Foundation ActionScript
for Flash 8

Kristian Besley

Sham Bhangal

David Powers
with Eric Dolecki

et @

EEEEEEEEEEEEEEEEEEEE

Foundation ActionScript for Flash 8

Copyright © 2006 by Kristian Besley, Sham Bhangal, and David Powers

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-618-0
ISBN-10 (pbk): 1-59059-618-8
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked
name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor, New York, NY 10013.
Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA 94710.
Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has been taken in the
preparation of this work, neither the author(s) nor Apress shall have any liability to any person or entity with respect to
any loss or damage caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Downloads section.

Credits

Lead Editor
Chris Mills

Technical Reviewers
Kristian Besley and David Powers

Editorial Board

Steve Anglin, Dan Appleman,

Ewan Buckingham, Gary Cornell,

Jason Gilmore, Jonathan Hassell,
James Huddleston, Chris Mills,
Matthew Moodie, Dominic Shakeshaft,
Jim Sumser, Matt Wade

Project Manager
Denise Santoro Lincoln

Copy Edit Manager
Nicole LeClerc

Copy Editors
Ami Knox and Nicole LeClerc

Assistant Production Director
Kari Brooks-Copony

Production Editor
Kelly Winquist

Compositor
Dina Quan

Artist
Kinetic Publishing Services, LLC

Proofreader
Linda Seifert

Indexer
Julie Grady

Cover Image Designer
Corné van Dooren

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

CONTENTS AT A GLANCE

About the Authors xiii
About the Cover Image Designer XV
Introduction xvii
Chapter 1 InteractiveFlash 1
Chapter 2 Making Plans 29
Chapter 3 Movies That Remember 59
Chapter 4 Movies That Decide for Themselves 105
Chapter 5 More Power, Less Script 139
Chapter 6 Movies That Remember How to Do Things 185
Chapter 7 Objectsand Classes 221
Chapter 8 ObjectsontheStage 269
Chapter 9 Reusable Code and Realistic Movement 299
Chapter 10 Games and Sprites 351
Chapter 11 Drawing APl 409
Chapter 12 Adding SoundtoFlash 453
Chapter 13 Loading Dynamic Datawith XML 487
Chapter 14 Finishing the Futuremedia Case Study 525
Chapter 15 Advanced ActionScript: Components and Classes 559
Index 607

CONTENTS

About the Authors xiii
About the Cover Image Designer XV
Introduction xvii
Chapter 1 InteractiveFlash 1
Giving your movies instructions e 2
Working with the Actions panel 3
Direct typing o e 7
Who are you talking to? 12
Controlling movie clipsonthestage 12
Arguments . . . L 18
Listening to what your movies are tellingyou 20
EventsinFlash 20
Externalevents L 21
Internalevents 21
Introducing event handlers 22
Nesting spiders—argh! 22
Animating movie clips with ActionScript 25
SUMMANY . . 27
Chapter 2 Making Plans 29
Defining the problem e 30
Keep your ideas in a safer place thanyourhead 32
Storyboarding 33
Building your ActionScript L 36
Thinking fromthe topdown 36
Thinking from the bottomup 38
Flowcharting 41

Book project: Introducing the Futuremediassite 44
Solving problem 1 49
Solving problem 2 50
Solving problems 3and 4 54
Parting shots e 56
SUMMANY . . . e 56

CONTENTS

Chapter 3 Movies That Remember 59
Introducing variables 61
Values and types e 62
Creating variables and using them with literals and expressions 63
Naming variables 63
Creating variables 65

Using literal values e 66

USINg @XPressions v o o e e e e e e e e 67
Inputand output 72
Using string exXpressions o e e e 78
Working with numbers L 79
Other uses for numeric expressions 81
Working with Boolean values 82
Logicoperators e 83

ATTAYS . e 84
Reasons forusing arrays 86
Arrays let you store related information together 86

Arrays let you hold information in a specificorder 86

Arrays let you index informationo Lo Lo 87

Arrays let you link information L L 87
Creating a new array v it e e e e e 87
TYPING AN Array o e e e e e 89
Using variable values as offsets 89
Book project: Starting the Futuremedia site design 92
What youre goingtodo 92
What you're goingtolearn 93
Choosing and setting the stage size, 93
Setting up the timeline 94
Creating layout guides 95
Adding the position and statustext L. 97
Choosingafont 98
Addingthetext 98
Embedding thefont 101
Parting shots e 102
SUMMANY . . o o o e e e e e e e 103
Chapter 4 Movies That Decide for Themselves 105
Decision making e 106
Making decisions in ActionScript: The ifaction 107
Defining a decision 110
Alternative actions L 117
Acting on alternatives: The else action 118
More than one alternative: The else if action 119
Handling lots of alternatives: The switch action 123
Switching without breaks 126
Organizing your code in the correctorder 136
SUMMANY . . o o o e e e e e e e 136

Vi

CONTENTS

Chapter 5 More Power, Less Script 139
Timeline loops e 140
ActionScript loops 141
while loops L 141

Useful things to do with while loops 142
forloops e 152
NI . e 153
condition 153

NeXt . . 153

Some useful examples of forloops, .. 154
Simpleloop 154
Reverse loop e 154
Twoatatime 154
Looping through elementsinanarray 155
Applying an operation to all the elementsinanarray 155
Searching an array for a specificvalue 156
Cross-indexing a pairofarrays. 157
Hangman 158
Book project: Creating the static graphics 172
Setting up the timeline layers for your graphics 174
Creating the back strip 174
Adding structure to the Library 176
Creating the frame cutout 178
Revealing the frame cutout and finishingthe FLA 180
Partingshots L 180
SUMMANY . . o o o o e e e e e e e e e 181

