

 i

Learn Java for Android
Development

■ ■ ■

Jeff “JavaJeff” Friesen

ii

Learn Java for Android Development

Copyright © 2010 by Jeff “JavaJeff” Friesen

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-3156-1

ISBN-13 (electronic): 978-1-4302-3157-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Development Editor: Tom Welsh
Technical Reviewer: Paul Connolly
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan
Parkes, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Debra Kelly
Copy Editor: Bill McManus
Compositor: MacPS, LLC
Indexer: John Collin
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring
Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com/book/view/1430231564.

 iii

To my best friend

iv

Contents at a Glance

■Contents .. v
■About the Author ... x
■About the Technical Reviewer.. xi
■Acknowledgments... xii
■Introduction.. xiii�
■Chapter 1: Getting Started with Java .. 1�

■Chapter 2: Learning Language Fundamentals ... 43�

■Chapter 3: Learning Object-Oriented Language Features.............................. 97�

■Chapter 4: Mastering Advanced Language Features Part 1 139�

■Chapter 5: Mastering Advanced Language Features Part 2 181�

■Chapter 6: Exploring the Basic APIs Part 1 ... 227�

■Chapter 7: Exploring the Basic APIs Part 2 ... 269�

■Chapter 8: Discovering the Collections Framework 315�

■Chapter 9: Discovering Additional Utility APIs .. 381�

■Chapter 10: Performing I/O ... 449�

■Appendix: Solutions to Exercises .. 533

■Index.. 595

 v

Contents

■Contents at a Glance... iv�

■About the Author ... x�

■About the Technical Reviewer.. xi�
■Acknowledgments... xii�
■Introduction.. xiii�

■Chapter 1: Getting Started with Java .. 1�

What Is Java?..1�

Java Is a Language ..2�

Java Is a Platform ..3�

Java SE, Java EE, Java ME, and Android ...5�

Installing and Exploring the JDK ...6�

Installing and Exploring Two Popular IDEs..12�

NetBeans IDE ...13�

Eclipse IDE ...17�

Four of a Kind..20�

Understanding Four of a Kind ..21�

Modeling Four of a Kind in Pseudocode ..21�

Converting Pseudocode to Java Code..23�

Compiling, Running, and Distributing FourOfAKind ...37�

Summary ..41�

■Chapter 2: Learning Language Fundamentals ... 43�

Classes..43�

Declaring Classes ..44�

Introducing Fields ..45�

Introducing Methods..58�

Introducing Constructors ...75�

Introducing Other Initializers..76�

Interface Versus Implementation...82

■ CONTENTS

vi

Objects..85�

Creating Objects and Arrays ..85�

Accessing Fields ..87�

Calling Methods ...89�

Garbage Collection...92�

Summary ..94�

■Chapter 3: Learning Object-Oriented Language Features.............................. 97�

