- B =
. : \
REREGRESRE RS 3 R i
1 »lr r 4 X "I_ L l kv RN | 4 - i @ 7’:
MR “ b J

RP2040 Assembly
Language
Programming

ARM Cortex-Mo+ on the
Raspberry Pi Pico

Stephen Smith

RP2040 Assembly
Language
Programming

Stephen Smith

Apress’

RP2040 Assembly Language Programming: ARM Cortex-M0+ on the
Raspberry Pi Pico

Stephen Smith
Gibsons, BC, Canada

ISBN-13 (pbk): 978-1-4842-7752-2 ISBN-13 (electronic): 978-1-4842-7753-9
https://doi.org/10.1007/978-1-4842-7753-9

Copyright © 2022 by Stephen Smith

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233
Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7752-2.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7753-9

This book is dedicated to my beloved wife and
editor Cathalynn Labonté-Smith.

Table of Contents

About the AUthOrcccccsmismmmissmmss s ———— XV
About the Technical ReVIEWErccucsusesmmsssmsssmsssmmsssmsssssassssssssnss xvii
Acknowledgments........ccucrmmssenmmssnssssssnsssssnsssssnnssssnsssssnnssssnnssssnnssssnnss Xix
Introduction.........ccvcmmismms s ————— Xxi
Chapter 1: How to Set Up the Development Environment............ccuiueee 1
About the Raspherry Pi PiCOccccveevevernienerssersesse s sessesessesssssssessessessssessessens 3
About the HOSt COMPULETeveveeererereeserere e s s sreseesesse e ssesesesaesaessssessesaens 4
How to Solder and WIre..........ccinnminnnsssssssss s 5
How to Install SOftware...........cvirnrni s, 6

A Simple Program to Ensure Things Are WOrkingccccveveevnesesenerensesesssnensnns 7
Create Some Helper SCrpt FilesSccoouvvnerrinnniesnesenese e 8
1] 4= O 9
Chapter 2: Our First Assembly Language Programcccccureusssnnnnas 11
10 Reasons to Use Assembly LANQUAQEc.cceeervercerreerersersesssenessesses e saessennas 12
Computers and NUMDEIS ... 15
ARM Assembly INSTrUCLIONSccovverererernrcrenesere e 17
CPU REGISIEIS....coueerreerineressese e res s s e s sn e 18

ARM Instruction FOrmat...........cooiinmsss e 19
RP2040 MEMOTY.....ciciieririeriiessesersessse s ssessse s s e s s sse s e s s se s s s s s saesae s s 21
About the GCC ASSEMDIEN ... 23

Ly o O[] o O 23

TABLE OF CONTENTS

Our First Assembly Language File.........ccccvvvrerinnernnseniensnsensesessssessessessessssessessens 28
About the Starting CommMENt..........ccccocvvririernrrrrre e 28
WHErE 10 STart ..o 29
AsSembIy INSTFUCTIONScoevvcriererr e 30
DALA ..o s 31
Program LOGIC ...coueeerrenerrnserenesessenessesesessessssssessssesssssssssssssssssssssssssssnssssnsssanes 31

Reverse Engineering Our Program..........cccoveenrenesnsessssesssssesessesssssssssssessssesenns 33

SUMMANY....eieerereere e n e ne e nr e e 36

EXBICISES...cveuereeererueerreeree s se s se s s s e s re e e e e 36

Chapter 3: How to Build and Debug Programsc.ccoussssssnsssssnsnnas 39

CMKEeveereeressese e sesse e e e s e e e se s e s nee e nns 39

LC L 1 U S 42

Print STatements ... s 45

(€12 TP TORTTT T TTT 46
Preparing 10 DEDUQG.......ccoeveirire st 47
Beginning GDB..........cccvvrrerererrererenssseresesss s s e sessessessessssesessesassessesaesaes 48

1T304 7 55

EXBICISES.c.cviriuiecirrsisie s 56

Chapter 4: How to Load and Addcousmmmsesmsssssssnsssansssassssssssassssans 57

About Negative NUMDEIS ... 57
About TWo’s COMPIEMENTccccrierererrerrererrrrere s s se s e ssesnees 57
About Raspberry Pi 0S CalCulatorcccvvevrrerierevesensessesesessesesesessessessens 59
About One’s COmMPIEMENT..........ccvcererrrrierienr e saens 60

Big- VS. Little-ENdianccocervvirinienenin s s sessessesnens 60
ADOUL Bi-ENi@N........cccvrrererrierinesessesene s s sss s ssssanens 61
Pros of Little-Endianccovcevvenresnncnnesessse s 61
Cons of Little-Endianc.coocorenernsenenenerssesessesessse s sessssessesesessesessssessnnes 62