Chapter 6 Movies That Remember How to Do Things 185
Breakingdownatask 186
Bundling actions and running them afterward 187

Using anonymous and named functions 187
Using functions to hideevilmath 188
Using functions to take care of repetitivejobs 191
Choosing which actions to bundle and where 192
Arguments and redundancy 194
Local variables and modularcode oL 195
Returning values from a function 198
Typing functions 200
Runningincircles 202
Nesting functions 207
Using nested functions 208
Using more function nesting to tidy up your script 210
Book project: Creating the dynamic graphics 213
SUMMANY . . o o o e e e e e 218

vii

CONTENTS

Chapter 7 Objectsand Classes 221
Introducing objects and classes 222
Type and object-oriented programming, 224
Classes, generalization, and abstraction 224
Seeing arraysinanew light 225
The Array constructor method 225

Other Array methods 227

Array properties e e 229
Creating classes and objects (instances) inFlash 229
Instances 230
The Objectobject 230
Viewing an objectinFlash 231
Constructors o e 232
Objects, objects, everywhere 236
Lurking objects e 236
Making ashowreel e 238
Book project: Initializingthecode L 256
Getting yourself comfortable 257
Initializing the site variables 259
Telling ActionScript about thestage 260
Sanity check 263
Setting up your tricolorcolors 264
Sanity check L 265
Finalwords 267
SUMMANY . . o ot o e e e e e e e e e e e e e e e e 267
Chapter 8 ObjectsontheStage 269
Movie clips and buttons as objects L 270
Symbol types and behaviors 273
Two sides of the same object 273
Working with Library items 274
Let chaosreign 279
Bitmap caching 281
The other side of bitmap caching 283
Bitmap cachingand RAM 284
Changing the appearance of a cached movieclip 285
When to use bitmap caching 287
Referencing different timelines with ActionScript 287
Different place, differentvariable, 287
Locating variables from inside an event handler function 288
Reusing handler functions o 289

The apply method e 293
Global variables 295
SUMMANY . . o o o e e e e e e 296

viii

CONTENTS

Chapter 9 Reusable Code and Realistic Movement 299
Breaking down big tasks into smallerones 300
Black-box programming 301
Creating simple components 302
Creating a modular set of playback controls 303
Dark Valentine e 311
Modular control of movie clips 314
How to simulate realistic movement 314
Motion with acceleration o 316
Trailing the pointer (@ mouse follower) 319
Understanding the inertialcode 324
Fine-tuning the component 325
Function-based modularcode 327
Swarming behavior 328
Taking the swarming effect forward, 332
Creating tweens with ActionScript 332
Using import to access the Tweenclass 333
How to use the Tween constructor function 334
Understanding the transition types 335
Book project: Setting up the color transition 338
Making it modular 338
Sanity check #1 340
Sanity check #2 344
Running the FLA: Theresults 346
Parting shots e 347
SUMMANY . . o o o e e e e e e e e e 348
Chapter 10 Games and Sprites 351
Whatisasprite? e 352
Control 353
External and internaldata L 353
Movement 358
Collision o 358
Planning zapper L 365
The game world (the main timeline) 367
gSCREEN_TOP, gSCREEN_BOTTOM, gSCREEN_RIGHT, and gSCREEN_LEFT 368
SCOME ot e e e e e e e e e e 368
level, skill, and accel 368
speed . .. e 368
shipDead, fired, and gSHIP_HEIGHT 368
The timeline 369

CONTENTS

Thecode 371
Globalconstants 371
The “start game” trigger e 373
The player (the ship) 376
The SwarmAlien 380

alienSpawn() e 381
onEnterFrame 381
alienBrain() L 381
alienReincarnate() 382
The SwarmAlien code L 383
Thebullet e 387
Thedebrisofwar 389

Book project: Navigation event handling 390
Sanity check #1 e 391
Adding the basic Ul animation, 391

navigate() and posTransition() 396

Adding typing 400

Sanity check #2 400
Creating a smooth transition L o 400
Parting shots 406
SUMMANY . . o o o e e e e e e 407
Chapter 11 Drawing APl, 409

Turtle graphics L e 410

Drawing lines e e 411

Drawing Curves e e 416
How the sketching codeworks, 421

Filling shapes 422

Creating a kaleidoscope e 425
Kaleidoscope math 426
Building the kaleidoscope engine 427

Book project: Color transition event handlinganddata 435
Wiring the colTransition() function 435

Thegameoplan 436

Fading color 437
Coding the color transition 438
Finishing the text transition, 440
Reviewing the codesofar 441
Data-driven sites (and why you need to understand them) 442
Defining data for Futuremedia 444
Parting shots e 450
SUMMANY . . o o o e e e e e e e e 451

CONTENTS

Chapter 12 Adding SoundtoFlash 453
Choosing the right sound format 454
Usingsound onatimeline 455
Using the ActionScript Sound class 458

Playing sounds from ActionScript 458
Attaching sounds to asound instance 458
Starting and stopping sounds 462
Creating dynamic soundtracks 464
Using ActionScript to control volume and balance 469

Dealing with large sound files 476
Using compression to reduce download times 476
Loading sound from externalfiles 478
Silence canalsobegolden 483
SUMMANY . o o o e e e e e 485

