileo and Newton, particularly Newton, the concepts of moving 
and stationary were not what they are now. Nowadays, we believe that the 
universe has no centre and that a body, if it obeys classical mechanics to a 
good approximation, experiences force but is not affected by translational 
movement. Rotation is another matter: the General Theory of Relativity is 
required to explain this. Such explanation is outside the scope of this book. 
Any interested reader is referred to the section on Mach’s principle in 

1 In the Beginning
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Misner, Thorne and Wheeler [17], but is warned that General Relativity is 
not for the faint-hearted. To understand what little I myself know, I had to 
sign up for a distance-learning undergraduate course, over 40 years after I 
graduated, having totally failed to teach myself the subject.

The next significant character in this story, Tycho Brahe, got rather hung 
up on this question, as we will see.

 Tycho Brahe, the Greatest Pre-telescope Observer

Tycho (Fig. 1.4), who lived from 1546 to 1601 [18], did not quite live to see 
the telescope applied to astronomy. In this, he was a little unlucky: he died 
of an illness so sudden that rumours abounded that he was poisoned. These 
were eventually laid to rest in 2010 after his body was exhumed and tested 
[19]. It seems as though he died of an advanced bladder infection. This post- 
mortem did indicate that the best known legend about Tycho, that he had a 

Fig. 1.2 Nicolaus Copernicus portrait from Town Hall in Thorn/Toruń  – 1580. 
(Image courtesy of http://en.wikipedia.org/wiki/Copernicus#mediaviewer/
File:Nikolaus_Kopernikus.jpg). Public domain

Tycho Brahe, the Greatest Pre-telescope Observer

http://en.wikipedia.org/wiki/Copernicus#mediaviewer/File:Nikolaus_Kopernikus.jpg
http://en.wikipedia.org/wiki/Copernicus#mediaviewer/File:Nikolaus_Kopernikus.jpg
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metal prosthetic nose because part of his was cut off in a duel, was true. The 
post-mortem showed traces of brass around the nose wound.

This was simply another example of what an extreme character Tycho 
was. Everything about him was outsized. He was a high-ranking, very 
wealthy Danish aristocrat. Confusingly, the land where he was born and 
mostly lived was in what is now south-western Sweden, but back then it 
was Danish. Unusually for an aristocrat, he married for love and pro-
duced thirteen children. He was a prodigiously determined observational 
astronomer. He had his own magnificent observatory on an Island, 
together with a paper mill and printing press. Over the years, he employed 
perhaps sixty people and drove them hard [20]. He even had his own 
court jester [21]. He was a great correspondent and author [22]. This 

Fig. 1.3 A heliocentric orbit according to Copernicus. The lines CD and DP rotate 
uniformly about C and D, respectively, such that DP rotates twice as fast as CD. The 
perihelion is at the top and the aphelion is at the bottom. (Image: Author)

1 In the Beginning
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enabled him to disseminate his results and, in effect, to shout louder than 
any of his contemporaries. He was certainly competitive and keen to 
establish his own legend. But the thing is this: he had the talent to back 
this up. His measurements were an order of magnitude better than any-
thing that went before.

Well educated in the Universities of Germany and Scandinavia [21], he 
discovered early in his adulthood that he could measure astronomical phe-
nomena better than the ancient Greeks could. He would not have known 
about the astronomers of Islam. They were not widely known in Europe 
during the Renaissance [23].

Fig. 1.4 Tycho Brahe. (Image courtesy of http://cache.eb.com/eb/image?id=83677&
rendTypeId=4). Public domain

Tycho Brahe, the Greatest Pre-telescope Observer

http://cache.eb.com/eb/image?id=83677&rendTypeId=4
http://cache.eb.com/eb/image?id=83677&rendTypeId=4
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 Tycho and Mathematics

Geometry was an essential tool to convert Tycho’s measurements into celes-
tial positions. Living in the computer age as I do, I have to admit that I never 
gave this a second thought until I realized that he worked before logarithms 
were invented. Multiplication and division were therefore much more 
severe and labour-intensive problems than they were once logarithms 
became available.

