
Daniel R. Clark

Beginning
Object-Oriented
Programming
with VB 2005
From Novice to Professional

Beginning Object-Oriented Programming with VB 2005: From Novice to Professional

Copyright © 2006 by Daniel R. Clark

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-576-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Hassell
Technical Reviewer: Jon Box
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Project Manager: Beth Christmas
Copy Edit Manager: Nicole LeClerc
Copy Editors: Marilyn Smith and Ami Knox
Assistant Production Director: Kari Brooks-Copony
Production Editor: Janet Vail
Compositor: Kinetic Publishing Services, LLC
Proofreader: Christy Wagner
Indexer: Rebecca Plunkett
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

Contents at a Glance

About the Author . xiii

About the Technical Reviewer. xv

Introduction . xvii

PART 1 ■ ■ ■ Object-Oriented Programming
and Design Fundamentals

■CHAPTER 1 Overview of Object-Oriented Programming . 3

■CHAPTER 2 Designing OOP Solutions: Identifying the Class Structure 11

■CHAPTER 3 Designing OOP Solutions: Modeling theObject Interaction 31

■CHAPTER 4 Designing OOP Solutions: A Case Study. 63

PART 2 ■ ■ ■ Object-Oriented Programming
with Visual Basic

■CHAPTER 5 Introducing Visual Basic and the .NET Framework 85

■CHAPTER 6 Creating Classes. 109

■CHAPTER 7 Creating Class Hierarchies . 123

■CHAPTER 8 Implementing Object Collaboration . 147

■CHAPTER 9 Working with Collections. 173

PART 3 ■ ■ ■ Developing Applications
with Visual Basic

■CHAPTER 10 OSO Application Revisited: Implementing the Business Logic. . . 201

■CHAPTER 11 Developing Windows Applications . 237

■CHAPTER 12 Developing Web Applications. 275

iii

■CHAPTER 13 Developing and Consuming Web Services . 311

■CHAPTER 14 Wrapping Up and Reviewing . 325

PART 4 ■ ■ ■ Appendixes
■APPENDIX A Fundamental Programming Concepts . 331

■APPENDIX B Exception Handling in VB . 347

■APPENDIX C Installing the Sample Databases . 351

■INDEX . 355

iv

Contents

About the Author . xiii

About the Technical Reviewer. xv

Introduction . xvii

PART 1 ■ ■ ■ Object-Oriented Programming and
Design Fundamentals

■CHAPTER 1 Overview of Object-Oriented Programming 3

What Is OOP? . 3

Why Use OOP? . 4

The Characteristics of OOP . 5

Objects. 5

Abstraction . 6

Encapsulation . 6

Polymorphism. 7

Inheritance . 7

Aggregation. 7

The History of Visual Basic. 8

Summary . 9

■CHAPTER 2 Designing OOP Solutions: Identifying
the Class Structure . 11

Goals of Software Design. 11

Understanding the Unified Modeling Language . 12

Developing an SRS . 13

Introducing Use Cases . 14

Understanding Class Diagrams. 21

Modeling Object Relationships . 22

Summary . 29

v

■CHAPTER 3 Designing OOP Solutions: Modeling
the Object Interaction. 31

Understanding Scenarios . 31

Introducing Sequence Diagrams. 33

Message Types. 35

Recursive Messages . 35

Message Iteration . 36

Message Constraints. 36

Message Branching. 37

Using Collaboration Diagrams. 46

Nesting Messages . 47

Iteration, Constraints, and Branching . 48

Understanding Activity Diagrams . 49

Decision Points and Guard Conditions . 49

Parallel Processing . 50

Activity Ownership . 50

Exploring GUI Design. 57

GUI Activity Diagrams . 58

Interface Prototyping . 59

Interface Flow Diagrams. 59

GUI Class Diagrams. 60

Application Prototyping. 60

Summary . 60

■CHAPTER 4 Designing OOP Solutions: A Case Study 63

Developing an OOP Solution . 63

Creating the System Requirement Specification 64

Developing the Use Cases . 65

Diagramming the Use Cases . 66

Developing the Class Model. 69

Developing the User Interface Model Design 77

Avoiding Some Common OOP Design Pitfalls. 80

Summary . 81

■CONTENTSvi

PART 2 ■ ■ ■ Object-Oriented Programming
with Visual Basic

■CHAPTER 5 Introducing Visual Basic and the .NET Framework 85

Introducing the .NET Framework . 85

Goals of the .NET Framework . 85

Components of the .NET Framework . 88

Working with the .NET Framework. 90

Understanding Assemblies and Manifests. 90

Referencing Assemblies and Namespaces . 90

Compiling and Executing Managed Code . 91

Using the Visual Studio Integrated Development Environment 92

Summary . 107

■CHAPTER 6 Creating Classes . 109

Introducing Objects and Classes. 109

Defining Classes . 110

Creating Class Properties . 110

Restricting Property Access . 111

Creating Class Methods . 112

Using Constructors . 115

Using Destructors . 116

Overloading Methods . 117

Summary . 122

■CHAPTER 7 Creating Class Hierarchies . 123

Understanding Inheritance. 123

Creating Base and Derived Classes . 124

Creating an Abstract Class . 125

Creating a Sealed Class . 125

Using Access Modifiers in Base Classes . 125

Overriding Methods of the Base Class. 129

Calling the Derived Class Method . 130

Calling the Current Class Method . 132

Calling the Base Class Implementation . 132

Overloading Methods of the Base Class . 138

Using Shadowing. 138

■CONTENTS vii

Implementing Interfaces. 139

Understanding Polymorphism . 140

Summary . 146

■CHAPTER 8 Implementing Object Collaboration . 147

Communicating Through Messaging . 147

Defining Method Signatures . 148

Passing Parameters. 148

Understanding Event-Driven Programming . 149

Understanding Delegation . 154

Using Delegation . 154

Using Delegation to Implement Event Handlers 155

Handling Exceptions in the .NET Framework . 159