TABLE OF CONTENTS

How to Shift and Rotate REgISIErS........cccvvvrrerirrernerierenessensesessssessessessessssessensens 62
ADOUL Carry FIAQ.......cccvererereerirerire et sesnenens 63
Basics of Shifting and Rotatingcccceevinnininnncncnr e 63

HOW 10 USE MOV......coeeerecrree s 65
Move IMMEdIALe..........cccevvcerrerrree s 65
Moving Data from One Register to Another Using Register MOV................... 65

ADD/ADCocvevrererererereresesesesesssssssssss s ssssa s e e sn s s s s s s s s sssnananas 66
A WIth CarTY...ceeveveeserrereresesesesesessesessessssessessessessssessesssssssessessesssssssessens 68

SUB/SBC.......cciuiusrrrernsnssssssssssesesesesesess s sssssssssssssssssssssssssssssssnssessssssssssssssssasanas 69

Shifting and ROatingccovoeererrncrrerr s 70
Loading All 32 Bits 0f @ REGISIer........c.cecererererrrenrresers s 71

MOV/ADD/Shift EXAMPIEeeerrererreeriserisesesesessssesessessssessssesesssssssssessssssessssesenns 72

1T304 O 77

(] (0T T 78

Chapter 5: How to Control Program FIOWccceummsssmsnnesssssnnssssssnnnnes 79

Unconditional Branch...........coooeerrernncereseee e 79

ADOUL the CPSR ..o s 80

Branch on Condition........c.cccvverenenennsesnesssesess e seseens 81

About the CMP INSTIUCTIONcccocvereiiiiriri e 82

00 1S 83
L0 S o] o OO 83
WHRIIE LOOPS ...viricrienirinene s r e s st ses e nnens 84

H/TREN/EISE ... s 85

LOGICal OPEIAOrS.....ccceveerreerrresese s 86
AND. ...ttt bR e 87
EOR ..t e 88

vii

TABLE OF CONTENTS

0] 3 OSSP 88
BIC ...ttt 88
MVN e s bbb a e e e 88
T et R e p et e 89
DesSign Patterns........cccuvcerivrnesineserse s 89
Converting Integers t0 ASCILccocvevrrninieninnrrene e s sesaens 90
Using Expressions in Immediate Constants..........ccococcvvrirvvnsenieniennsensenens 94
Storing a Register 10 MEMOIY.......cccccvvvierererrerene s sessese e sessesse e sessessessenes 9
Why Not Print in DeCimal?.........cccoinininnnsnsnse s sessessens 95
Performance of Branch INStructionscccooeeveernsennnenenesc e 95
SUMMANY....eeiieerrisere s e e e e 96
EXBICISES...eivierrrerrsestrseserre s s e s 97

Chapter 6: Thanks for the Memoriesccccnmmmmmsssssnnnnmsmsssssssssnnee 99

How to Define Memory CONtentsccccvverernnnienierssensenese s sessessesessesessees 100
How t0 Align Data.........ccoceviininiresr s snens 103
How to Load @ RegiSter......c.cccuvrvrirnnnsnnss e 104
How to Load a Register with an Address.........ccuvrerenernsesessesesesesensesesenens 104
How to Load Data from MemOry.........ccccurerernnmrnsesnsesessssessssesessesessssessssenens 106
Optimizing Small Read-0nly Data ACCESScccerererrerierernnessersersesessessenaes 108
Indexing Through MEMOIY......ccccveverrerrerereeserseressessssessessessssssessessssessessesses 109
HOW 10 STOre @ REQISIENcvvevreierererererrere s res s sae e e s s e s e ssesaeses e ssesnees 112
How to Convert t0 UPPErCasecccvvrvrenennsnsenne s sessessessssessessens 112
How to Load and Store Multiple RegiSters........ccourerrnrernnenenesesesseseseseseenes 118
SUMMANY....eieierireserese e r s sr e s e ne e ne s 119
EXEICISES...evierrrrerrrreertesese s et s st p e ne s 119

viii

TABLE OF CONTENTS

Chapter 7: How to Call Functions and Use the Stack...........ccccnrvisnns 121
About Stacks on the RP2040.............ccccoerrrmenenenerensnsesesesessssesesesessssssssesens 122
How t0 Branch With LinK..........cccoeerrenerencrrcrreses e 123
About Nesting FUNCHON CallS..........coccovreenerenerescrresere e 124
About Function Parameters and Return Valuesc.cceevveevnnenenesesnsesnnnenns 126
How to Manage the REgiSIerS.......ccccvvvrrniriernninienie s sesesse e sesesse s 127
Summary of the Function Call AIgorithmccccvvvevrinininn e 128
More on the Branch INStructions............ccoeovivnnnnncs e 129

AboUt the X FaCTOr......ccc e 130
Uppercase ReVISIted ..o s 131
ADOUL STACK Frames.......ccoveerieerrnenrrese s sesnnnens 137