Chapter 13 Loading Dynamic Datawith XML 487

XML 10T . . e e e e e 488
How an XML document is structured 490
Using the right version and encoding 492

Using non-English text with XML inFlash. 492
Saving XML files in UTF-8 i 494

How tagsareused in XML e 496

Checking that your document is well formed 496

Loading XML into Flash L 497

Book project: Controlling structure and contentwith XML 503
Building the basic XML structure 503
Loading the XML datainto Flash 508
Creating the Futuremedia site’s data structure 511

How the page array is structured 511

Populating the actual datavalues 513
Moving to thenextlevel 517

Sanity check e 521

SUMMANY . . o o oo e e e e e e e 522

Chapter 14 Finishing the Futuremedia Case Study 525

Getting the data into the user interface 526
Amending the way events are handled 530
Reading content pages 531

Adding the backward path 533
Making sure the Ul knows where it needstoreturn. 533

How the buildicon() functionworks 536

Tidying up the user interface 540
A great big sanity check 544
Adding the status text messages 548
Adding a preloader 551
Loading your own contentinto thessite 555
Parting shots e 556

SUMMANY . . o o o e e e e e e e e e e e e e e e e 557

CONTENTS

Chapter 15 Advanced ActionScript: Components and Classes 559

Flash version 2 components 560
Getting more out of components with ActionScript. 563
Components and event handling 565

How event listenerswork L 565
Adding an event listener 569
Understanding the advantages of event listeners 570
Commonly used components 572
Radio buttons 572
Check boxes 575
Combo boxes (drop-down menus) 576
Using code hints with components 583
Loading components atruntime L L 584
Removing components e 586
Removing listeners 587

ActionScriptand OOP 587
The future road map for ActionScript 588
ISOOPforme? 589
How class-based codingworks 591
Extending classes 597
Extending a built-inclass 600
Storing classes in a central location L. 602

Final thoughts e 604

Index 607

Xii

ABOUT THE AUTHORS

Kristian Besley is a Flash/web developer working in education and
specializing in interactivity and dynamically driven content using
ASP.NET and PHP. In his spare time, he is also a lecturer in multi-
media at the higher education level.

Kristian has written a number of friends of ED books, such as the
Foundation Flash series (including the recently published
Foundation Flash 8), Flash MX Video, and Learn Programming with
Flash MX. He was a contributor to the Flash Math Creativity books,
Flash MX 2004 Games Most Wanted, Flash MX Video Creativity, and
countless others. He also writes for Computer Arts magazine and has
www. thefresh. co.uk produced freelance work for numerous clients, including the BBC.

Kristian currently resides in Swansea, Wales, the city of his birth. He is a fluent Welsh speaker and is
the creator of the first-ever Welsh translation search plug-in for Firefox and Mozilla (available from
http://mycroft.mozdev.org).

Sham Bhangal has written on new media for friends of ED since the imprint’s inception. In that
time, he has been involved in the writing, production, and specification of just under 20 books.

Sham has considerable working experience with Macromedia and Adobe products, with a focus on
web design and motion graphics. Creating books that tell other people about his favorite subjects is
probably the best job he has had (ignoring the long hours, aggressive deadlines, lost manuscripts,
and occasional wiped hard drives). If he was doing something else, he’d probably be losing sleep
thinking about writing anyway.

Sham currently lives in the north of England with his longtime partner, Karen.

David Powers is a professional writer who has been involved in
electronic media for more than 30 years, first with BBC radio and
television, and more recently with the Internet. This is his sixth book
for Apress/friends of ED on programming for the Web. Among his
previous titles are the highly successful Foundation PHP 5 for Flash
(friends of ED, ISBN: 1-59059-466-5) and Foundation PHP for
Dreamweaver 8 (friends of ED, ISBN: 1-59059-569-6). David’s other
main area of expertise is Japan. He was a BBC correspondent in
Tokyo during the late 1980s and early 1990s, and later was Editor,
BBC Japanese TV. He has also translated several plays from Japanese.

xiii

ABOUT THE COVER IMAGE DESIGNER

Corné van Dooren designed the front cover image for this book.
Having been given a brief by friends of ED to create a new design for
the Foundation series, he was inspired to create this new setup com-
bining technology and organic forms.

With a colorful background as an avid cartoonist, Corné discovered
the infinite world of multimedia at the age of 17—a journey of
discovery that hasn’t stopped since. His mantra has always been
“The only limit to multimedia is the imagination,” a philosophy that
is keeping him moving forward constantly.

After enjoying success after success over the past years—working for many international clients, as
well as being featured in multimedia magazines, testing software, and working on many other
friends of ED books—Corné decided it was time to take another step in his career by launching his
own company, Project 79, in March 2005.

You can see more of Corné’s work and contact him through www.cornevandooren.com or
www.project79.com. If you like his work, be sure to check out his chapter in New Masters of
Photoshop: Volume 2 (friends of ED, ISBN: 1-59059-315-4).

XV

INTRODUCTION

Welcome to Foundation ActionScript for Flash 8, the fourth edition of this legendary ActionScript
book.

ActionScript is, quite simply, the driving force behind Flash applications, allowing you to go beyond
simple tweened animations and give your movies intelligence, power, and class! The current version
of ActionScript in Flash 8, 2.0, is a fully featured, very powerful programming language.