Using the Try-Catch Block . 160

Adding a Finally Block. 161

Throwing Exceptions . 162

Nesting Exception Handling . 162

Accessing Shared Properties and Methods. 163

Using Asynchronous Messaging . 167

Summary . 172

■CHAPTER 9 Working with Collections . 173

Introducing the .NET Framework Collection Types 173

Working with Arrays and Array Lists . 174

Programming with Stacks and Queues . 184

Using Hash Tables and Dictionary Entries . 186

Using Strongly Typed Collections and Generics . 193

Summary . 198

PART 3 ■ ■ ■ Developing Applications
with Visual Basic

■CHAPTER 10 OSO Application Revisited: Implementing
the Business Logic . 201

Revisiting Application Design . 202

Introducing ADO.NET. 202

■CONTENTSviii

Working with Data Providers . 203

Establishing a Connection . 204

Executing a Command . 205

Using Stored Procedures . 206

Using the DataReader Object to Retrieve Data 207

Using the DataAdapter to Retrieve Data . 208

Working with DataTables and DataSets. 215

Populating a DataTable from a SQL Server Database 215

Populating a DataSet from a SQL Server Database. 216

Establishing Relationships Between Tables in a DataSet 217

Editing Data in the DataSet . 218

Converting Between Relational DataSet Objects
and Hierarchical XML Files . 220

Building the OSO Application’s Business Logic Tier 226

Summary . 236

■CHAPTER 11 Developing Windows Applications . 237

Windows Forms Fundamentals. 237

Understanding Windows Forms Inheritance Hierarchy 238

Using the VS Form Designer . 240

Handling Windows Form and Control Events . 243

Adding Form Event Handlers . 244

Adding Control Event Handlers . 245

Working with Form-Based Inheritance . 250

Creating and Using Dialog Boxes . 252

Presenting a MessageBox to the User . 253

Retrieving the MessageBox Dialog Box Result . 254

Creating a Custom Dialog Box. 255

Data Binding in Windows Form-Based GUIs . 260

Creating the OSO Application’s Windows Form-Based GUI 266

Displaying Products . 266

Validating Employees . 269

Adding Order Items . 270

Removing Items. 272

Placing an Order . 272

Summary . 273

■CONTENTS ix

■CHAPTER 12 Developing Web Applications . 275

Web Form Fundamentals . 275

Web Server Control Fundamentals . 277

Understanding Web Page and Web Server Control
Inheritance Hierarchy . 277

Using the VS Web Page Designer . 279

Handling Web Page, Form, and Control Events. 281

Adding Page and Server Control Event Handlers 281

Server-Side Event Processing . 283

Understanding Application and Session Events . 284

Storing and Sharing State in a Web Application. 290

Maintaining View State . 290

Using Cookies. 290

Maintaining Session and Application State . 291

Data Binding Web Controls . 292

Multivalue Data Binding . 293

Updating Data in a GridView Control . 295

Creating the OSO Application’s Web-Based GUI. 303

Displaying Products. 303

Initiating an Order . 304

Validating Employees . 305

Adding Order Items . 306

Removing Items . 308

Placing an Order . 309

Summary . 310

■CHAPTER 13 Developing and Consuming Web Services 311

What Are Web Services? . 311

Understanding Web Service Processing . 312

Creating a Web Service . 313

Consuming a Web Service . 319

Summary . 323

■CHAPTER 14 Wrapping Up and Reviewing . 325

Improving Your Object-Oriented Design Skills . 326

Investigating the .NET Framework Namespaces . 326

Becoming Familiar with ADO.NET. 326

Moving Toward Component-Based Development 327

Finding Help . 327

■CONTENTSx

Joining a User Group. 327

Getting Certified. 327

Please Provide Feedback . 328

Thank You and Good Luck . 328

PART 4 ■ ■ ■ Appendixes

■APPENDIX A Fundamental Programming Concepts . 331

Working with Variables and Data Types. 331

Understanding Elementary Data Types . 332

Integral Data Types . 332

Nonintegral Data Types. 332

Character Data Types . 333

Boolean Data Type . 333

Date Data Type . 333

Object Data Type . 333

Introducing Composite Data Types . 334

Structures . 334

Arrays. 334

Classes . 334

Looking at Literals, Constants, and Enumerations. 335

Literals . 335

Constants . 335

Enumerations . 335

Exploring Variable Scope . 336

Block-Level Scope. 336

Procedure Scope . 337

Module Scope. 337

Understanding Data Type Conversion . 338

Implicit Conversion . 338

Explicit Conversion . 338

Widening and Narrowing Conversions . 339

Working with Operators . 339

Arithmetic Operators . 339

Comparison Operators . 340

Logical Operators. 340

Introducing Decision Structures . 341

If-Then Statements . 341

Select-Case Statements . 342

■CONTENTS xi

Using Loop Structures . 342

While Statements. 342

Do-Loop Statements . 343

For-Next Statements . 343

For Each-Next Statements . 344

Introducing Procedures . 344

■APPENDIX B Exception Handling in VB . 347

Managing Exceptions . 347

Looking at the .NET Framework Exception Classes 349

■APPENDIX C Installing the Sample Databases . 351

Running the Scripts on SQL Server 2000 . 351

Running the Scripts on SQL Server 2005/2005 Express 352

Verifying the Database Installs with Visual Studio 352

■INDEX . 355

■CONTENTSxii

About the Author

■DAN CLARK is a senior IT consultant specializing in .NET and SQL
Server technologies. He is a Microsoft Certified Solution Developer and
Microsoft Certified Database Administrator. For the past decade, he
has been developing applications and training others how to develop