Inheritance..97�

Extending Classes..98�

The Ultimate Superclass ..103�

Composition ...112�

The Trouble with Implementation Inheritance ...112�

Polymorphism...116�

Upcasting and Late Binding ...117�

Abstract Classes and Abstract Methods ..120�

Downcasting and Runtime Type Identification ..121�

Covariant Return Types..123�

Interfaces..125�

Declaring Interfaces...125�

Implementing Interfaces..127�

Extending Interfaces ..130�

Why Use Interfaces? ..131�

Summary ..137�

■Chapter 4: Mastering Advanced Language Features Part 1 139�

Nested Types ..139�

Static Member Classes ..139�

Nonstatic Member Classes ..142�

Anonymous Classes...146�

Local Classes ...148�

Interfaces Within Classes ..150�

Packages ..151�

What Are Packages?..151�

The Package Statement...152�

The Import Statement ..153�

Searching for Packages and Types..154�

Playing with Packages...155�

Packages and JAR Files...159�

Static Imports ...160�

Exceptions ..161�

What Are Exceptions? ..162�

Representing Exceptions in Source Code ..162�

Throwing Exceptions..166�

Handling Exceptions ..168�

Performing Cleanup ...172�

Summary ..178�

■Chapter 5: Mastering Advanced Language Features Part 2 181�

Assertions ...181�

 ■ CONTENTS

 vii

Declaring Assertions..182�

Using Assertions ..183�

Avoiding Assertions ...188�

Enabling and Disabling Assertions...189�

Annotations...190�

Discovering Annotations ..190�

Declaring Annotation Types and Annotating Source Code...193�

Processing Annotations ...198�

Generics..200�

Collections and the Need for Type Safety..200�

Generic Types ..202�

Generic Methods..212�

Enums...214�

The Trouble with Traditional Enumerated Types ...214�

The Enum Alternative...215�

The Enum Class ...220�

Summary ..225�

■Chapter 6: Exploring the Basic APIs Part 1 ... 227�

Math APIs..227�

Math and StrictMath ..227�

BigDecimal...234�

BigInteger ..239�

Package Information...243�

Primitive Wrapper Classes..247�

Boolean ..248�

Character ...250�

Float and Double ..251�

Integer, Long, Short, and Byte ...255�

Number ..257�

References API..257�

Basic Terminology ...257�

Reference and ReferenceQueue ..259�

SoftReference ..260�

WeakReference..263�

PhantomReference ..263�

Summary ..268�

■Chapter 7: Exploring the Basic APIs Part 2 ... 269�

Reflection API..269�

String Management ..277�

String ...278�

StringBuffer ...281�

System..284�

Threading API..287�

Runnable and Thread...288�

Thread Synchronization ...296�

Summary ..313�

■Chapter 8: Discovering the Collections Framework 315�

■ CONTENTS

viii

Framework Overview..315�

Comparable Versus Comparator ..316�

Iterable and Collection ..318�

Iterator and the Enhanced For Loop Statement ...321�

Autoboxing and Unboxing ..323�

List ..325�

ArrayList...329�

LinkedList ..330�

Set...332�

TreeSet ..332�

HashSet..333�

EnumSet ..337�

SortedSet ..339�

Queue..346�

PriorityQueue ...348�

Map...351�

TreeMap...355�

HashMap..356�

IdentityHashMap ..362�

WeakHashMap ...364�

EnumMap...366�

SortedMap ..367�

Utilities..369�

Classic Collections Classes...372�

Summary ..379�

■Chapter 9: Discovering Additional Utility APIs .. 381�

Concurrency Utilities...381�

Executors ...381�

Synchronizers ..390�

Concurrent Collections...392�

Locks ...394�

Atomic Variables ..397�

Internationalization APIs ...397�

Locales...398�

Resource Bundles ..400�

Break Iterators ...409�

Collators...413�

Dates, Time Zones, and Calendars ..415�

Formatters ...421�

Preferences API ..428�

Random Number Generation...432�

Regular Expressions API ...434�

Summary ..447�

■Chapter 10: Performing I/O ... 449�

File ..449�

RandomAccessFile..462�

Streams ..473�

 ■ CONTENTS

 ix

Stream Classes Overview ..473�

OutputStream and InputStream...475�

ByteArrayOutputStream and ByteArrayInputStream..477�

FileOutputStream and FileInputStream..479�

PipedOutputStream and PipedInputStream ...481�

FilterOutputStream and FilterInputStream...485�

BufferedOutputStream and BufferedInputStream..492�

DataOutputStream and DataInputStream ..493�

Object Serialization and Deserialization ..496�

PrintStream..508�

Writers and Readers ...511�

Writer and Reader Classes Overview...512�

Writer and Reader..513�

OutputStreamWriter and InputStreamReader ..514�

FileWriter and FileReader ..518�

Summary ..530�

The Road Goes Ever On..530�

■Appendix: Solutions to Exercises .. 533�

Chapter 1: Getting Started with Java..533�

Chapter 2: Learning Language Fundamentals ..539�

Chapter 3: Learning Object-Oriented Language Features...542�

Chapter 4: Mastering Advanced Language Features Part 1..549�

Chapter 5: Mastering Advanced Language Features Part 2..555�

Chapter 6: Exploring the Basic APIs Part 1 ...560�

Chapter 7: Exploring the Basic APIs Part 2 ...563�

Chapter 8: Discovering the Collections Framework..569�

Chapter 9: Discovering Additional Utility APIs...575�

Chapter 10: Performing I/O ...581�

■Index.. 595

■ CONTENTS

x

About the Author

Jeff “JavaJeff” Friesen has been actively involved with Java since the late