But ActionScript is that scary code stuff that programmers do, right? Wrong. ActionScript adds
power and potential to your design work. It’s not going to turn you into a reclusive nerd who speaks
in 1s and 0s, and who only comes out after dark. It’s going to turn you into someone who finally has
the power to achieve his or her web design goals, rather than being hemmed in by frustrating
limitations.

And Flash 8 has a treasure trove of new features for you to play with. It has amazing new design fea-
tures such as filters and blend modes, features such as bitmap caching to enhance the speed of your
movies, exciting new video capabilities, a great new BitmapData API for manipulating images on the
fly, and much more.

If you know nothing or little about ActionScript, this book will provide you with a real foundation of
knowledge from which you can build some awe-inspiring structures. You’'ll learn all the important
stuff you’ll need to make that giant leap toward becoming an ActionScript guru.

What you need to know

You’ve picked up this book, so we guess that you have the Flash basics under your belt. You'll prob-
ably have built some basic timeline-based movies with tweens and so on, and you may have read an
introductory Flash book such as friends of ED’s acclaimed Foundation Flash 8. If you haven’t, we do
recommend looking at it; you can find it at www.friendsofed.com.

If you don’t have a copy of Flash 8 yet, you can download a fully functional 30-day free trial from
www.macromedia.com. You can use either the Basic or Professional edition of Flash with this book,
but we highly recommend going for Professional, as it features even more amazing functionality
than the Basic edition!

INTRODUCTION

FLAs for download

There’s a wealth of code and support files available for this book. They’re organized by chap-
ter at the Foundation ActionScript for Flash 8 page at www.friendsofed.com. Look under the
book option on the site’s main navigation to find it, and feel free to look around the site in

general!
ans Friends of ED | Designer to Desigrer I=}
Loy | @ G Bl | © huptiwmrienssoted com ¥ @ (= m
| @ Centing searved 7 Latest Headlines
Google 0 ¥4 G searen gy 8 TEE A Oneer gy Autetink] aurerin [opeions &
friendsof ()
A Cut to the Chase!
PIT T R TR I e All Killer, No Filler Content with Flash 8 Exssentials
7 ————
home books downloads resources contactus forums L
Tae. Foundation ASP for €55 Mastery: To sk up for Gur newsketter,
Dreamweaver 8 Advanced Web CAEBER AOLEF YOUT el
Standards Bdress=
! In this bock we laok Selutiona
spocifically at using =
Dreamweaver's bullt-in server You'll already know why
behaviors to bulld dynamic web sites you should be using €SS, so _
using ASP, Microscfts highly papular we dan't bare you with
clagsic server-side language, alang pages of theory; Instead, A
with Access or MySQL databases. this book Jumps straight oK R evaati
into practical solutions,
v far downlead at Adsbe Labs.
Flaeh & Essentile allowing you £ GAEWABE Sl sac warcon though
This bock cuts to the chase, y“:ﬁf‘:’:“ e e
getting you right up to speed PO o e,
asap with tho axeiting naw W Foundation Web Gur Processing book, is ol
features of the latest version of Flash, M. Design with couple of months away, 5o in the
withaut dwelling on what you already o Dreamweaver B meantime why not visit
leneve. f;'_ CodeTran for wom inspiration
We know thet you & 1
“~:= | Foundation ASP.NET for don't always require a full
Flash databaze driven site, su this "5 e
Whether you're a Flash :"t;'“”“.“ m; oo .
designer or an ASPNET o Ul D i snd Rustooy
o ey L LT create usable, Birian Taviee's wonderiul
::::!:‘nnm_m"[mlﬂf:ﬁ standards-campliant Rustboy, is new available a3 3
thorough grounding €0 INESIERING iy o Sl and limitedeedon vingi figura via
ot wwmdriendsofed com

The case study: Futuremedia

Throughout the course of this book you’ll create a website called Futuremedia from scratch.
You can access a fully functioning version of the website you’ll be building as you progress
through this book at the URL you’ll find on the downloads page (or you can go to
www . futuremedia.org.uk for the latest incarnation).

Centering the Futuremedia site in the browser

When you publish the Futuremedia site, you should use the following settings in the File »
Publish Settings » HTML tab:

INTRODUCTION

Publish Settings
Current profile: default m EYEEEILE]
(Forms | P oo,

[Flash Only B (il)
[Detect Flash Version
Version: & . 0 . 0
i i | Match Mavie m
Width: Height:
800 X 600 pixels

Playback: || Paused at start ™ Display menu
™ Loop] Device font

Quality: | High B

window Mode: (Window %)
HTML al (Default 1)
Scale: | Default (Show all) E

Horizontal: Vertical:
Flash | Center 4] [center =)

E Shew warning messages

(“publish) (Cancel) (ESOKED)

With these settings, you’ll see something like this in the browser (press F12 to publish the site
and view it in your browser):

[=Nala] index [

¥ 4G Seanch oy T N ety T, At autetin I aptians.

futuremedia

media people

XIX

INTRODUCTION

That’s fine, but most professional sites center the Flash site in the browser, so it looks some-
thing like this instead:

ana index P

F G search o T PR Gy, mutetink [Auern [opsians

futuremedia

media pecple

There’s no direct way of achieving this in Flash—you have to edit the HTML. To do this, find
the HTML file created by Flash (it will be in the same folder as the FLA), and open it in a text
editor such as Notepad. You'll see something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" s
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns=http://www.w3.0rg/1999/xhtml xml:lang="en" lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html;ws
charset=iso-8859-1" />
<title>index</title>
</head>
<body bgcolor="#666666">
<!--urls used in the movie-->
<!--text used in the movie-->
<!--
futuremedia
future work
media people
loading:
this is a skip-intro free site
-->