applications using Microsoft technologies. Dan is a regular speaker at
various developer conferences and user group meetings. He finds par-
ticular satisfaction in turning new developers on to the thrill of developing
and designing object-oriented applications.

xiii

About the Technical Reviewer

As a Microsoft Regional Director and Chief Architect at ProTech Systems Group in Memphis,
JON BOX serves as a .NET evangelist focused on delivering solutions and assisting developers
to utilize .NET. Jon’s current work emphasizes developing mobility solutions with Microsoft
technologies, empowering software development with Visual Studio Team System, and building
web sites with ASP.NET 2.0 and DotNetNuke. Being a presenter and a Microsoft MVP, Jon has
given presentations at TechEd and MEDC, hosted MSDN web casts, spoken at various .NET
user groups around the country, and serves on the INETA Speakers Bureau. Jon writes for the
.NET Developer’s Journal, coauthored Building Solutions with the Microsoft .NET Compact
Framework with Dan Fox, and has a variety of mobility whitepapers on MSDN. Jon also is the
cofounder and coleader of the Memphis .NET Users Group (www.memphisdot.net). You can see
his current musings on technology at http://jonbox.dotnetdevelopersjournal.com.

xiv

Introduction

It has been my experience as a Visual Basic trainer that most people do not have trouble picking
up the syntax of the language. What perplexes and frustrates many people are the higher-level
concepts of object-oriented programming methodology and design. To compound the problem,
most introductory programming books and training classes skim over these concepts or, worse,
do not cover them at all. It is my hope that this book fills this void. My goal in writing this book
is twofold. First, to provide you with the information needed to understand the fundamentals
of programming with Visual Basic. Second and more importantly, to present you with the
information required to master the higher-level concepts of object-oriented programming
methodology and design.

This book provides you with the information needed to understand how you go about archi-
tecting an object-oriented programming solution aimed at solving a business problem. As you
work your way through the book, first you will learn how to analyze the business requirements.
Next, you will model the objects and relationships involved in the solution design. Finally,
you will implement the solution using Visual Basic .NET. Along the way, you will learn the
fundamentals of software design, the Unified Modeling Language (UML), object-oriented
programming, Visual Basic (VB), and the .NET Framework.

Because this is an introductory book, it is meant to be a starting point for your study of the
topics presented. As such, this book is not designed to make you an expert in object-oriented
programming and UML; nor be an exhaustive discussion of VB and the .NET Framework; nor
be an in-depth study of Visual Studio. It takes considerable time and effort to become proficient
in any one of these areas. It is my hope that by reading this book, your first experiences in object-
oriented programming will be enjoyable, comprehensible, and instill a desire for further study.

Target Audience
The target audience for this book is the beginning VB programmer who wants to gain a foun-
dation in object-oriented programming along with the VB language basics. Programmers
transitioning from a procedural-oriented programming model to an object-oriented model
will also benefit from this book. In addition, there are many pre-.NET VB programmers who
do not have a firm grasp of object-oriented programming. Now is the time to become acquainted
with the fundamentals of object-oriented programming before transitioning to the current ver-
sion of VB and the .NET Framework. Because the experience level of a “beginner” can vary
immensely, I have included a primer in Appendix A, which discusses some basic programming
tenets. I would suggest you review these concepts if you are new to programming.

xv

Organization of the Book
This book is organized into three parts:

Part 1 delves into object-oriented programming methodology and design—concepts that
transcend a particular programming language. The concepts presented are important to
the success of an object-oriented programming solution regardless of the implementation
language chosen. At the conclusion of this part, a case study walks you through modeling
a “real-world” application.

Part 2 looks at how object-oriented programming is implemented in Visual Basic. You will
look at creating class structures, creating hierarchies, and implementing interfaces. This part
also introduces object interaction and collaboration. You will see how the object-oriented
programming topics discussed in Part 1 are transformed into Visual Basic coding constructs.

Part 3 returns to the case study introduced and modeled at the end of Part 1. Using the
knowledge gained in Part 2, you will transform the design into a fully functional VB applica-
tion. This includes designing a graphical user interface, implementing the business logic, and
integrating with a relational database to store data. Along the way you will be exposed to the
.NET Framework classes used to work with data, and see how to create a Windows-based
user interface, a Web-based user interface, and a Web service-based programmatic interface.