The key art was spherical trigonometry, which is a shorthand name for 
the analysis of triangles on the surfaces of spheres. Of course, the sphere the 
early scientists thought of was a faraway sphere on whose inside surface 
were the “fixed” stars.

The parameters governing such a triangle are built up in Figs. 1.5, 1.6, 
1.7, and 1.8.

Thus, our triangle on the surface of a sphere can be uniquely defined 
entirely in terms of angles, provided that its sides all lie on great circles.

Now let me define some planar triangles to help me analyse the spherical 
triangle (Fig.  1.9). I do this by drawing lines tangential to the two great 
circles that meet at A.

Fig. 1.5 Imagine a sphere onto whose surface three great circles are drawn. A great 
circle is a circle with the same radius as the sphere, whose centre is the centre of the 
sphere. (Image: Author)
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Then by the cosine rule, these two equations are true.

 
DE AD AE AD AE

DE OD OE OD OE .

2 2 2

2 2 2

2

2

= + − ( )( )
= + − ( )( )

cos ;

cos

A

a
 (1.2)

Because we chose tangents, the angles ∠OAD and ∠OAE are right angles. 
Thus,

 OD OA AD

OE OA AE .

2 2 2

2 2 2

= +
= +

; (1.3)

Substitute the equations of Eq. (1.3) into Eq. (1.2):

 
DE AD AE AD AE

DE OA AD OA AE OD OE

2 2 2

2 2 2 2 2

2

2

= + − ( )( )
= + + + − ( )( )

cos ;

cos

A

aa.
 (1.4)

Now subtract the upper from the lower of Eq. (1.4).

 0 2 2 22= ( ) + ( )( ) − ( )( )OA AD AE OD OE .cos cosA a  (1.5)

Rearranging Eq. (1.5) gives

Fig. 1.6 These three great circles form the sides of a triangle on the sphere. They 
actually host another triangle on the other side of the sphere, but we will not consider 
that for now. (Image: Author)

Tycho Brahe, the Greatest Pre-telescope Observer
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cos cos

cos cos cos sin sin cos

a A

a b c b c A

= +

= +

OA

OE

OA

OD

AE

OE

AD

OD
so

 (1.6)

using the definitions of sine as opposite/hypotenuse and cosine as adjacent/
hypotenuse. Rearranging Eq. (1.6) gives

 cos
cos cos cos

sin sin
A

a b c

b c
=

−
. (1.7)

In the pre-logarithmic age, the very useful Eq. (1.7) would have been messy 
to manipulate. It involves two multiplications and a division.

It is therefore worth some effort to see if we can turn the multiplications 
into additions or subtractions.

We will only deal with the cases where angles are right angles or less 
because Tycho’s measurements did not use angles >90°. By following the 
logic in Fig. 1.10, it can be seen that

 sin sin cosg h gcos h g sinh+( ) = +  (1.8)

and

Fig. 1.7 Let this triangle have vertices A, B and C, all in upper case. Let the centre 
of the sphere be at O. (Image: Author)
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 cos cos cos sin sing h g h g h+( ) = −  (1.9)

Proofs of these formulae for all angles, whether greater than 90° or not, are 
given in Appendix 3.

Eq. (1.8) can be used like this:

 sin sin cos cosg h f g f g= −( ) − +( ) 
1

2
, (1.10)

and Eq. (1.9) can be used like this:

 cos cos cos cosg h f g f g= −( ) + +( ) 
1

2
, (1.11)

These relations can be used in Eq. (1.7) to eliminate the multiplications but 
not the division:

 cos
cos cos cos

cos cos
A

a b c b c

b c b c
=

− −( ) + +( ) 
−( ) − +( )

2
. (1.12)

Fig. 1.8 Let the side opposite A has length a, let that opposite B has length b and let 
that opposite C has length c. A better way to analyse the triangle is to regard a, b and 
c as angles. a is the angle BOC; b is the angle COA and c is the angle BOA. (Image: 
Author)

Tycho Brahe, the Greatest Pre-telescope Observer



14

This elimination of multiplication was well worth the bother when you 
could not use logarithms. Indeed, the process was given a name: prost-
haphaeresis. This compound word was built from the Greek words prosthe-
sis and aphaeresis (subtract).