Stack Frame EXample.........ccccovvevninernsennesnsse s 138
HoOW 10 Create MaCIOS.........covuiuemrenerinrssssse s s 139

About Include DireCtiVeccorirerenmrncrrse s 142

How 10 Define @ MACKOcccvueeereecrerceree e 142

ADOUL LADEIS......c.eeeceeeeeeere e e 143

WRY MECIOS?......ocerercerree s se s s s 144
SUMMANY....ceiieerrresreese s s e e np e 144
o (C] (1T N 145

Chapter 8: Interacting with C and the SDK...........ccccsremmnrnsssnnnnesssnnns 147

How to Wire Flashing LEDScccvivivnininnsns s 148

How to Flash LEDS with the SDK.........ccoorrerreeeerecrererer e 149
How to Call Assembly Routines from C........c.cccovvenmrerrnsennnesesene s 154
How to Embed Assembly Code Inside C Code..........coourrnrererrenernnernsesessesensanes 156
L1114 OO 160
EXBICISES...cvivieeeeeri s e 160

ix

TABLE OF CONTENTS

Chapter 9: How to Program the Built-in Hardware..........ccocecenneissnnns 161
About the RP2040 Memory Mapcoovvrvrerennsinsene s ssssessesnes 161
AbOUL C Header FilES.......ccoc e 162
About the Raspherry Pi PiCO PiNS.........ccccorenrnnnnscsenesesssesessesessesesessesessenens 164

How 10 Set @ Pin FUNCTIONccovcevicerce e 165
About Hardware Registers and CONCUITENCYccucevererrerierensenensessessesessenenses 167
About Programming the Padsccvvvrvrieninnnsnsenie s sessesessssessessesnes 169
How 10 INitialize SI0 ..o s 169
How t0 Turn @ Pin ON/Off ... 170
The Complete Programc.ccoecvnenerenesnsesesesesese s sesesessssessssesessssesssnens 171
SUMMANY....ceiviereeerrrese e r e nr e e 174
EXBICISES...eivierrrsesrrreerresesesse e s s s sr s s e e ne e p s 175

Chapter 10: How to Initialize and Interact with Programmable 1/0....177

About PIO ArChiteCIUNEcvcecccereris e 178
About the PIO INSIIUCLIONScccocvrrereecrerrriseesese s sssesens 180
Flashing the LEDS With POcccoiininininncnsn s 181
PI0 Instruction Details and EXamplesccvvvnvnirnnnsnneninsn s sessessens 187
UMIP..c.c e 187
WAIT ..ot bbb 188
IN R 188
OUT ettt 189
PUSH.....cecce sttt 190
PULL .ottt ss s ettt 190
VIOV ...ttt e b 191
IRQ..ceeecie e e 192
3] =3 ST 193

TABLE OF CONTENTS

About Controlling TiMING......cccevvrerrerrernnenrerereressesere e ssesessessessessssessesses 193
About the CIOCK DIVIAETcccevrerreeeereresrseesesesesssesesesesesssssesesesssssssssseens 193
About the Delay Operand............coeeeerrncrerneneresernsesesese e 195

ADOUL SIAE-SEL ..o 197

More Configurable OPtioNnScccuevmerrsnserssesrssesese s s sessesessenes 198

SUMMAIY . ueitiirerere e s e s s s b e e e e s s b b e e s e aesae e e e naennens 199

(e (T T 200

Chapter 11: How to Set and Catch Interrupts.......c.ccusccmrrnssnnnnnrsssanns 201

Overview of the RP2040’s INterruptscccvvvnvrirenn s 201
About the RP2040’s INTErrupts.......cccviviinnnieniennsnsessese e sessessessens 203
About the Interrupt Vector Table ... 205
About Saving Processor Stateccvveevneneresesnsesssesess s ssssesenns 206
About INterrupt PrioritieSc.ccveveecercerere s ssessens 207

Flashing LEDs with Timer INterruptS.......ccccvvvrirvnsnn s 208
About the RP2040 Alarm TIMer.......ccceverereresesesesesesssssssssssssssssssssssssssssssnssenes 209
Setting the Interrupt Handler and Enabling IRQO.........c.cccoovinirienniensennen 210
The Complete Program..........ccocrenrnsnennesesesesessesesssse e senns 211

About the SVCall Interrupl.........oovvirinir e 218

USING The SDK ..ot 218

LT 14114 S 218

(] (01T T 219

Chapter 12: Multiplication, Division, and Floating Point................... 221

MUHPHICALION ... s 221

D1] 3 S 222
About Division and INTErrUPLScccveeriererrsrr e 224

TABLE OF CONTENTS

INTEIPOIALION.......eiceree e ——————— 225
Adding an Array of INTEQErS.......cccccvirirrrr e 227
Interpolating Between NUMDETS........c.cccvivnvniniennsnns e 229