1990s. Jeff has worked with Java in various companies, including a
healthcare-oriented consulting firm, where he created his own Java/C++
software for working with smart cards. Jeff has written about Java in
numerous articles for JavaWorld (www.javaworld.com), informIT
(www.informit.com), and java.net (http://java.net), and has authored
several books on Java, including Beginning Java SE 6 Platform: From Novice
to Professional (Apress, 2007; ISBN: 159059830X), which focuses exclusively
on Java version 6’s new and improved features. Jeff has also taught Java in
university and college continuing education classes. He has a Bachelor of
Science degree in mathematics and computer science from Brandon
University in Brandon, Manitoba, Canada, and currently freelances in Java
and other software technologies.

 ■ CONTENTS

 xi

About the Technical
Reviewer

Paul Connolly is the Director of Engineering for Atypon Systems'
RightSuite product line. RightSuite is an enterprise access-control and
commerce solution used by many of the world's largest publishing and
media companies. Paul enjoys designing and implementing high-
performance, enterprise-class software systems. He is also an active
contributor in the open-source community.

Prior to joining Atypon Systems, Paul worked as a senior software
engineer at Standard & Poor's where he architected and developed key
communications systems. Paul is a Sun Certified Java Programmer, Sun
Certified Business Component Developer, and a Sun Certified Web
Component Developer. Paul lives in New York City with his wife, Marina.

■ CONTENTS

xii

Acknowledgments

I thank Steve Anglin for contacting me to write this book, Debra Kelly for guiding me through the
various aspects of this project, Tom Welsh for helping me with the development of my chapters,
Paul Connolly for his diligence in catching various flaws that would otherwise have made it into
this book, and Bill McManus and the production team for making the book’s content look good.

It has been many years since I started writing about Java, and I also thank the following
editors who have helped me share my knowledge with others: Chris Adamson, Bridget Collins,
Richard Dal Porto, Sean Dixon, Victoria Elzey, Kevin Farnham, Todd Green, Jennifer Orr, Athen
O’Shea, Esther Schindler, Daniel Steinberg, Jill Steinberg, Dustin Sullivan, and Atlanta Wilson.

 xiii

Introduction
Smartphones and other touch-based mobile devices are all the rage these days. Their popularity
is largely due to their ability to run apps. Although the iPhone and iPad with their growing
collection of Objective-C-based apps are the leaders of the pack, Android-based smartphones
with their growing collection of Java-based apps are proving to be a strong competitor.

Not only are many iPhone/iPad developers making money by selling their apps, many
Android developers are also making money by selling similar apps. According to tech websites
such as The Register (www.theregister.co.uk/), some Android developers are making lots of
money (www.theregister.co.uk/2010/03/02/android_app_profit/).

In today’s tough economic climate, perhaps you would like to try your hand at becoming an
Android developer and make some money. If you have good ideas, perseverance, and some
artistic talent (or perhaps know some talented individuals), you are already part of the way
toward achieving this goal.

Tip: A good reason to consider Android app development over iPhone/iPad app development is the lower
startup costs that you will incur with Android. For example, you do not need to purchase a Mac on which to
develop Android apps (a Mac is required for developing iPhone/iPad apps); your existing Windows, Linux,
or Unix machine will do nicely.

Most importantly, you will need to possess a solid understanding of the Java language and
foundational application programming interfaces (APIs) before jumping into Android. After all,
Android apps are written in Java and interact with many of the standard Java APIs (such as
threading and input/output APIs).

I wrote Learn Java for Android Development to give you a solid Java foundation that you can
later extend with knowledge of Android architecture, API, and tool specifics. This book will give
you a strong grasp of the Java language and many important APIs that are fundamental to
Android apps and other Java applications. It will also introduce you to key development tools.

Learn Java for Android Development is organized into ten chapters and one appendix. Each
chapter focuses on a collection of related topics and presents a set of exercises that you should
complete to get the most benefit from the chapter’s content. The appendix provides the solutions
to each chapter’s exercises.

■ INTRODUCTION

xiv

Note: You can download this book’s source code by pointing your web browser to
www.apress.com/book/view/1430231564 and clicking the Source Code link under Book Resources.
Although most of this code is compilable with Java version 6, you will need Java version 7 to compile one
of the applications.