INTRODUCTION

<object classid="clsid:d27cdbbe-ae6d-=

11cf-

96b8-444553540000" codebase=w

"http://fpdownload.macromedia.com/pub/ =
shockwave/cabs/flash/swflash.cab#e
version=8,0,0,0" width="800" height=w
"600" id="index" align="middle">

<param
<param
<param
<param
<embed

name="allowScriptAccess" value="sameDomain" />
name="movie" value="index.swf" />
name="quality" value="high" />

name="bgcolor" value="#666666" />
src="index.swf" quality="high"w>

bgcolor="#666666" width="800" height=w
"600" name="index" align="middle"w»
allowScriptAccess="sameDomain" type='w»
"application/x-shockwave-flash"ws
pluginspage="http://www.macromedia.com/=
go/getflashplayer" />

</object>

</body>
</html>

This is XHTML, so you should really play ball and use CSS and <div> and , and no HTML
tables or table horizontal and vertical centering (not least because vertical centering of a table
doesn’t work in XHTML!). Add the following lines to create a CSS-based centered-in-browser

page:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns=http://www.w3.0rg/1999/xhtml xml:lang="en" lang="en">

<head>

<meta http-equiv="Content-Type" content="text/html;w=
charset=iso0-8859-1" />

<title>index</title>

<style type="text/css">

<l--
body

{

margin: Opx;
background-color:#666666;

}

#centercontent

{

text-align: center;
margin-top: -300px;
margin-left: -400px;
position: absolute;
top: 50%;

left:

50%;

INTRODUCTION

-->

</style>

</head>

<body>

<!--urls used in the movie-->

<!--text used in the movie-->

<!--
futuremedia
future work
media people
loading:
this is a skip-intro free site

-->

<div id="centercontent">

<object classid="clsid:d27cdb6e-ae6d-=
11cf-96b8-444553540000" codebase==»
"http://fpdownload.macromedia.com/pub/ =
shockwave/cabs/flash/swflash.cabie
version=8,0,0,0" width="800" height=w
"600" id="index" align="middle">

<param name="allowScriptAccess" value="sameDomain" />

<param name="movie" value="index.swf" />

<param name="quality" value="high" />

<param name="bgcolor" value="#666666" />

<embed src="index.swf" quality="high"w
bgcolor="#666666" width="800" height=\w
"600" name="index" align="middle"ws
allowScriptAccess="sameDomain" type=w=»
"application/x-shockwave-flash"ws
pluginspage="http://www.macromedia.com/=
go/getflashplayer" />

</object>

</div>

</body>

</html>

Note also that the deprecated bgcolor attribute has been removed from the <body> element
and replaced with a nice shiny new standards-compliant CSS rule.

INTRODUCTION

Layout conventions

To keep this book as clear and easy to follow as possible, the following text conventions are
used throughout.

Important words or concepts are normally highlighted on the first appearance in bold type.
Code is presented in fixed-width font.

New or changed code is normally presented in bold fixed-width font.

Pseudo-code and variable input are written in italic fixed-width font.

Menu commands are written in the form Menu » Submenu » Submenu.

Where we want to draw your attention to something, we’ve highlighted it like this:

Ahem, don’t say we didn’t warn you.

Sometimes code won’t fit on a single line in a book. Where this happens, we use an arrow like
this: =,

This is a very, very long section of code that should be written =
all on the same line without a break.

PCs and Macs

To make sure this book is as useful to you as possible, we’ve tried to avoid making too many
assumptions about whether you're running Flash on a PC or a Mac. However, when it comes to
mouse clicks and modifier buttons, we can’t generalize. There’s no two ways about it: they’re
different!

When we use the term “click,” we mean left-click on the PC or simply click on the Mac. On the
other hand, a right-click on the PC corresponds to holding down the Ctrl button and clicking
on the Mac. This is abbreviated as Ctrl-click.

Another important key combination on the PC is when you hold down the Ctrl key while you
press another key (or click something). This sort of thing is abbreviated as Ctrl-click. The Mac
equivalent is to hold down the Cmd key (also known as the “apple” or “flower” key) instead,
so you’ll normally see this written out in the form Ctrl+C/Cmd+C, or Ctrl+V/Cmd+V, for
example.

OK, now that we’ve taken care of the preliminaries, let’s get to work!

o ¥
L

5 /
r

Chapter 1

INTERACTIVE FLASH

What we’ll cover in this chapter:

m Introducing ActionScript and the Actions panel

m Using actions to give commands to a Flash movie

m Targeting actions at different things in a movie

m Listening to Flash and handling Flash events

m Writing callbacks so that real-time events can trigger actions
m Using variables as containers for storing information

CHAPTER 1

So, what’s this ActionScript business all about? You may well have done loads of great stuff with Flash
already, but you still keep hearing people say you’ve barely scratched the surface because you haven’t
learned to program your movies. On the other hand, programming is supposed to be a strange and
highly complex business, practiced by myopic young people with pale skin and peculiar taste in music.
Programming is for hackers, not artists. That’s a path in life many would probably rather avoid.