Activities and Software Requirements
One of the most important aspects of learning is doing. You cannot learn to ride a bike without
jumping on a bike, and you cannot learn to program without “cranking out” code. Any success-
ful training program needs to include both a theory component and a hands-on component.
I have included both components throughout this book. It is my hope that you will take these
activities seriously and work through them thoroughly and even repeatedly. Contrary to some
students’ perception that these activities are “exercises in typing,” this is where the theory becomes
concrete and true simulation of the concepts occurs. I also encourage you to play during the activ-
ities. Do not be afraid to alter some of the code just to see what happens. Some of the best
learning experiences occur when students “color outside the lines.”

You can download the starter files referred to in this book from the Apress Web site at
www.apress.com. The UML modeling activities in Part 1 are for someone using Objecteering’s
UML Modeler. I chose this program because of its simple user interface and the fact it can be
downloaded for free at www.objecteering.com. You do not need a CASE tool to complete these
activities; a paper and pencil will work just fine. You can also use another CASE tool such as
Visio to complete the activities. The activities in Part 2 require Visual Studio 2005 with Visual
Basic installed. I encourage you to install the help files and make ample use of them while
completing the activities. The activities in Part 3 require Microsoft SQL Server 2000 or 2005
with the Pubs and Northwind databases installed. Appendix C includes instructions on down-
loading and installing the sample databases. You can find a trial edition of both Visual Studio
2005 and SQL Server 2005 at www.msdn.microsoft.com.

■Note The web addresses mentioned are subject to change without notice. Check the Apress site
(www.apress.com) for any updates.

■INTRODUCTIONxvi

Object-Oriented
Programming and
Design Fundamentals

P A R T 1

■ ■ ■

3

C H A P T E R #

■ ■ ■

C H A P T E R 1

■ ■ ■

Overview of Object-Oriented
Programming

To set the stage for your study of object-oriented programming and Visual Basic, this chapter
will briefly look at the history of object-oriented programming and the characteristics of an
object-oriented programming language. You will look at why object-oriented programming has
become so important in the development of industrial-strength distributed software systems. You
will also examine how Visual Basic has evolved into one of the leading business application
programming languages.

After reading this chapter, you will be familiar with the following:

• What object-oriented programming is

• Why object-oriented programming has become so important in the development of
industrial-strength applications

• The characteristics that make a programming language object-oriented

• The history and evolution of Visual Basic

What Is OOP?
Object-oriented programming (OOP) is an approach to software development in which the
structure of the software is based on objects interacting with each other to accomplish a task.
This interaction takes the form of messages passing back and forth between the objects. In
response to a message, an object can perform an action, or method.

If you look at how you accomplish tasks in the world around you, you can see that you
interact in an object-oriented world. If you want to go to the store, for example, you interact
with a car object. A car object consists of other objects that interact with each other to accom-
plish the task of getting you to the store. You put the key in the ignition object and turn it. This,
in turn, sends a message (through an electrical signal) to the starter object, which interacts with
the engine object to start the car. As a driver, you are isolated from the logic of how the objects
of the system work together to start the car. You just initiate the sequence of events by execut-
ing the start method of the ignition object with the key. You then wait for a response (message)
of success or failure.

Similarly, users of software programs are isolated from the logic needed to accomplish a task.
For example, when you print a page in your word processor, you initiate the action by clicking
a print button. You are isolated from the internal processing that needs to occur; you just wait
for a response telling you if it printed. Internally, the button object interacts with a printer
object, which interacts with the printer to accomplish the task of printing the page.

OOP concepts started surfacing in the mid-1960s with a programming language called
Simula and further evolved in the 1970s with advent of Smalltalk. Although software develop-
ers did not overwhelmingly embrace these early advances in OOP languages, object-oriented
methodologies continued to evolve. A resurgence of interest in object-oriented methodologies
occurred in the mid-1980s. Specifically, OOP languages such as C++ and Eifle became popular
with mainstream computer programmers. OOP continued to grow in popularity in the 1990s,
most notably with the advent of Java and the huge following it attracted. And in 2002, in
conjunction with the release of the .NET Framework, Microsoft introduced a new OOP language,
C# (pronounced C-sharp) and revamped Visual Basic so that it is truly an OOP language.

Why Use OOP?
Why has OOP developed into such a widely used paradigm for solving business problems today?
During the 1970s and 1980s, procedural-oriented programming languages such as C, Pascal,
and Fortran were widely used to develop business-oriented software systems. Procedural lan-
guages organize the program in a linear fashion—they run from top to bottom. In other words,
the program is a series of steps that run one after another. This type of programming worked
fine for small programs that consisted of a few hundred code lines, but as programs became
larger, they became hard to manage and debug.

In an attempt to manage the ever-increasing size of the programs, structured program-
ming was introduced to break down the code into manageable segments called functions or
procedures. This was an improvement, but as programs performed more complex business
functionality and interacted with other systems, the shortcomings of structural programming
methodology began to surface:

• Programs became harder to maintain.

• Existing functionality was hard to alter without adversely affecting all of the system’s
functionality.

• New programs were essentially built from scratch. Consequently, there was little return
on the investment of previous efforts.