Chapter 1 introduces you to Java by first focusing on Java’s dual nature (language and
platform). It then briefly introduces you to Sun’s/Oracle’s Java SE, Java EE, and Java ME editions
of the Java development software, as well as Google’s Android edition. You next learn how to
download and install the Java SE Development Kit (JDK), and learn some Java basics by
developing and playing with a pair of simple Java applications. After receiving a brief
introduction to the NetBeans and Eclipse IDEs, you learn about application development in the
context of Four of a Kind, a console-based card game.

Chapter 2 starts you on an in-depth journey of the Java language by focusing on language
fundamentals (such as types, expressions, variables, and statements) in the contexts of classes
and objects. Because applications are largely based on classes, it is important to learn how to
architect classes correctly, and this chapter shows you how to do so.

Chapter 3 adds to Chapter 2’s pool of object-based knowledge by introducing you to those
language features that take you from object-based applications to object-oriented applications.
Specifically, you learn about features related to inheritance, polymorphism, and interfaces. While
exploring inheritance, you learn about Java’s ultimate superclass. Also, while exploring interfaces,
you discover the real reason for their inclusion in the Java language; interfaces are not merely a
workaround for Java’s lack of support for multiple implementation inheritance, but serve a
higher purpose.

Chapter 4 introduces you to four categories of advanced language features: nested types,
packages, static imports, and exceptions. While discussing nested types, I briefly introduce the
concept of a closure and state that closures will appear in Java version 7 (which many expect to
arrive later this year).

Note: I wrote this book several months before Java version 7’s expected arrival in the fall of 2010.
Although I have tried to present an accurate portrayal of version 7–specific language features, it is possible
that feature syntax may differ somewhat from what is presented in this book. Also, I only discuss closures
briefly because this feature was still in a state of flux while writing this book. For more information about
closures and other functional programming concepts (such as lambdas) being considered for Java version 7, I
recommend that you check out articles such as “Functional Programming Concepts in JDK 7” by Alex Collins
(http://java.dzone.com/articles/lambdas-closures-jdk-7).

Chapter 5 continues to explore advanced language features by focusing on assertions,
annotations, generics, and enums. Although the topic of generics has brought confusion to many
developers, I believe that my discussion of this topic will clear up much of the murkiness. Among
other items, you learn how to interpret type declarations such as Enum<E extends Enum<E>>.

Chapter 6 begins a trend that focuses more on APIs than language features. This chapter first
introduces you to many of Java’s math-oriented types (such as Math, StrictMath, BigDecimal, and
BigInteger), and also introduces you to Java’s strictfp reserved word. It then looks at the
Package class, primitive wrapper classes, and the References API.

 ■ INTRODUCTION

 xv

Chapter 7 continues to explore Java’s basic APIs by focusing on reflection, string
management, the System class, and threading.

Chapter 8 focuses exclusively on Java’s collections framework, which provides you with a
solution for organizing objects in lists, sets, queues, and maps.

Chapter 9 continues to explore Java’s utility APIs by introducing you to the concurrency
utilities, internationalization, preferences, random number generation, and regular expressions.

Chapter 10 is all about input/output (I/O). In this chapter, you explore Java’s classic I/O
support in terms of its File class, RandomAccessFile class, various stream classes, and various
writer/reader classes. My discussion of stream I/O includes coverage of Java’s object serialization
and deserialization mechanisms.

Note: This book largely discusses APIs that are common to Java SE and Android. However, it diverges from
this practice in Chapter 9, where I use the Swing toolkit to provide a graphical user interface for one of this
chapter’s internationalization examples. (Android does not support Swing.)

After you complete this book, I recommend that you obtain a copy of Beginning Android 2 by
Mark L Murphy (Apress, 2010; ISBN: 1430226293) and start learning how to develop Android
apps. In that book, “you’ll learn how to develop applications for Android 2.x mobile devices,
using simple examples that are ready to run with your copy of the JDK.”

Note: Over the next few months, I will make available at my javajeff.mb.ca website six additional PDF-
based chapters. These chapters will introduce you to more Java APIs (such as networking and database
APIs) that I could not discuss in this book because the book has greatly exceeded its initial 400-page
estimate (and the good folks at Apress have been gracious enough to let me do so, but there are limits). I
present more information about these PDF files at the end of Chapter 10’s “Summary” section.