FIOAtiNg POIN ... s 232
About the Structure of the Boot ROMccccveernnnnnenensse e 233
Sample Floating-Point Programccccvvvnvniennnnsnsessesssessesessssessessesees 236
Some Notes on C and printf.........ccccecvrrievnnninseniens s ssesessesessessesnes 238

SUMMAIY.c.veitetrerereseesere s e sese e e ssesessessesaesessesaesaese e e saessesaesessesaesaessssensessens 239

o CC] (01T 240

Chapter 13: Multiprocessing ...cccuuussssssssssssesssssssssssssnsseessssssssssnsnnsnnss 241

ADOUL SAVING POWETceveerircrree e 241

About Interprocessor MailDOXEScocvvrererenernsesinesesese s sesesese s sessesssseens 242

How to Run Code on the Second CPU. ... 244

A Multiprocessing EXample.........ccocvverinininnnninsisse s sesenns 246
About FibonacCi NUMDETS ... 246
AbOUL FACLOALS........ceeereeererereree e 246
The Complete Program..........cceoerenrnscnennenesesesessesesese s e sessesenns 247

ADOUL SPINIOCKS ..ot e 253
Regulating Access to @ Memory Table...........cccrievvnnrnieninsnsensesesessessenaens 254

AWOrd on the SDK........coiiiiinrreese e s s e 261

SUMMAIY .. veitetrererereesere e sesse s e ss e e ssessesae e sesaesaeseesessesassaesessesaesasssssensessens 262

o CC] (0TS 262

Chapter 14: How to Connect Pico 10 10Tccocvnmemmmmmmrnnnsssssssssnnnnnnnas 265

About the RP2040’s Built-in Temperature SENSor..........ccvrvevvvnsenseresessensenes 266

About Home-Brewed Communication Protocol............ccccvvvevnvenenenennsesnnenens 270

About the Server Side of the Protocol............ccccovrmnennennsnsssssseseens 271

xii

TABLE OF CONTENTS

About the RP2040’S UARTccoririeenererinsssesesessssssesesesessssssssesssssssssssssnsens 273
Mastering Math ROULINES.........cccvrinnrnr s 278
Viewing the Main Program...........cccoovvninninnnsnncniss s ssssessessesnes 282
About loT, Wi-Fi, Bluetooth, and Serial Communicationscceccvviiniiniinnnns 286
SUMMANY ...t r e e e ne e e e e e 287
EXEICISES...civierrrserrrreerreesis s s e 288
Appendix A: ASCII Character Set........cunmmmmmmmmnnmmmmmmssssssnnmsmmmmnnnn. 291
Appendix B: Assembler Directives......cuusseeessnmmrssssssssssssssnsessssssssnnnnns 303
Appendix C: Binary Formats.........cccccummmmmmmmmmsnnmmmsmmsmsssssssnnsssssssssnnnes 305
01 T <] £ S 305
Floating POiNt.......cccoiiiricn s 306
AQArESSES ...eevvereereeeerererressee s st s e e sse s se s e e sae s e seeeesaesaesaeesessesaesseeneesaesaenanens 306
Appendix D: The ARM Instruction Set........cccccrrrrnissssmmnnnnnmssnsssssnnnnns 307
ANSWErS 10 EXErCiSesS .uuurrrrssssssnmmmnsssesssssssssnnnnnsssssssssssssnnnnssssssssssnnnnnns 311
CRAPEEE 2 ... 311
CRAPTEE 4 ...t e 311
{181 0 (T OSSN 311
{81 0] (T RS 312
{081 0] T o RS 312
INA@X . ciiiiissnnnmnnnnnnrssssssssnnnnnnnnnessssssssnnnnnnnnesssssssnsnnnnnnnesssssssnnnnnnnnnesssssnnn 313

xiii

About the Author

Stephen Smith is also the author of the
Apress titles Raspberry Pi Assembly Language
Programming and Programming with 64-Bit
ARM Assembly Language. He is a retired
software architect, located in Gibsons, BC,
Canada. He’s been developing software since
high school, or way too many years to record.
He was the chief architect for the Sage 300 line

of accounting products for 23 years. Since
retiring, he has pursued artificial intelligence,
earned his Advanced HAM Radio License, and enjoys mountain biking,
hiking, and nature photography, and is a member of the Sunshine Coast
Search and Rescue group. He continues to write his popular technology
blog athttp://smist08.wordpress.comand has written two science
fiction novels in a series, Influence and Unification, available on
http://amazon.com.

http://smist08.wordpress.com
http://amazon.com

About the Technical Reviewer

Stewart Watkiss is a keen maker, programmer, and author of Learn
Electronics with Raspberry Pi. He studied at the University of Hull, where
he earned a master’s degree in electronic engineering, and more recently
at Georgia Institute of Technology, where he earned a master’s degree in
computer science.