• Programming was not conducive to team development. Programmers needed to know
every aspect of how a program worked and could not isolate their efforts on one aspect
of a system.

• It was hard to translate business models into programming models.

• It worked well in isolation but did not integrate well with other systems.

In addition to these shortcomings, some evolutions of computing systems caused further
strain on the structural program approach:

CHAPTER 1 ■ OVERVIEW OF OBJECT-ORIENTED PROGRAMMING4

• Nonprogrammers demanded and were given direct access to programs through the
incorporation of graphical user interfaces and their desktop computers.

• Users demanded a more-intuitive, less-structured approach to interacting with programs.

• Computer systems evolved into a distributed model where the business logic, user
interface, and backend database were loosely coupled and accessed over the Internet
and intranets.

As a result, many business software developers turned to object-oriented methodologies
and programming languages to solve these problems. The benefits included the following:

• A more intuitive transition from business analysis models to software implementation
models

• The ability to maintain and implement changes in the programs more efficiently and
rapidly

• The ability to more effectively create software systems using a team process, allowing
specialists to work on parts of the system

• The ability to reuse code components in other programs and purchase components
written by third-party developers to increase the functionality of programs with little effort

• Better integration with loosely coupled distributed computing systems

• Improved integration with modern operating systems

• The ability to create a more intuitive graphical user interface for the users

The Characteristics of OOP
In this section, you are going to look at the some fundamental concepts and terms common to
all OOP languages. Do not worry about how these concepts get implemented in any particular
programming language; that will come later. My goal is to merely familiarize you with the con-
cepts and relate them to your everyday experiences in such a way that they make more sense
later when you look at OOP design and implementation.

Objects
As I noted earlier, we live in an object-oriented world. You are an object. You interact with
other objects. To write this book I am interacting with a computer object. When I woke up this
morning, I was responding to a message sent out by an alarm clock object. In fact, you are an
object with data such as height and hair color. You also have methods that you perform or are
performed on you—for example, eating and walking.

So what are objects? In OOP terms, an object is a structure for incorporating data and the
procedures for working with that data. For example, if you were interested in tracking data
associated with products in inventory, you would create a product object that is responsible
for maintaining and working with the data pertaining to the products. If you wanted to have
printing capabilities in your application, you would work with a printer object that is respon-
sible for the data and methods used to interact with your printers.

CHAPTER 1 ■ OVERVIEW OF OBJECT-ORIENTED PROGRAMMING 5

CHAPTER 1 ■ OVERVIEW OF OBJECT-ORIENTED PROGRAMMING6

Abstraction
When you interact with objects in the world, you are often concerned with only a subset of their
properties. Without this ability to abstract or filter out the extraneous properties of objects, you
would find it hard to process the plethora of information bombarding you and concentrate on
the task at hand.

As a result of abstraction, when two different people interact with the same object, they
often deal with a different subset of attributes. When I drive my car, for example, I need to
know the speed of the car and the direction it is going. Because the car is an automatic, I do
not need to know the RPMs of the engine, so I filter this information out. On the other hand,
this information would be critical to a racecar driver, who would not filter it out.

When constructing objects in OOP applications, it is important to incorporate this concept
of abstraction. If you were building a shipping application, you would construct a product object
with attributes such as size and weight. The color of the item would be extraneous information
and filtered out. On the other hand, when constructing an order-entry application, the color
could be important and would be included as an attribute of the product object.

Encapsulation
Another important feature of OOP is encapsulation. Encapsulation is the process in which no
direct access is granted to the data; instead, it is hidden. If you want to gain access to the data,
you must interact with the object responsible for the data. In the previous inventory example,
if you wanted to view or update information on the products, you would need to work through
the product object. To read the data, you would send the product object a message. The prod-
uct object would then read the value and send back a message telling you what the value is.
The product object defines what operations can be performed on the product data. If you send
a message to modify the data and the product object determines it is a valid request, it will
perform the operation for you and send a message back with the result.

You experience encapsulation in your daily life all the time. Think about a human resources
department. The human resources staff members encapsulate (hide) the information about
employees. They determine how this data can be used and manipulated. Any request for the
employee data or request to update the data must be routed through them. Another example
is network security. Any request for the security information or a change to a security policy
must be made through a network security administrator. The security data is encapsulated
from the users of the network.

By encapsulating data, you make the data of your system more secure and reliable. You know
how the data is being accessed and what operations are being performed on the data. This makes
program maintenance much easier and also greatly simplifies the debugging process. You can
also modify the methods used to work on the data, and if you do not alter how the method is
requested and the type of response sent back, then you do not need to alter the other objects
using the method. Think about when you send a letter in the mail. You make a request to the post
office to deliver the letter. How the post office accomplishes this is not exposed to you. If it changes
the route it uses to mail the letter, it does not affect how you initiate the sending of the letter. You
do not need to know the post office’s internal procedures used to deliver the letter.

Polymorphism
Polymorphism is the ability of two different objects to respond to the same request message in
their own unique way. For example, I could train my dog to respond to the command “bark”
and my bird to respond to the command “chirp.” On the other hand, I could train them to both
respond to the command “speak.” Through polymorphism, I know that the dog will respond
with a bark and the bird will respond with a chirp.