Thanks for purchasing my book. I hope you find it a helpful preparation for, and I wish you
lots of success in achieving, a satisfying and lucrative career as an Android app developer.

Jeff “JavaJeff” Friesen, August 2010

1

1

 Chapter

Getting Started with Java
Android is Google’s software stack for mobile devices that includes an operating system

and middleware. With help from Java, the OS runs specially designed Java applications

known as Android apps. Because these apps are based on Java, it makes sense for you

to learn about Java before you dive into the world of Android development.

NOTE: This book illustrates Java concepts via non-Android Java applications.

This chapter sets the stage for teaching you the essential Java concepts that you need

to understand before you embark on your Android career. I first answer the “What is

Java?” question. I next show you how to install the Java SE Development Kit, and

introduce you to JDK tools for compiling and running Java applications.

After showing you how to install and use the open source NetBeans and Eclipse IDEs so

that you can develop these applications faster, I present an application for playing a

card game that I call Four of a Kind. This application gives you a significant taste of the

Java language, and is the centerpiece of my discussion on developing applications.

What Is Java?
Java is a language and a platform originated by Sun Microsystems. This section briefly

describes this language and reveals what it means for Java to be a platform. To meet

various needs, Sun organized Java into three main editions: Java SE, Java EE, and Java

ME. This section also briefly explores each of these editions, along with Android.

1

CHAPTER 1: Getting Started with Java 2

NOTE: Java has an interesting history that dates back to December 1990. At that time, James
Gosling, Patrick Naughton, and Mike Sheridan (all employees of Sun Microsystems) were given
the task of figuring out the next major trend in computing. They concluded that one trend would
involve the convergence of computing devices and intelligent consumer appliances. Thus was
born the Green project.

The fruits of Green were Star7, a handheld wireless device featuring a five-inch color LCD
screen, a SPARC processor, a sophisticated graphics capability, and a version of Unix; and Oak, a
language developed by James Gosling for writing applications to run on Star7, and which he
named after an oak tree growing outside of his office window at Sun. To avoid a conflict with
another language of the same name, Dr. Gosling changed this language’s name to Java.

Sun Microsystems subsequently evolved the Java language and platform until Oracle acquired
Sun in early 2010. Check out http://java.sun.com/ for the latest Java news from Oracle.

Java Is a Language
Java is a language in which developers express source code (program text). Java’s

syntax (rules for combining symbols into language features) is partly patterned after the

C and C++ languages to shorten the learning curve for C/C++ developers.

The following list identifies a few similarities between Java and C/C++:

� Java and C/C++ share the same single-line and multiline comment

styles. Comments let you document source code.

� Many of Java’s reserved words are identical to their C/C++

counterparts (for, if, switch, and while are examples) and C++

counterparts (catch, class, public, and try are examples).

� Java also supports character, double precision floating-point, floating-

point, integer, long integer, and short integer primitive types, and via

the same char, double, float, int, long, and short reserved words.

� Java also supports many of the same operators, including arithmetic

(+, -, *, /, and %) and conditional (?:) operators.

� Java also uses brace characters ({ and }) to delimit blocks of

statements.

The following list identifies a few differences between Java and C/C++:

� Java supports an additional comment style known as Javadoc. (I will

briefly introduce Javadoc later in this chapter.)

� Java provides reserved words not found in C/C++ (extends, strictfp,

synchronized, and transient are examples).

CHAPTER 1: Getting Started with Java 3

� Java supports the byte integer type, does not provided a signed

version of the character type, and does not provide unsigned versions

of integer, long integer, and short integer. Furthermore, all of Java’s

primitive types have guaranteed implementation sizes, which is an

important part of achieving portability (discussed later). The same

cannot be said of equivalent primitive types in C and C++.

� Java provides operators not found in C/C++. These operators include

instanceof and >>> (unsigned right shift).

� Java provides labeled break and continue statements that you will not

find in C/C++.

You will learn about single-line and multiline comments in Chapter 2. Also, you will learn

about reserved words, primitive types, operators, blocks, and statements (including

labeled break and continue) in that chapter.

Java was designed to be a safer language than C/C++. It achieves safety in part by

omitting certain C/C++ features. For example, Java does not support pointers (variables

containing addresses) and does not let you overload operators.