Stewart also volunteers as a STEM ambassador, helping teach
programming and physical computing to schoolchildren and at Raspberry
Pi events. He has created a number of resources using Pygame Zero, which
he makes available on his website (www.penguintutor.com).

xvii

http://www.penguintutor.com

Acknowledgments

No book is ever written in isolation. I want to especially thank my wife,
Cathalynn Labonté-Smith, for her support, encouragement, and expert
editing.

I'want to thank all the good folk at Apress who made the whole process
easy and enjoyable. A special shout-out to Jessica Vakili, my coordinating
editor, who kept the whole project moving quickly and smoothly. Thanks
to Aaron Black, senior editor, who recruited me and got the project started.
Thanks to Stewart Watkiss, my technical reviewer, who helped make this a
far better book.

Xix

Introduction

There is an explosion of DIY electronics projects, largely fueled by the
Arduino-based microcontrollers and Raspberry Pi computers. Electronics
projects have never been easier to build, with hundreds of inexpensive
modular components to choose from. People are designing robots, home
monitoring and security systems, game devices, musical instruments,
audio systems, and a lot more. The Raspberry Pi Pico is the Raspberry

Pi Foundation’s entry into the Arduino-style microcontroller market. A
regular Raspberry Pi computer runs Linux and typically costs from $35 to
$100 depending on memory and accessories. The Raspberry Pi Pico costs
$4 and doesn’t run an operating system.

To power the Raspberry Pi Pico, the Raspberry Pi Foundation designed
a custom system on a chip (SoC), called the RP2040, containing dual ARM
Cortex-M0+ CPUs along with a raft of device controller components. This
combination of a powerful CPU and ease of integration has made this
a great choice for any DIY project. Further, Raspberry sells the RP2040
chips separately, and other companies such as Seeed Studio, Adafruit, and
Pimoroni are selling their own versions of this microcontroller with extra
built-in features like Bluetooth or Wi-Fi. You can even buy RP2040 chips
yourself for $1 each and build your own board.

At the basic level, how are these microcontrollers programmed? What
provides the magical foundation for all the great projects that people
build on them? Raspberry provides an SDK for C programmers as well
as support for programming in MicroPython. This book answers these
questions and delves into how these are programmed at the bare metal
level and provides insight into the RP2040’s architecture.

INTRODUCTION

Assembly Language is the native, lowest-level way to program a
computer. Each processing chip has its own Assembly Language. This
book covers programming the ARM Cortex-MO0+ 32-bit processor. To learn
how a computer works, learning Assembly language is a great way to get
into the nitty-gritty details. The popularity and low cost of microcontrollers
like the Raspberry Pi Pico provide ideal platforms to learn advanced
concepts in computing.

Even though all these devices are low powered and compact, they're
still sophisticated computers with a multicore processor, programmable
1/0 processors, and integrated hardware controllers. Anything learned
about these devices is directly relevant to any gadget with an ARM
processor, which by volume is the number one processor on the market
today.

In this book, we cover how to program ARM Cortex-MO0+ processors
at the lowest level, operating as close to the hardware as possible. You will
learn the following:

¢ How to format instructions and combine them into
programs, as well as details of the operative binary data
formats

o How to program the built-in programmable I/0,
division, and interpolation coprocessors

e How to control the integrated hardware devices by
reading and writing to the hardware control registers
directly

¢ How to interact with the RP2040 SDK

The simplest way to learn these tasks is with a Raspberry Pi Pico
connected to a Raspberry Pi running the Raspberry Pi OS, a version of
Linux. This provides all the tools needed to learn Assembly Language
programming. All the software required for this book is open source and
readily available on the Raspberry Pi.

xxii

INTRODUCTION

This book contains many working programs to play with, use as a
starting point, or study. The only way to learn programming is by doing, so
don’t be afraid to experiment, as it is the only way to learn.

Even if Assembly programming isn’t used in your day-to-day life,
knowing how the processor works at the Assembly Language level and
knowing the low-level binary data structures will make you a better
programmer in all other areas. Knowing how the processor works will
let you write more efficient C code and can even help with Python
programming.

Enjoy your introduction to Assembly Language. Learning it for one
processor family helps with learning and using any other processor
architectures encountered throughout your career.

Source Code Location

The source code for the example code in the book is located on the Apress
GitHub site at the following URL:

https://github.com/Apress/RP2040-Assembly-Language-Programming

The code is organized by chapter and includes answers to the
programming exercises.

xxiii

https://github.com/Apress/RP2040-Assembly-Language-Programming

CHAPTER 1

How to Set
Up the Development
Environment

Microcontrollers like the Raspberry Pi Pico are typically utilized as the
brains for smart devices, like microwave ovens, dishwashers, home
security systems, weather stations, or irrigation monitors and controllers.
At best, they have a small display and perhaps a couple of buttons for
taking commands; however, they are still fully functioning computers.
The programs that run on them can be quite powerful and sophisticated.
Since the microcontroller usually doesn’t have a keyboard, mouse, or
monitor, we develop their programs on a regular computer, known as a
host computer, and then upload the program to the microcontroller to test
and finally deploy it.