In those days, Eqs. (1.2)–(1.12) were not written out as formulae. They 
were written in words [24].

Tycho claimed priority for this technique. For this he has been in hot 
water with historians ever since. It’s the perfect storm in a teacup. There 
does not appear to be enough evidence to settle the matter decisively [24], 
but it seems likely that Tycho was introduced to the formula by an assis-
tant, Johannes Wittich [25]. Thoren [25] reports that Wittich brought the 
method to Tycho’s observatory, having developed it beforehand. Tycho, 
who was nothing if not competitive, seems to have viewed prosthaphaere-
sis as something of a trade secret. He was not best pleased when he found 
out that, after leaving his employment, Wittich published the technique 
[24]. Such a driven man as Tycho venting his anger may well have been 
an impressive sight.

Fig. 1.9 Two lines are drawn tangent to the two great circles that cross at A. The lines 
OB and OC are projected until they meet these tangent lines at D and E, respectively. 
(Image: Author)
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 Tycho’s Instruments

Tycho was no lone genius. In fact, you could even make a case for saying 
that his operation at his observatory in Uraniborg, Hveen, the Danish island 
now part of Sweden and known as Ven, was the first example of “big sci-
ence”. By the standards of today’s big science, where the biggest projects 
employ thousands, Tycho’s operation was small, yet his grant from the King 
of Denmark was 1% of the total royal expenditure. That was not to be 
sneezed at.

His first big challenge was to observe a supernova in 1572. He was care-
ful to measure the position of the supernova relative to those of the other 
stars in Cassiopeia, within which constellation it had appeared. He looked 

Fig. 1.10 Diagram showing how to manipulate sines and cosines of sums of angles

Tycho Brahe, the Greatest Pre-telescope Observer
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very hard for evidence of parallax. His method was to compare what hap-
pened when the supernova first appeared in November and Cassiopeia was 
very high in the sky with what happened later when the circumpolar 
Cassiopeia was low in the sky. Cassiopeia is circumpolar for latitudes above 
34°N: his latitude was around 56°N. He was looking for parallaxes of a few 
degrees for a nearby object. He found no parallax, and even checked that 
over its 18-month apparition, it kept pace with the precession of the equi-
noxes. He was in fact unable to detect whether it did or not, the effect in 
question being about 20 arcseconds. He reckoned that the supernova was 
more distant than the planets and was probably on the sphere on which 
people then believed the stars to exist [26]. The appearance of this very 
bright star cast doubt on the Aristotelian idea that the heavens were 
unchanging. That, however, was not what Tycho wrote about. He wrote 
about the astrological implications of the new star [26].

His instrument was a large wooden sextant on a stand, basically a huge 
protractor. When Cassiopeia was almost overhead, he was unable to make 
measurements. A later version of Tycho’s instrument is shown in Fig. 1.11.

His next famous observation was of the great comet of 1577. This was by 
no means the only comet that he observed over the years. He again took an 
interest in parallax measurement and demonstrated that the comet was not 
in the Earth’s atmosphere at all, but was beyond the Moon. If the supernova 
made him doubt the Greek belief in heavenly spheres to carry the planets, 
the comet blew his faith in this idea out of the water. He observed that the 
angular velocity of the comet decreased and deduced from this that it was 
travelling through these spheres. This made him doubt their very existence. 
This in turn drove him, over a period of years, to grope towards a cosmo-
logical model of his own [28, 29]. He had, however, another fixation to deal 
with. He could never shake off his belief that the Earth could not be moving. 
So he worked his way towards a system, without epicycles, in which the 
Earth was fixed, the Moon and Sun go around the Earth and the planets go 
around the Sun. The resultant system is shown in Fig. 1.12. It was published 
in 1588 [30].