Java also achieves safety by modifying certain C/C++ features. For example, loops must

be controlled by Boolean expressions instead of integer expressions where 0 is false

and a nonzero value is true. (Chapter 2 discusses loops and expressions.)

Suppose you must code a C/C++ while loop that repeats no more than ten times. Being

tired, you specify while (x) x++; (assume that x is an integer-based variable initialized

to 0—I discuss variables in Chapter 2) where x++ adds 1 to x’s value. This loop does not

stop when x reaches 10; you have introduced a bug (a defect).

This problem is less likely to occur in Java because it complains when it sees while (x).

This complaint requires you to recheck your expression, and you will then most likely

specify while (x != 10). Not only is safety improved (you cannot specify just x),

meaning is also clarified: while (x != 10) is more meaningful than while (x).

The aforementioned and other fundamental language features support classes, objects,

inheritance, polymorphism, and interfaces. Java also provides advanced features related

to nested types, packages, static imports, exceptions, assertions, annotations, generics,

enums, and more. Subsequent chapters explore all of these language features.

Java Is a Platform
Java is a platform for executing programs. In contrast to platforms that consist of

physical processors (such as an Intel processor) and operating systems (such as Linux),

the Java platform consists of a virtual machine and associated execution environment.

The virtual machine is a software-based processor that presents its own instruction set.

The associated execution environment consists of libraries for running programs and

interacting with the underlying operating system.

CHAPTER 1: Getting Started with Java 4

The execution environment includes a huge library of prebuilt classfiles that perform

common tasks, such as math operations (trigonometry, for example) and network

communications. This library is commonly referred to as the standard class library.

A special Java program known as the Java compiler translates source code into

instructions (and associated data) that are executed by the virtual machine. These

instructions are commonly referred to as bytecode.

The compiler stores a program’s bytecode and data in files having the .class extension.

These files are known as classfiles because they typically store the compiled equivalent

of classes, a language feature discussed in Chapter 2.

A Java program executes via a tool (such as java) that loads and starts the virtual

machine, and passes the program’s main classfile to the machine. The virtual machine

uses a classloader (a virtual machine or execution environment component) to load the

classfile.

After the classfile has been loaded, the virtual machine’s bytecode verifier component

makes sure that the classfile’s bytecode is valid and does not compromise security. The

verifier terminates the virtual machine when it finds a problem with the bytecode.

Assuming that all is well with the classfile’s bytecode, the virtual machine’s interpreter
interprets the bytecode one instruction at a time. Interpretation consists of identifying

bytecode instructions and executing equivalent native instructions.

NOTE: Native instructions (also known as native code) are the instructions understood by the
underlying platform’s physical processor.

When the interpreter learns that a sequence of bytecode instructions is executed

repeatedly, it informs the virtual machine’s Just In Time (JIT) compiler to compile these

instructions into native code.

JIT compilation is performed only once for a given sequence of bytecode instructions.

Because the native instructions execute instead of the associated bytecode instruction

sequence, the program executes much faster.

During execution, the interpreter might encounter a request to execute another

classfile’s bytecode. When that happens, it asks the classloader to load the classfile and

the bytecode verifier to verify the bytecode prior to executing that bytecode.

The platform side of Java promotes portability by providing an abstraction over the

underlying platform. As a result, the same bytecode runs unchanged on Windows-

based, Linux-based, Mac OS X–based, and other platforms.

CHAPTER 1: Getting Started with Java 5

NOTE: Java was introduced with the “write once, run anywhere” slogan. Although Java goes to
great lengths to enforce portability, it does not always succeed. Despite being mostly platform
independent, certain parts of Java (such as the scheduling of threads, discussed in Chapter 7)
vary from underlying platform to underlying platform.

The platform side of Java also promotes security by providing a secure environment in

which code executes. The goal is to prevent malicious code from corrupting the

underlying platform (and possibly stealing sensitive information).

NOTE: Because many developers are not satisfied with the Java language, but believe that the
Java platform is important, they have devised additional languages (such as Groovy) that run on
the Java platform. Furthermore, Java version 7 includes an enhanced virtual machine that
simplifies adapting even more dynamic programming languages (languages that require less-
rigid coding; you do not have to define a variable’s type before using the variable, for example) to
this platform.