The Raspberry Pi Pico is a board built around Raspberry’s RP2040
ARM CPU chip. Not only is this the heart of the Raspberry Pi Pico, but
also Raspberry sells this chip to other manufacturers, including Adafruit,
Arduino, Seeed Studio, SparkFun, and Pimoroni. These other companies
produce boards like the Raspberry Pi Pico but with different feature sets.
For instance, some contain Wi-Fi or Bluetooth functions, easily connect
to rechargeable batteries, or are in much smaller form factors. In this
book, when we refer to the RP2040, it applies to all the brands of RP2040

© Stephen Smith 2022 1
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9_1

https://doi.org/10.1007/978-1-4842-7753-9_1

CHAPTER 1 HOW TO SET UP THE DEVELOPMENT ENVIRONMENT

boards. However, in some cases, we will talk about a specific board,
perhaps, because we are discussing Wi-Fi or are referring to specific wiring
connections for one board.

Programming the RP2040 in Assembly Language is the main emphasis
of this book, but we want to do this by studying real working programs.

To do this, we need to hook up our microcontroller to various pieces of
hardware. This way we can see programs that perform useful tasks and
learn all the flexible and powerful features the RP2040 has to connect to
external sensors, controllers, and communication channels. To begin with,
we set up the Raspberry Pi Pico on an electronics breadboard, so we can
easily wire in the various devices to play with.

This chapter is concerned with physically setting up the Raspberry Pi
Pico on a breadboard and wiring it up to a host computer to effortlessly
program and debug programs, as well as hook up other components as we
encounter them. The Getting started with Raspberry Pi Pico guide (from
www.raspberrypi.org/documentation/rp2040/getting-started/)is
an excellent reference on how to do these fundamental tasks. We will
not duplicate the contents of the guide; instead, we will point out the
important parts that are required for Assembly Language programming,
debugging, and playing with the sample programs in this book.

To run most of the programs in this book, you will need

e A Raspberry Pi Pico

An electronics breadboard

o Pins to attach the Pico to the breadboard
e Miscellaneous connecting wires

e Aselection of LEDs

e Asoldering iron and solder

o A Raspberry Pi 4 running Raspberry Pi OS

http://www.raspberrypi.org/documentation/rp2040/getting-started/

CHAPTER1 HOW TO SET UP THE DEVELOPMENT ENVIRONMENT

About the Raspberry Pi Pico

The heart of the Raspberry Pi Pico is a new chip developed by Raspberry
and ARM. This chip is a system on a chip (SoC) that contains a dual core
ARM Cortex-M0+ CPU, 264KB of SRAM, USB port, and support for several
hardware devices. Compared to a full computer like the regular Raspberry
Pi, the Raspberry Pico lacks a video output port, an operating system,

and USB ports for a keyboard and a mouse. But it is possible to connect
displays and input devices to the Raspberry Pi Pico, as we'll see later in the
book. The specialty connections and input devices aren’t used for general-
purpose computing; rather, they solve specific problems, such as powering
a vending machine and monitoring a greenhouse.

Unlike the CPUs found in desktop and laptop computers, the RP2040
doesn’t contain a floating-point unit, vector processing unit, or graphic
processing unit. However, one thing it has that regular CPUs lack is a set
of eight programmable I/0 (PIO) coprocessors. These PIOs have their
own Assembly Language and can handle many I/O protocols and tasks
independent of the two CPU cores. We'll cover PIOs in Chapter 11. If you
already have your RP2040 board wired up and know how to download and
debug C programs, then you might want to skip ahead to Chapter 2.

The RP2040 may look underpowered when comparing it to a modern
Intel, AMD, or ARM processor, but for the price, it is quite a powerful
computer. Table 1-1 compares the RP2040 to some older and newer
computers as well as competitors’ microcontrollers.

CHAPTER 1 HOW TO SET UP THE DEVELOPMENT ENVIRONMENT

Table 1-1. Comparison of the Processing Power of the RP2040

Computer CPU Speed (MHz) Memory (KB) Bits Cores
Apple I MOS 6502 1 48 8 1
IBM PC Intel 8088 4.77 640 16 1
Arduino Nano ATmega 328 16 2 8 1
Arduino Due ~ ARM M3 84 96 32 1
RP2040 ARM MO+ 133 264 32 2
Pi Zero ARM A53 1024 524,288 32 1
Pi4 ARM A72 1536 8,388,608 64 4

About the Host Computer

Since microcontrollers don’t have a keyboard, a display, or even an
operating system, their programs are written on a host computer. For
RP2040-based microcontrollers, this could be on a MacOS, Windows,

or Linux-based computer. The Raspberry Pi Pico documentation has
instructions on how to connect it to all these platforms. The easiest solution
is to use a Raspberry Pi 4 as the host vs. using a Windows or Mac computer.
Raspberry has made this easy with a complete installation script and clear
instructions on how to wire the Raspberry Pi 4 and Raspberry Pi Pico
together. The wiring solution of these two boards is the easiest one since
the Raspberry Pi 4 already exposes all the necessary pins via its GPIO pins.
In this book, we’ll use the Raspberry Pi 4, point out the features we will be
using, and let you follow the Raspberry-provided documentation to set it up.