Fortunately, there’s some good news. Programming is a bit like mountaineering: there are dedicated
full-timers who might spend every waking minute preparing to tackle the north face of Eiger, even if
that means their day-to-day lives come to resemble some kind of hideous training regimen. However,
there are plenty more folks who'll just take a few weeks out from “normal life” to join a trek up Mount
Kilimanjaro and get back home fit, tanned, and with a whole new perspective on things—not to men-
tion a great big wad of stunning photos!

We’re not going to suggest that learning ActionScript is somehow going to get you fit and tanned. But
it can help you to race ahead with making rich, powerful, truly fantastic Flash movies that will leave
most non-ActionScripting Flash-meisters wondering how to even begin creating such things. So, to get
back to the point, what’s this ActionScript business all about? Well, as far too many irritating game
show hosts have reminded us over the years, “The clue is in the question.” There are two words to
consider:

Action
Script

We all know what these words mean: an action is something you do, and a script is something actors
read so that they know what to say and do when they go on stage or in front of a camera. Well, that’s
really all there is to it. ActionScript is like a script that you give to a Flash movie, so that you can tell it
what to do and when to do it—that is, you give it actions to perform.

The analogy between ActionScript and film scripts is more than just a metaphor. When
writing ActionScript, | often like to assume that I'm writing scripts for human actors, and
before | write code, | figure out how | would say what | want to do to a real actor before
implementing it in ActionScript. This is actually a very good test—if you find you aren’t
able to find the words needed, it’s probably because you don’t really understand your
problem, and it’s time to turn away from the machine and work it out on paper first.

—Sham Bhangal

Giving your movies instructions

Actions are the basic building blocks of ActionScript. It’s sometimes helpful to think of them as
instructions you give to the movie, or even better, as commands. You tell the movie to stop. You tell
it to start again. You tell it to go to such and such a frame, and start playing from there. You probably
get the idea. Whenever you want to tell your movie to do something that it wouldn’t normally do any-
way, you can do so by giving it an action.

INTERACTIVE FLASH

Since this book is about ActionScript, we’ll stick to using the word “actions.” If you mention
actions to programmers who don’t use Flash, though, they may look at you blankly for a
moment before saying, “Ah, you mean commands!” In our view, it’s well worth keeping the
idea that actions are the same thing as commands at the back of your mind.

As you know if you've sneaked a look already, there are stacks of different actions available in Flash,
which makes it (a) possible to do all sorts of weird and wonderful things to your movies, and (b) pretty
hard to know where to start. Don’t worry, though, we have a cunning plan! You'll start off by looking
at some simple actions that let you start and stop a movie’s main timeline, and then you’ll move on to
look at jumping about from one frame to another. Nothing too tricky to begin with.

Before you start writing actions, though, we need to make an important introduction. The Actions
panel will be your partner in crime throughout this chapter, the rest of the book, and your future
career as an ActionScript hero. Let’s check it out.

If you own the Professional version of Flash, you have the ability to open a full-screen
ActionScript editor by choosing File » New and then selecting ActionScript File from the
General tab of the New Document window that will appear. This editor is actually very
similar to the normal Actions panel. The major difference with the full-screen editor is it’s
just that—there’s no stage and no timeline. The full-screen editor is designed for writing a
stand-alone ActionScript file, something you’ll have the option to use as you build your
website. Just because this is a beginner book doesn’t mean we’re not going to fully cover
the Professional version of Flash as well as the Basic edition, so don’t worry, we haven’t
forgotten you!

Working with the Actions panel

The Actions panel is where you’ll be writing all your ActionScript, so it will pay for you to know your
way around it before you make a proper start. Before you do, though, let’s make sure we’re all on the
same page. Open a new Flash document and select Window » Workspace Layout » Default, and the
interface should go back to the out-of-the-box state.

If you ever get to a point at which you have many panels open and a generally cluttered
screen, Window » Workspace Layout » Default is a good option to select—you don’t
lose your work in progress by doing it. It’s also a good idea to select this option before you
start any of the step-by-step tutorials.

CHAPTER 1

First, you need to open up the Actions panel. As with any panel, there are | Phctione

several ways to do this, but for now we’ll go for the Window » Actions menu
selection as the cross-platform-friendly option.

You can also open (and close) the Actions panel with the F9 keyboard shortcut.

Here’s a can of worms . . .

If you’re using a Mac with Exposé enabled with the default settings, you’ll soon discover
that pressing F9 triggers Exposé and doesn’t open the Actions panel in Flash at all! If

this is the case and you don’t want to mess with Exposé, pressing Option+F9 will open
the Actions panel.

However, those who were already hooked on the F9 shortcut before Apple introduced
Exposé will have to change the keyboard shortcut for their little zoomy friend Exposé.

However you opened the Actions panel, this is how it should look when you open it for the first time:

ii w Actions - Frame i

ActionScript 1.0 & 2.0

1]
Global Functions E.A 1
Global Properties =
Operators
Statemnents
@ ActionScript 2.0 Classes
Client /Server and ...
Core
Medi

=T i'vH

& \ Script Assist @

S —
=] Current Selection

------ El Layer 1 Fra..

% Scene 1

El Layer 1:1 <

Line 1 of 1, Col 1

Let’s take a look at what we have here. At the bottom is a little tab that looks like this:

[EXE=TmE

This tab tells you that any actions you add are going to be attached to a frame. You also know the
actions will be attached to a layer called Layer 1, and on frame 1 of that layer via the text Layer 1 : 1 ...
um . .. you also know this must be true because that’s the only frame you have at the moment!