How does this relate to OOP? You can create objects that respond to the same message in
their own unique implementations. For example, you could send a print message to a printer
object that would print the text on a printer, and you could send the same message to a screen
object that would print the text to a window on your computer screen.

Another good example of polymorphism is the use of words in the English language. Words
have many different meanings, but through the context of the sentence, you can deduce which
meaning is intended. You know that someone who says, “Give me a break!” is not asking you
to break his leg!

In OOP, you implement this type of polymorphism through a process called overloading.
You can implement different methods of an object that have the same name. The object can
then tell which method to implement depending on the context (in other words, the number
and type of arguments passed) of the message. For example, you could create two methods of
an inventory object to look up the price of a product. Both of these methods would be named
getPrice. Another object could call this method and pass either the name of the product or
the product ID. The inventory object could tell which getPrice method to run by whether
a string value or an integer value was passed with the request.

Inheritance
Most objects are classified according to hierarchies. For example, you can classify all dogs together
as having certain common characteristics, such as having four legs and fur. Their breeds further
classify them into subgroups with common attributes, such as size and demeanor. You also classify
objects according to their function. For example, there are commercial vehicles and recreational
vehicles. There are trucks and passenger cars. You classify cars according to their make and model.
To make sense of the world, you need to use object hierarchies and classifications.

You use inheritance in OOP to classify the objects in your programs according to common
characteristics and function. This makes working with the objects easier and more intuitive. It
also makes programming easier, because it enables you to combine general characteristics
into a parent object and inherit these characteristics in the child objects. For example, you can
define an employee object that defines all the general characteristics of employees in your com-
pany. You can then define a manager object that inherits the characteristics of the employee
object but also adds characteristics unique to managers in your company. The manager object
will automatically reflect any changes in the implementation of the employee object.

Aggregation
Aggregation is when an object consists of a composite of other objects that work together. For
example, your lawn mower object is a composite of the wheel objects, the engine object, the
blade object, and so on. In fact, the engine object is a composite of many other objects. There
are many examples of aggregation in the world around us. The ability to use aggregation in
OOP is a powerful feature that enables you to accurately model and implement business
processes in your programs.

CHAPTER 1 ■ OVERVIEW OF OBJECT-ORIENTED PROGRAMMING 7

CHAPTER 1 ■ OVERVIEW OF OBJECT-ORIENTED PROGRAMMING8

The History of Visual Basic
By most accounts, you can trace the origins of Visual Basic to Alan Cooper, an independent
software vendor. In the late 1980s, Cooper was developing a shell construction kit called Tripod.
What made Tripod unique was it incorporated a visual design tool that enabled developers to
design their Windows interfaces by dragging and dropping controls onto it. Using a visual design
tool hid a lot of the complexity of the Windows Application Programming Interface (API) from
the developer. The other innovation associated with Tripod was the extensible model it offered
programmers. Programmers could develop custom controls and incorporate them into the
Tripod development environment. Up to this point, development tools were, for the most
part, closed environments that could not be customized.

Microsoft paid Cooper for the development of Tripod and renamed it Ruby. Although
Microsoft never released Ruby as a shell construction kit, it incorporated its form engine with
the QuickBasic programming language and developed Thunder, one of the first rapid applica-
tion development (RAD) tools for Windows programs. Thunder was renamed to Visual Basic,
and Visual Basic 1.0 was introduced in the spring of 1991.

Visual Basic 1.0 became popular with business application developers because of its ease
of use and its ability to rapidly develop prototype applications. Although Visual Basic 1.0 was
an innovation in the design of Windows applications, it did not have built-in support for data-
base interactivity. Microsoft realized this was a severe limitation and introduced native support
for data access in the form of Data Access Objects (DAO) in Visual Basic 3.0. After the inclusion
of native data support, the popularity of Visual Basic swelled. It transitioned from being a pro-
totyping tool to being a tool used to develop industrial-strength business applications.

Microsoft has always been committed to developing the Visual Basic language and the
Visual Basic integrated development environment (IDE). In fact, by many accounts, Bill Gates
himself has taken an active interest in the development and growth of Visual Basic. At one point,
the design team did not allow controls to be created and added to the Toolbox. When Bill Gates
saw the product demo, he insisted that this extensibility be incorporated into the product. This
extensibility brought on the growth of the custom control industry.

Third-party vendors began to market controls that made programming an application
even easier for Visual Basic developers. For example, one vendor marketed a Resize control
that encapsulated the code needed to resize a form and the controls the form contained. A devel-
oper could purchase this tool and add it to the Toolbox in the Visual Basic IDE. The developer
could then simply drag the resize control onto the form, and the form and the controls it
contained would resize proportionally.

By version 6.0, Visual Basic had evolved into a robust and industrial-strength programming
language with an extremely large and dedicated developer base. Nevertheless, as strong as
Visual Basic had become as a programming language, many programmers felt it had one
major shortcoming. They considered Visual Basic to be an object-like programming language—
not a true object-oriented programming language. Although Visual Basic 4.0 gave developers
the ability to create classes and to package the classes in reusable components, Visual Basic
did not incorporate basic OOP features such as inheritance and method overloading. Without
these features, developers were severely limited in their ability to construct complex distributed
software systems. Microsoft recognized these shortcomings and changed Visual Basic into a true
OOP language with the release of Visual Basic .NET 1.0.