CHAPTER1 HOW TO SET UP THE DEVELOPMENT ENVIRONMENT

How to Solder and Wire

You can’t do much with a Raspberry Pi Pico without doing some soldering.
Without soldering, you can download programs to the RP2040, flash the
onboard LED, and send data back out the USB port to the host computer.
However, even to just debug a program, you must do some soldering. The
easiest way to set things up is to solder a set of pins to each side of the
board, so it can be inserted into an electronics breadboard, which then
allows us to connect things up without further soldering. This is great for
experimenting. Typically, we would use a new RP2040 board to solder into
a final project. At $4 each, there isn’t a significant overhead in having a
development board and adding new boards to the package when you are
finished. To perform debugging requires you to solder pins to the three
debugging connections on the end of the board.

The minimum wiring needed is the following three connections
between the Pico and the Raspberry Pi 4:

1. Usinga micro-USB cable
2. Viathe three debugging pins
3. Viaaserial port using pins 1, 2, and 3

Don’t be scared of soldering; it is actually quite simple and fun. The
main trick is to heat up the area where you want the solder to go and touch
a bit of solder there. Don’t melt it onto the soldering iron’s tip and then try
to drip it from there. Some vendors provide an option to purchase boards
with the pins presoldered for a few dollars extra. Others provide the pins
separately, and it is up to you to ensure they are included in your order.
Even if the main pins are presoldered, chances are you are going to need to
solder pins to the three debug pads. Figure 1-1 shows the wiring, minus the
USB cable, of a Raspberry Pi Pico connected to a Raspberry Pi 4.

CHAPTER 1 HOW TO SET UP THE DEVELOPMENT ENVIRONMENT

Figure 1-1. A Raspberry Pi Pico installed in a breadboard and
connected to a Raspberry Pi4. The USB cable was removed for clarity.
Three LEDs are connected as well.

Note If you are using an RP2040 board other than the Raspberry Pi
Pico, then it is likely that the pins are in different locations on the board,
and you will need to adapt the wiring for the location of the pins.

How to Install Software

If you are using a Raspberry Pi as your host computer, then this is
straightforward. Use the Raspberry Pi OS as your operating system.
This simplifies installation, since it runs 32-bit ARM code and shares
development tools with the Raspberry Pi Pico and other RP2040-based

CHAPTER1 HOW TO SET UP THE DEVELOPMENT ENVIRONMENT

boards. The pico_setup.sh script downloads and installs everything
required to develop code for RP2040-based systems. As Raspberry’s
Getting Started guide documents, you get pico_setup.sh using wget:

wget https://raw.githubusercontent.com/raspberrypi/pico-setup/
master/pico_setup.sh

This script sets up both C and Assembly Language programming.

The Getting Started guide includes instructions for working with Visual
Studio Code, which you are welcome to use, but we won’t be covering in
this book. This book covers text files that can be edited in any editor, using
cmake and make for building, gdb and openocd for debugging, and the
minicom for communications.

A Simple Program to Ensure Things Are
Working

The easiest way to ensure everything is working is to compile and play with
a couple of the SDK examples. The Getting started with Raspberry Pi Pico
guide walks you through how to do this. Here, rather than duplicate, we’ll
list the key things you need to be comfortable with, since we will be doing
them over and over throughout this book. Here is what you need to know:

1. How toload a program by powering on the Pico
while holding down the BootSel button and copying
a program to the shared drive

2. How to compile a program to either send its output
to the USB or serial port

3. How to use the minicom to display the output that
the Pico is sending

CHAPTER 1 HOW TO SET UP THE DEVELOPMENT ENVIRONMENT

4. How to compile a program for debugging

5. How to use openocd and gdb to load and execute a
program for debugging

Tip Building a program requires running both cmake and make. It
isn’t always clear which part does what. If you make configuration
changes, it is best to delete and recreate the build folder ensuring
everything is built from scratch.