INTERACTIVE FLASH

Actions are always attached to something—usually a keyframe. (You can also attach a script to a movie
clip or button using an older style of ActionScript coding, but you will not be using that in this book—
it's outdated and not recommended anymore.)

You tell Flash what you’re attaching to by selecting it before you start typing in the Actions panel. The
tab is very useful because it reminds you what you’re attaching to and where it is. Sometimes this may
not be obvious (because you have, for example, selected the wrong thing in error), and you should
always get into the habit of checking the tab to make sure what Flash thinks it should be attaching to
is what you want it to attach the script to. Most scripts will not work properly (or at all) if you get this
wrong.

Sometimes you’ll find that the script you’re writing suddenly vanishes. This is one of those “Oh my
God, I've lost all my stuff!” moments that every beginner has, but not to worry, it usually only means
the keyframe you’re attaching to has somehow become unselected, and something on the main stage
is now selected instead. Before you start writing it all out again and glare at your cat/dog/co-worker
for ruining your concentration and/or day, it usually helps to try reselecting the keyframe first.

Once you've selected a frame, you add scripts via the Script pane (the big white area to the right of
the Actions panel). Simply click inside the Script pane and start typing. Type the following code and
then press the Enter key:

// My first line of ActionScript

Flash calls the little windowlike areas within a panel panes (as in,
“The panel is a window, and the bits inside it are the windowpanes”).

=P OVYERE

J/ My first line of ActionScript

The // tells Flash that this is a comment rather than code, and Flash will actually ignore everything
after the // until you press Enter. Adding comments to your scripts is a good way to remind yourself
what the scripts do six months after you’ve written them and/or 20 minutes after you’ve written them,
depending on how bad a day you're having. Press Enter on your keyboard to start a new line. Your
scripts will consist of many such lines, and it’s a good idea to number them so you know how far down
a script you are (this also makes it easier for us to refer to line numbers later in the book). Select the
little pop-up menu icon (at the top-right corner of the Actions panel) and select Line Numbers in
the menu that appears.

=P OVYERE

1 // My first line of ActionScript

CHAPTER 1

OK, let’s look at the other goodies. On the left side are two more panes.

You'll notice that there’s a little letter “a” above frame 1 on the timeline. This tells you that the

keyframe here has a script attached to it. That’s fine for small FLAs with not many timelines, but for

bigger Flash productions, you need a centralized place that allows you to search out all your stuff that

has ActionScript attached to it. The bottom-left pane, called the Script navigator, does just that. It

consists of two file trees. The top one shows where the currently displayed script (in the Script pane)

is within the Flash hierarchy, and the bottom one shows all scripts in the current

B [curvent selection FLA. Because you don’t know much about the timeline hierarchy and how it

Dl tayertiFemet | affects ActionScript just yet, we'll leave further discussion of this pane until later,

= % Seene 1 except to say that the reason the two trees look the same at the moment is
' because the one script you’re looking at is the only one in the FLA.

------ B Layer 1: Frame 1

The top-left panel (the Actions toolbox) is a list of little “book” icons, the first of which is called
Global Functions. If you click it, the icon will “open” to reveal more books.

If you also open the Timeline Control book inside the Global Functions book, you’ll see some icons:

@ Global Functions
@ Timeline Contral
@ gotasndPlay %
@ gotasndStop
@ nextFranme
@ nextSoene
@ play

@ prevFrame

These icons represent actions, and the ones in the Timeline Control book are the most basic ones, so
you’ll be using them soon. The other books contain operators, functions, constants, and other bits and
pieces you can use to tie lots of actions together in the way you want. If you hover the mouse pointer
over one of them, a tooltip should appear that gives you a brief definition of the book’s contents and
where it’s used.

Don’t worry about the details of all these for now, though—you’ll learn about them soon enough. This
is the Actions toolbox, and it gives you a neat little way to write code in a no-brainer, “building blocks”
fashion.

Look down the list of actions in the Timeline Control book and double-click the second-to-last one,
stop. This adds a stop() action to your Script pane at line 2:

= POV E QL

1| // My first line of ActionScript
Z stopi):
3

You now have an action called stop() that is attached to the first frame on the layer called Layer 1. This
action will stop the timeline at frame 1. Looking at the rest of the actions in the Timeline Control book,
you’ll have probably figured out that the play() action makes the timeline start playing, and so on.

INTERACTIVE FLASH

Direct typing

Well, you’ve made a start. All the actions you're ever going to need are stashed away inside those
icons, so you could continue using this technique to write all the code you’re ever likely to need.
What’s more, working in this way will mean that there won’t be any errors in your script (such as
mistyping the stop() action as slop()), so you'll find it very hard to create errors in this way.

However, there’s another option to consider: you can bypass the books completely and type your
scripts directly into the Script pane.

If you have a nervous disposition, this may seem like a worrying step. “It’s only the first chapter, but
already you’re expecting me to type code and get it right first time?” you cry. But honestly, it’s not like
that at all! There are so many assistive elements when typing directly into the Actions panel that
there’s really no need to use the Actions toolbox. Although searching out the actions and other stuff
in the toolbox seems like a safe option (you can’t spell them incorrectly if you do it this way, and you
have less to remember), it has one problem: it’s darn slow! If you take the time to type everything in
directly, except for the odd bit of code you can’t remember, not only will you work faster, but also
you’ll get much faster with time.

OK, let’s try it.