Since the .NET Framework’s initial release in 2002, Microsoft has continued to improve
and innovate it, along with the core languages built on top of the framework: C# and Visual
Basic. Microsoft is also committed to providing .NET developers with the tools necessary to
have a highly productive and intuitive programming experience.

With the release of Visual Basic 2005 and Visual Studio 2005, Microsoft has greatly
enhanced both the language and the design-time developing experience for Visual Basic
developers. As you work your way through this book, I think you will come to appreciate the
power and productivity that Visual Studio and the Visual Basic language provides.

Summary
In this chapter, you were introduced to OOP and got a brief history of Visual Basic. Now that
you have an understanding of what constitutes an OOP language and why OOP languages are
so important to enterprise-level application development, your next step is to become famil-
iar with how OOP applications are designed.

Successful applications must be carefully planned and developed before any meaningful
coding takes place. The next chapter is the first in a series of three aimed at introducing you to
some of the techniques used when designing object-oriented applications. You will look at the
process of deciding which objects need to be included in an application and which attributes
of these objects are important to the functionality of that application.

CHAPTER 1 ■ OVERVIEW OF OBJECT-ORIENTED PROGRAMMING 9

Designing OOP Solutions:
Identifying the Class Structure

Most software projects you will become involved with as a business software developer will
be a team effort. As a programmer on the team, you will be asked to transform the design
documents into the actual application code. Additionally, because the design of object-oriented
programs is a recursive process, designers depend on the feedback of the software developers
to refine and modify the program design. As you gain experience in developing object-oriented
software systems, you may even be asked to sit in on the design sessions and contribute to the
design process. Therefore, as a software developer, you should be familiar with the purpose
and the structure of the various design documents, as well as have some knowledge of how
these documents are developed.

This chapter introduces you to some of the common documents used to design the static
aspects of the system. (You’ll learn how the dynamic aspects of the system are modeled in the
next chapter.) To help you understand these documents, this chapter includes some hands-on
activities, based on a limited case study. You’ll find similar activities corresponding to the topics
of discussion in most of the chapters in this book.

After reading this chapter, you will be familiar with the following:

• The goals of software design

• The fundamentals of the Unified Modeling Language

• The purpose of a software requirement specification

• How use case diagrams model the services the system will provide

• How class diagrams model the classes of objects that need to be developed

Goals of Software Design
A well-organized approach to system design is essential when developing modern enterprise-
level object-oriented programs. The design phase is one of the most important in the software
development cycle. You can trace many of the problems associated with failed software projects
to poor upfront design and inadequate communication between the system’s developers and
the system’s consumers. Unfortunately, many programmers and program managers do not like
getting involved in the design aspects of the system. They view any time not spent cranking out
code as unproductive.

11

C H A P T E R 2

■ ■ ■

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE12

To make matters worse, with the advent of “Internet time,” consumers expect increasingly
shorter development cycles. So, to meet unrealistic timelines and project scope, developers tend
to forgo or cut short the system design phase of development. This is truly counterproductive
to the system’s success. Investing time in the design process will achieve the following:

• Provide an opportunity to review the current business process and fix any inefficiencies
or flaws uncovered

• Educate the customers as to how the software development process occurs and incor-
porate them as partners in this process

• Create realistic project scopes and timelines for completion

• Provide a basis for determining the software testing requirements

• Reduce the cost and time required to implement the software solution

A good analogy to software design is the process of building a home. You would not expect
the builder to start working on the house without detailed plans (blueprints) supplied by an
architect. You would also expect the architect to talk to you about the home’s design before
creating the blueprints. It is the architect’s job to consult with you about the design and func-
tionality you want in the house and convert your requests to the plans that the builder uses to
build the home. A good architect will also educate you as to what features are reasonable for
your budget and projected timeline.

Understanding the Unified Modeling Language
To successfully design object-oriented software, you need to follow a proven design methodology.
One of the most common design methodologies used in OOP today is the Unified Modeling
Language (UML).

UML was developed in the early 1980s as a response to the need for a standard, systematic
way of modeling the design of object-oriented software. It consists of a series of textual and
graphical models of the proposed solution. These models define the system scope, components
of the system, user interaction with the system, and how the system components interact with
each other to implement the system functionality.

The following are some common models used in UML:

• Software requirement specification (SRS): A textual description of the overall respon-
sibilities and scope of the system.

• Use case: A textual/graphical description of how the system will behave from the users’
perspective. Users can be humans or other systems.

• Class diagram: A visual blueprint of the objects that will be used to construct the system.

• Sequence diagram: A model of the sequence of object interaction as the program
executes. Emphasis is placed on the order of the interactions and how they proceed
over time.

• Collaboration diagram: A view of how objects are organized to work together as the pro-
gram executes. Emphasis is placed on the communications that occur between the objects.

• Activity diagram: A visual representation of the flow of execution of a process or operation.

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE 13

In this chapter, you’ll look at the development of the SRS, use cases, and class diagrams.
The next chapter covers the sequence, collaboration, and activity diagrams.