Java SE, Java EE, Java ME, and Android
Developers use different editions of the Java platform to create Java programs that run

on desktop computers, web browsers, web servers, mobile information devices (such as

cell phones), and embedded devices (such as television set-top boxes):

� Java Platform, Standard Edition (Java SE): The Java platform for

developing applications, which are stand-alone programs that run on

desktops. Java SE is also used to develop applets, which are

programs that run in the context of a web browser.

� Java Platform, Enterprise Edition (Java EE): The Java platform for

developing enterprise-oriented applications and servlets, which are

server programs that conform to Java EE’s Servlet API. Java EE is built

on top of Java SE.

� Java Platform, Micro Edition (Java ME): The Java platform for

developing MIDlets, which are programs that run on mobile

information devices, and Xlets, which are programs that run on

embedded devices.

Developers also use a special Google-created edition of the Java platform (see

http://developer.android.com/index.html) to create Android apps that run on

Android-enabled devices. This edition is known as the Android platform.

Google’s Android platform largely consists of Java core libraries (partly based on Java

SE) and a virtual machine known as Dalvik. This collective software runs on top of a

specially modified Linux kernel.

CHAPTER 1: Getting Started with Java 6

NOTE: Check out Wikipedia’s “Android (operating system)” entry
(http://en.wikipedia.org/wiki/Android_%28operating_system%29) to learn more
about the Android OS, and Wikipedia’s “Dalvik (software)” entry
(http://en.wikipedia.org/wiki/Dalvik_%28software%29) to learn more about the
Dalvik virtual machine.

In this book, I cover the Java language (supported by Java SE and Android) and Java SE

APIs (also supported by Android). Furthermore, I present the source code (typically as

code fragments) to Java SE–based applications.

Installing and Exploring the JDK
The Java Runtime Environment (JRE) implements the Java SE platform and makes it

possible to run Java programs. The public JRE can be downloaded from the Java SE

Downloads page (http://java.sun.com/javase/downloads/index.jsp).

However, the public JRE does not make it possible to develop Java programs. For that

task, you need to download and install the Java SE Development Kit (JDK), which

contains development tools (including the Java compiler) and a private JRE.

NOTE: JDK 1.0 was the first JDK to be released (in May 1995). Until JDK 6 arrived, JDK stood for
Java Development Kit (SE was not part of the title). Over the years, numerous JDKs have been
released, with JDK 7 set for release in fall or winter 2010.

Each JDK’s version number identifies a version of Java. For example, JDK 1.0 identifies Java
version 1.0, and JDK 5 identifies Java version 5.0. JDK 5 was the first JDK to also provide an
internal version number: 1.5.0.

The Java SE Downloads page also provides access to the current JDK, which is JDK 6

Update 20 at time of writing. Click the Download JDK link to download the current JDK’s

installer program for your platform.

NOTE: Some of this book’s code requires JDK 7, which is only available as a preview release
(http://java.sun.com/javase/downloads/ea.jsp) at time of writing.

The JDK installer installs the JDK in a home directory. (It can also install the public JRE

in another directory.) On my Windows XP platform, the home directory is C:\Program
Files\Java\jdk1.6.0_16—JDK 6 Update 16 was current when I began this book.

CHAPTER 1: Getting Started with Java 7

TIP: After installing the JDK, you should add the bin subdirectory to your platform’s PATH
environment variable. That way, you will be able to execute JDK tools from any directory in your
filesystem.

Finally, you might want to create a projects subdirectory of the JDK’s home directory to
organize your Java projects, and create a separate subdirectory within projects for each of
these projects.

The home directory contains various files (such as README.html, which provides

information about the JDK, and src.zip, which provides the standard class library

source code) and subdirectories, including the following three important subdirectories:

� bin: This subdirectory contains assorted JDK tools, including the Java

compiler tool. You will discover some of these tools shortly.

� jre: This subdirectory contains the JDK’s private copy of the JRE,

which lets you run Java programs without having to download and

install the public JRE.

� lib: This subdirectory contains library files that are used by JDK tools.

For example, tools.jar contains the Java compiler’s classfiles—the

compiler was written in Java.

