Unter den Leistungen der letzten fünfzig Jahre auf dem Gebiete der Geometrie nimmt die Ausbildung der projectivischen1 Geometrie die erste Stelle ein. Wenn es anfänglich schien, als sollten die sogenannten metrischen Beziehungen ihrer Behandlung nicht zugänglich sein, da sie beim Projiciren nicht ungeändert bleiben, so hat man in neuerer Zeit gelernt, auch sie vom projectivischen Standpuncte aufzufassen, so dass nun die projectivische Methode die gesammte Geometrie umspannt. Die metrischen Eigenschaften erscheinen in ihr nur nicht mehr als Eigenschaften der räumlichen Dinge an sich, sondern als Beziehungen derselben zu einem Fundamental-Gebilde, dem unendlich fernen Kugelkreise.
Vergleicht man mit der so allmählich gewonnenen Auffassungsweise der räumlichen Dinge die Vorstellungen der gewöhnlichen (elementaren) Geometrie, so entsteht die Frage nach einem allgemeinen Principe, nach welchem die beiden Methoden sich ausbilden konnten. Diese Frage erscheint um so wichtiger als sich neben die elementare und die projectivische Geometrie, ob auch minder entwickelt, eine Reihe anderer Methoden stellt, denen man dasselbe Recht selbständiger Existenz zugestehen muss. Dahin gehören die Geometrie der reciproken Radien, die Geometrie der rationalen Umformungen etc., wie sie in der Folge noch erwähnt und dargestellt werden sollen.
Wenn wir es im Nachstehenden unternehmen, ein solches Princip aufzustellen, so entwickeln wir wohl keinen eigentlich neuen Gedanken, sondern umgränzen nur klar und deutlich, was mehr oder minder bestimmt von Manchem gedacht worden ist. Aber es schien um so berechtigter, derartige zusammenfassende Betrachtungen zu publiciren, als die Geometrie, die doch ihrem Stoffe nach einheitlich ist, bei der raschen Entwicklung, die sie in der letzten Zeit genommen hat, nur zu sehr in eine Reihe von beinahe getrennten Disciplinen zerfallen ist2, die sich ziemlich unabhängig von einander weiter bilden. Es lag dabei aber auch noch die besondere Absicht vor, Methoden und Gesichtspuncte darzulegen, welche von Lie und mir in neueren Arbeiten entwickelt wurden. Es haben unsere beiderseitigen Arbeiten, auf wie verschiedenartige Gegenstände sie sich auch bezogen, übereinstimmend auf die hier dargelegte allgemeine Auffassungsweise hingedrängt, so dass es eine Art von Nothwendigkeit war, auch einmal diese zu erörtern und von ihr aus die betr. Arbeiten nach Inhalt und Tendenz zu characterisiren.
War bisher nur von geometrischen Forschungen die Rede, so sollen darunter mit verstanden sein die Untersuchungen über beliebig ausgedehnte Mannigfaltigkeiten, die sich, unter Abstreifung des für die rein mathemathische Betrachtung unwesentlichen räumlichen Bildes3, aus der Geometrie entwickelt haben4. Es gibt bei der Untersuchung von Mannigfaltigkeiten eben solche verschiedene Typen, wie in der Geometrie, und es gilt, wie bei der Geometrie, das Gemeinsame und das Unterscheidende unabhängig von einander unternommener Forschungen hervorzuheben. Abstract genommen war es im Folgenden nur nöthig, schlechthin von mehrfach ausgedehnten Mannigfaltigkeiten zu reden; aber durch Anknüpfung an die geläufigeren räumlichen Vorstellungen wird die Auseinandersetzung einfacher und verständlicher. Indem wir von der Betrachtung der geometrischen Dinge ausgehen und an ihnen als einem Beispiele die allgemeinen Gedanken entwickeln, verfolgen wir den Gang, den die Wissenschaft in ihrer Ausbildung genommen hat, und den bei der Darstellung zu Grunde zu legen gewöhnlich das Vorteilhafteste ist. –
Eine vorläufige Exposition des im Folgenden besprochenen Inhaltes ist hier wohl nicht möglich, da sich derselbe kaum in eine knappere Form5 fügen will; die Ueberschriften der Paragraphen werden den allgemeinen Fortschritt des Gedankens angeben. Ich habe zum Schlusse eine Reihe von Noten zugefügt, in welchen ich entweder, wo es im Interesse der allgemeinen Auseinandersetzung des Textes nützlich schien, besondere Punkte weiter entwickelt habe, oder in denen ich bemüht war, den abstract mathematischen Standpunkt, der für die Betrachtungen des Textes maßgebend ist, gegen verwandte abzugränzen.
Der wesentlichste Begriff, der bei den folgenden Auseinandersetzungen nothwendig ist, ist der einer Gruppe von räumlichen Aenderungen.
Beliebig viele Transformationen des Raumes6 ergeben zusammengesetzt immer wieder eine Transformation. Hat nun eine gegebene Reihe von Transformationen die Eigenschaft, dass jede Aenderung, die aus den ihr angehörigen durch Zusammensetzung hervorgeht, ihr selbst wieder angehört, so soll die Reihe eine Transformationsgruppe7 genannt werden.
Ein Beispiel für eine Transformationsgruppe bildet die Gesammtheit der Bewegungen (jede Bewegung als eine auf den ganzen Raum ausgeführte Operation betrachtet). Eine in ihr enthaltene Gruppe bilden etwa die Rotationen um einen Punct8. Eine Gruppe, welche umgekehrt die Gruppe der Bewegungen umfasst, wird durch die Gesammtheit der Collineationen vorgestellt. Die Gesammtheit der dualistischen Umformungen bildet dagegen keine Gruppe — denn zwei dualistische Umformungen ergeben zusammen wieder eine Collineation —, wohl aber wird wieder eine Gruppe erzeugt, wenn man die Gesammtheit der dualistischen mit der Gesammtheit der collinearen zusammenfügt9.