Developing an SRS
The purpose of the SRS is to do the following:

• Define the functional requirements of the system

• Identify the boundaries of the system

• Identify the users of the system

• Describe the interactions between the system and the external users

• Establish a common language between the client and the program team for describing
the system

• Provide the basis for modeling use cases

To produce the SRS, you interview the business owners and the end users of the system.
The goals of these interviews are to clearly document the business processes involved and
establish the system’s scope. The outcome of this process is a formal document (the SRS) detail-
ing the functional requirements of the system. A formal document helps to ensure agreement
between the customers and the software developers. The SRS also provides a basis for resolving
any disagreements over “perceived” system scope as development proceeds.

As an example, suppose that the owners of a small commuter airline want customers to
be able to view flight information and reserve tickets for flights using a web registration system.
After interviewing the business managers and the ticketing agents, the software designers draft
an SRS document that lists the system’s functional requirements. The following are some of
these requirements:

• Nonregistered web users can browse to the web site to view flight information, but they
cannot book flights.

• New customers wanting to book flights must complete a registration form providing
their name, address, company name, phone number, fax number, and e-mail address.

• A customer is classified as either a corporate customer or a retail customer.

• Customers can search for flights based on destination and departure times.

• Customers can book flights indicating the flight number and the number of seats
requested.

• The system sends customers a confirmation via e-mail when the flight is booked.

• Corporate customers receive frequent flier miles when their employees book flights.
Frequent-flier miles are used to discount future purchases.

• Ticket reservations can be canceled up to one week in advance for an 80-percent refund.

• Ticketing agents can view and update flight information.

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE14

Figure 2-1. Generic use case diagram with two actors and three use cases

In this partial SRS document, you can see that several succinct statements define the
system scope. They describe the functionality of the system as viewed by the system’s users
and identify the external entities that will use it. It is important to note that the SRS does not
contain references to the technical requirements of the system.

Once the SRS is developed, the functional requirements it contains are transformed into
a series of use case diagrams.

Introducing Use Cases
Use cases describe how external entities will use the system. These external entities can be either
humans or other systems and are referred to as actors in UML terminology. The description
emphasizes the users’ view of the system and the interaction between the users and the system.
Use cases help to further define system scope and boundaries. They are usually in the form of
a diagram, along with a textual description of the interaction taking place. Figure 2-1 shows
a generic diagram that consists of two actors represented by stick figures, the system represented
by a rectangle, and use cases depicted by ovals inside the system boundaries.

Use cases are developed from the SRS document. The actor is any outside entity that inter-
acts with the system. An actor could be a human user (for instance, a rental agent), another
software system (for instance, a software billing system), or an interface device (for instance,
a temperature probe). Each interaction that occurs between an actor and the system is
modeled as a use case.

The sample use case shown in Figure 2-2 was developed for the flight booking application
introduced in the previous section. It shows the use case diagram for the requirement “Customers
can search for flights based on destination and departure times.”

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE 15

Figure 2-2. View Flight Info use case diagram

Along with the graphical depiction, many designers and software developers find it helpful
to provide a textual description of the use case. The textual description should be succinct and
focused on what is happening and not on how it is occurring. Sometimes, any preconditions
or postconditions associated with the use case are also identified. The following text further
describes the use case diagram shown in Figure 2-2:

• Description: A customer views the flight information page. The customer enters flight
search information. After submitting the search request, the customer views a list of
flights matching the search criteria.

• Preconditions: None.

• Postconditions: The customer has the opportunity to log in and proceed to the flight
booking page.

As another example, take a look at the Reserve Seat use case shown in Figure 2-3.

Figure 2-3. Reserve Seat use case diagram

The following text further describes the use case diagram shown in Figure 2-3:

• Description: The customer enters the flight number and indicates the seats being
requested. After the customer submits the request, confirmation information is displayed.

• Preconditions: The customer has looked up the flight information. The customer has
logged in and is viewing the flight booking screen.

• Postconditions: The customer is sent a confirmation e-mail outlining the flight details
and the cancellation policy.

As you can see from Figure 2-3, certain relationships can exist between use cases. The
Reserve Seat use case includes the View Flight Info use case. This relationship is useful because
you can use the View Flight Info use case independently of the Reserve Flight use case. This is
called inclusion. You cannot use the Reserve Seat use case independently of the View Flight Info
use case, however. This is important information that will affect how you model the solution.

Another way that use cases relate to each other is through extension. You might have a general
use case that is the base for other use cases. The base use case is extended by other use cases.
For example, you might have a Register Customer use case that describes the core process of
registering customers. You could then develop Register Corporate Customer and Register Retail
Customer use cases that extend the base use case. The difference between extension and inclu-
sion is that in extension, the base use case being extended is not used on its own. Figure 2-4
demonstrates how you model extension in a use case diagram.

CHAPTER 2 ■ DESIGNING OOP SOLUTIONS: IDENTIFYING THE CLASS STRUCTURE16

A common mistake when developing use cases is to include actions initiated by the
system itself. The emphasis of the use case is on the interaction between external entities
and the system. Another common mistake is to include a description of the technical require-
ments of the system. Remember that use cases do not focus on how the system will perform the
functions, but rather on what functions need to be incorporated in the system from the users’
standpoint.

After you have developed the use cases of the system, you can begin to identify the internal
system objects that will carry out the system’s functional requirements. You do this through the
use of a class diagram.

Figure 2-4. Extending use cases