Don’t worry about the parentheses and semicolon, () ;, at the end of the stop
for now. Sure, they make the simple stop appear a little otherworldly, and
they look suspiciously like they were put there by someone with a serious
code-fetish just to scare the nonbelievers off, but they’re actually there for
some simple reasons that you’ll look at later on in the book.

First of all, you want something that will tell you if you’ve made a mistake. Using the Script pane as you
would a normal text editor, try changing stop(); to slop(); and you'll see that the first four letters
have changed from blue to black. The Script pane will normally show all action names (or keywords)
in blue, though you may want to use the ActionScript preferences (accessible from Actions »
Preferences) to change this color to a more noticeable shade of blue.

Second, you’ll want to fix that “disappearing script” problem mentioned earlier. Just select frame 10
on the main timeline, add a keyframe (press F6), and select the keyframe to see what we mean—Ilook,
no more script! Of course, that’s not quite true. Your script is still attached to frame 1, but you’re look-
ing at the script attached to frame 10, and there currently isn’t one. You can see this if you remember
to look at the tab at the bottom of the Script pane, though. It has changed:

So what if you want to work on the graphics on the stage at frame 10 while you’re looking at the script
in frame 1? Easy! Just click frame 1 again, and then click the pushpin button that’s just to the right of
the tab. This is called pinning. The tab won’t disappear, even if you

select something else. So now you’re thinking, “Yeah, | see that, but now || lo] Layer 1:1]2) [o] Layer 1 1J'|
| have two tabs that show the same thing!”

CHAPTER 1

The one on the right (the light one) is the one that’s pinned, and the one on the left shows the frame
or object currently selected. The confusing thing at the moment is that they’re both showing the same
thing. All becomes clear when you click back on frame 10. The tab on the left will change, and the
pinned one to the right will stay as it is.

|]=E| I.alperl:lol-é')lEl Layerl:lﬂ

You can pin as many scripts as you need. Pinned scripts will go to the right, and the
script for the currently selected item will appear to the left. Some applications with a
similar tabbed system work the other way around, which may be confusing to some.

Pinning is a very useful feature to know about, but only so long as you remember to turn it off when
you start trying to add actions elsewhere. Click the pushpin button again to unpin the script, and click
back on the first frame. Now you’re ready to continue.

One more thing that’s well worth knowing at the start about Flash is that it’s case sensitive. When
typing code, you generally have to get both the spelling and the capitalization right; otherwise, the
code may not work.

The Actions panel will lie at the center of all the ActionScript that you’ll ever write. You’ll explore a
few more of its mysteries as you work through the book, but you now have enough information to
start and create your first ActionScript-enabled movie.

Several more helpful features are built into the Actions panel—you’ve probably already
noticed all the buttons running along the top of the Script pane. You won’t examine
them right away, though; it will be easier to demonstrate what they do once you have a
little more scripting experience under your belt.

Let’s start with a simple example that shows how easily you can bypass the usual flow of a movie with
just a tiny bit of ActionScript. You can close the current FLA if you wish (you don’t have to save it).

1. Create a new Flash Document movie and add a new layer to

itled-2*

the root timeline. Rename the original layer as graphics and w

. s | Timeline | % Scene 1

add a new layer called actions. This is a good way to start all [|—— -

your ActionScripted movies. =40
) 7 []
Bgraphics «+ + [

Rather than use the File » New menu option, you s @ |4

can right-click/Cmd-click the tabs above the timeline
to open/close/save files—this is much quicker!

INTERACTIVE FLASH

Scripts should normally always be attached to keyframes on the topmost layer (if you put them on the
bottommost layer, the scripts may not work on the Web because then they’ll be loaded before
the graphics, and this tends to confuse Flash). It’s also a good idea to have only scripts in the topmost
layer, which is why you’ll call this layer actions—to remind you that that’s what this layer contains, and
nothing else. As you progress through the book, you’ll quickly become familiar with the idea of having
an actions layer residing at the top of the timeline. Naming a script layer actions is a very common
convention among Flashers.

A good trick while you’re working is to always keep the actions layer locked. This stops
you from inadvertently placing graphics in this layer, but it doesn’t stop you from
attaching scripts to it or modifying the frames and keyframes in the Timeline panel.
Locking a layer simply prevents you from editing the contents of the stage.

2. Lock the actions layer (for the reason just noted).

Let’s add those graphics now. You don’t need any terribly fancy graphics to demonstrate what’s going
on with the timeline. For simplicity’s sake, let’s just create a simple motion tween between two points.

3. Select frame 1 on the graphics layer, and use the Oval tool to draw a circle on the left side of
the stage. With the Selection tool, select the oval (double-click it on the fill to select both the
fill and the outline stroke) and press F8 to make it into a symbol. The Convert to Symbol dialog
box will appear. Select the Movie clip option and call it ball.

[actions
[

B AhE]

&40 5 10
- 2w
i@ [

|| 4] Tl

1 [zoms [oos [€] w |

Convert to Symbol

Mame: | ball

Type: (%) Movie clip
O Button
() Graphic

Renqistration: 355
ooo

[~ 1

4. Now select frame 20 of the graphics layer and press F6 to insert a keyframe. Right-click (or
Ctrl-click on the Mac) frame 1, and select Create Motion Tween from the menu that appears.

[actions

& =

OomnO

o
o
=4

!
Create Motion Tween %

Insert Frame
Remave Frames

Insert Keyframe

Insert Blank Keyframe
Clear Keyframe

Convert to Keyframes
Convert ko Blank Keyframes