Create Some Helper Script Files

When you follow along with the Getting started with Raspberry Pi Pico
guide, there are quite a few long command lines to type in (or to copy/
paste). It saves quite a bit of time to create a collection of small shell scripts
to automate the common tasks. You can put these in $HOME/bin and then
add

export PATH=$PATH:$HOME/bin

to the end of the $HOME/.bashrc file. You also need to make these
executable with

chmod +x filename

Next, we need two scripts for minicom—one to listen on the UART and
one to listen on the USB, as follows:
File m-uart:

minicom -b 115200 -o -D /dev/serialo
File m-usb:

minicom -b 115200 -o -D /dev/ttyACMO

CHAPTER 1 HOW TO SET UP THE DEVELOPMENT ENVIRONMENT
To build debug, I have a script cmaked containing
cmake -DCMAKE BUILD TYPE=Debug ..

To run openocd, ready to accept connections from gdb, I have the
script ocdg containing

openocd -f interface/raspberrypi-swd.cfg -f target/rp2040.cfg

To run gdb-multiarch where the elf file to be debugged is passed as a
parameter, [have gdbm containing

gdb-multiarch $1

When gdb starts, we need to connect to openocd. We can automate
this by creating a .gdbinit file in $SHOME. This file then contains

target remote localhost:3333

Note This .gdbinit will be used anytime you start gdb, so if you
need to debug a local file without using openocd, then you might
want to rename this file while you do that.

Summary

This chapter is the starting point. We haven’t done any Assembly Language
programming yet, but now we are set up to write, debug, test, and deploy
programs written in either C or Assembly Language. The Raspberry Pi

Pico is connected to the Raspberry Pi 4 through a USB cable, a serial port,
and the debugging port. The Pico is installed in an electronics breadboard
ready to have other components connected to it. In Chapter 2, we will use
all these tools to start our journey with RP2040 Assembly Language.

CHAPTER 2

Our First Assembly
Language Program

Most of the functionality of a Raspberry Pi Pico is contained in the custom
RP2040 chip that contains dual core ARM Cortex-M0+ CPUs. The ARM
processor was originally developed by a group in Great Britain, who wanted
to build a successor to the BBC Microcomputer used for educational
purposes. The BBC Microcomputer used the 6502 processor, which was a
simple processor with a simple instruction set. The problem was there was no
successor to the 6502. They weren’t happy with the microprocessors that were
around at the time, since they were much more complicated than the 6502
and they didn’t want to make another IBM PC clone. They took the bold move
to design their own. They developed the Acorn computer that used it and tried
to position it as the successor to the BBC Microcomputer. The idea was to use
Reduced Instruction Set Computer (RISC) technology as opposed to Complex
Instruction Set Computer (CISC) as championed by Intel and Motorola.
Developing silicon chips is an expensive proposition, and unless
you can get a good volume going, manufacturing is expensive. The ARM
processor probably wouldn’t have gone anywhere except that Apple
came calling looking for a processor for a new device they had under
development—the iPod. The key selling point for Apple was that as
the ARM processor was RISC, therefore, it used less silicon than CISC
processors and as a result used far less power. This meant it was possible to
build a device that ran for a long time on a single battery charge.

© Stephen Smith 2022 11
S. Smith, RP2040 Assembly Language Programming,
https://doi.org/10.1007/978-1-4842-7753-9_2

https://doi.org/10.1007/978-1-4842-7753-9_2

CHAPTER 2 OUR FIRST ASSEMBLY LANGUAGE PROGRAM

Unlike Intel, ARM doesn’t manufacture chips, it just licenses the
designs for others to optimize and manufacture chips. With Apple
onboard, suddenly there was a lot of interest in ARM, and several big
manufacturers started producing chips. With the advent of smartphones,
the ARM chip really took off and now is used in pretty much every phone
and tablet and even powers some Chromebooks, making it the number
one processor in the computer market.

The designers at ARM are ambitious and architect their processors
ranging from low-cost microcontrollers all the way up to the most powerful
CPUs used in supercomputers. ARM’s line of microcontroller CPUs is the
Cortex-M series. We are most interested in the ARM Cortex-M0+ used in
Raspberry’s RP2040 SoC. To make this chip inexpensive, the transistor
count is reduced as much as possible. The M-series CPUs are all 32 bits
but have fewer registers and a smaller instruction set than the full A-series
ARM CPUs like those used in the full Raspberry Pi. The M-series CPUs
are optimized to use as little memory as possible as memory tends to be
limited in microcontrollers, again to keep costs down. In this book, we’ll
see how the Cortex-M0+ works at the lowest level and will often have to
deal with the trade-offs made by the chip designers keeping transistor
counts down. There are several optional components available from ARM
for these chips. We'll consider the ones included in the RP2040, such as
the fast integer multiplier and divider (multiplication and division are an
extra).

10 Reasons to Use Assembly Language

You can program the Raspberry Pi Pico in MicroPython or C/C++. These
are productive languages that hide the details of all the bits and bytes,
letting you focus on your application problem. When you program in
Assembly Language, you are tightly coupled to a given CPU, and moving
your program to another CPU requires a complete rewrite. Each Assembly

12