For our story, the significance is that Fig.  1.12 appears to be the first 
diagram showing the Solar System without planets travelling in epicycles. 
The system became less elegant the more quantitatively it was analysed 
[28], and never caught on, despite the best efforts of Tycho, and later his 
heirs, to foist it on the world.

Over thirty years, he built better and better instruments as he sought the 
elusive prize of accuracy. He began with conventional enough instruments, 
but developed them. Over time they got bigger because it was then possible 
to make the scales finer. He had to contend with typical problems as you 
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make things bigger and bigger. Maintaining the rigidity of the equipment 
was a challenge. So was operating them in the wind. In the end, he built a 
separate observatory next door, in which the instruments were basi-
cally below ground.

Another of Tycho’s instruments was the great equatorial armillary, a 
device capable of measuring both right ascension and declination. Despite 
owning the best clocks then available, Tycho was not able to measure time 
reliably. But he could use the equatorial armillary to get the declination of 
a star and then compare its right ascension with that of a known and trusted 

Fig. 1.11 A sextant built by Tycho in 1582, ten years after the supernova. He says in 
the text of his book on instruments that he built three of these instruments over the 
years. (Source: Astronomiæ Instauratæ Mecanica by Tcho Brahe, 1598 [27]). Public 
domain

Tycho Brahe, the Greatest Pre-telescope Observer



18

reference star. Armillaries were not new, but they were either too small to 
be accurate or very big and unwieldy: in particular they would flex. The 
word “armillary” is derived from the Latin word “armilla” meaning “brace-
let”. Tycho reduced this device to the bare minimum. Originally armillaries 
were much more complex than Tycho’s eventual design. The one in 
Fig. 1.13 shows that they would typically have great circle rings for each of 
the equator, both tropics, the Arctic and Antarctic circles and the ecliptic.

The principle of Tycho’s armillary is illustrated in Fig. 1.14.
His actual Great Equatorial Armillary is illustrated in Fig. 1.15. It was 

graduated to ¼-arcminute intervals [31].

Fig. 1.12 The Tycho model of the world. The Earth is fixed, the Moon and Sun go 
around the Earth and the planets go around the Sun. My translation of the Latin 
inscription reads “New Hypotheses of the system of the World proposed recently by 
the author, by which the redundancy & inelegance of the Ptolemaic, and the physical 
absurdity of the Copernican, are both excluded, in very apt agreement with the 
appearance of the heavens”. (Source: Brahe’s De Mundi Aetherei Recentioribus 
Phaenomenis, 1588). Public domain
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One of the uses to which he put this armillary was to measure the phe-
nomenon of refraction by the atmosphere. He and his team would simulta-
neously use this instrument and a quadrant to measure the right ascension 
and declination of a star and measure its altitude, thereby mapping the 
phenomenon of atmospheric refraction as a star travelled across the sky.

The other big instrument of Tycho’s was the Mural Quadrant, an enor-
mous 90-degree protractor, shown in Fig. 1.16. This instrument was gradu-
ated to 1/6-arcminute intervals [31].

Tycho put immense effort into calibrating the Mural Quadrant and the 
Great Equatorial Armillary.

Fig. 1.13 An armillary from the 1771 edition of the Encyclopedia Britannica. Public 
domain

Tycho Brahe, the Greatest Pre-telescope Observer



20

Fig. 1.14 The principle of Tycho’s great Equatorial Armillary. The diameter of the 
ring was around nine feet [31]. The axis of the ring is allowed to rotate but fixed 
against translation at both ends and points towards the North Celestial Pole. Using 
the alignment device, the observer rotates the ring until they are looking at the star 
and reads off the declension on the ring. The fixed semi-circular scale enables the 
right ascension to be read. The observer would then quickly move to a reference star 
and do the same. The difference in the two right ascensions is then read directly with-
out the need for trigonometric calculation

1 In the Beginning