You will use only a few of the bin subdirectory’s tools in this book, specifically javac

(Java compiler), java (Java application launcher), javadoc (Java documentation

generator), and jar (Java archive creator, updater, and extractor).

NOTE: javac is not the Java compiler. It is a tool that loads and starts the virtual machine,
identifies the compiler’s main classfile (located in tools.jar) to the virtual machine, and
passes the name of the source file being compiled to the compiler’s main classfile.

You execute JDK tools at the command line, passing command-line arguments to a tool.

Learn about the command line and arguments via Wikipedia’s “Command-line interface”

entry (http://en.wikipedia.org/wiki/Command-line_interface).

Now that you have installed the JDK and know something about its tools, you are ready

to explore a small DumpArgs application that outputs its command-line arguments to the

standard output device.

CHAPTER 1: Getting Started with Java 8

NOTE: The standard output device is part of a mechanism known as Standard I/O. This
mechanism, which consists of Standard Input, Standard Output, and Standard Error, and which
originated with the Unix operating system, makes it possible to read text from different sources
(keyboard or file) and write text to different destinations (screen or file).

Text is read from the standard input device, which defaults to the keyboard but can be redirected
to a file. Text is output to the standard output device, which defaults to the screen but can be
redirected to a file. Error message text is output to the standard error device, which defaults to
the screen but can be redirected to a file that differs from the standard output file.

Listing 1–1 presents the DumpArgs application source code.

Listing 1–1. Dumping command-line arguments via main()’s args array to the standard output device

public class DumpArgs
{
 public static void main(String[] args)
 {
 System.out.println("Passed arguments:");
 for (int i = 0; i < args.length; i++)
 System.out.println(args[i]);
 }
}

Listing 1–1’s DumpArgs application consists of a class named DumpArgs and a method

within this class named main(), which is the application’s entry point and provides the

code to execute. (You will learn about classes and methods in Chapter 2.)

main() is called with an array of strings (character sequences) that identify the

application’s command-line arguments. These strings are stored in String-based array

variable args. (I discuss method calling, arrays, and variables in Chapter 2.)

NOTE: Although the array variable is named args, there is nothing special about this name. You
could name this variable anything you want.

main() first executes System.out.println("Passed arguments:");, which calls

System.out’s println() method with the "Passed arguments:" string. This method call

outputs Passed arguments: to the standard output device and then terminates the

current line so that subsequent output is sent to a new line immediately below the

current line. (I discuss System.out in Chapter 7.)

CHAPTER 1: Getting Started with Java 9

NOTE: System.out provides access to a family of println() methods and a family of
print() methods for outputting different kinds of data (such as sequences of characters and
integers). Unlike the println() methods, the print() methods do not terminate the current
line; subsequent output continues on the current line.

Each println() method terminates a line by outputting a line separator string, which is defined
by system property line.separator, and which is not necessarily a single newline character
(identified in source code via character literal '\n'). (I discuss system properties in Chapter 7,
line.separator in Chapter 10, and character literals in Chapter 2.) For example, on Windows
platforms, the line separator string is a carriage return character (whose integer code is 13)
followed by a line feed character (whose integer code is 10).

main() uses a for loop to repeatedly execute System.out.println(args[i]);. The loop

executes args.length times, which happens to identify the number of strings that are

stored in args. (I discuss for loops in Chapter 2.)

The System.out.println(args[i]); method call reads the string stored in the ith entry

of the args array—the first entry is located at index (location) 0; the last entry is stored at

index args.length - 1. This method call then outputs this string to standard output.

Assuming that you are familiar with your platform’s command-line interface and are at

the command line, make DumpArgs your current directory and copy Listing 1–1 to a file

named DumpArgs.java. Then compile this source file via the following command line:

javac DumpArgs.java

Assuming that that you have included the .java extension, which is required by javac,

and that DumpArgs.java compiles, you should discover a file named DumpArgs.class in

the current directory. Run this application via the following command line:

java DumpArgs

If all goes well, you should see the following line of output on the screen:

Passed arguments:

For more interesting output, you will need to pass command-line arguments to

DumpArgs. For example, execute the following command line, which specifies Curly, Moe,

and Larry as three arguments to pass to DumpArgs:

java DumpArgs Curly Moe Larry

This time, you should see the following expanded output on the screen:

Passed arguments:
Curly
Moe
Larry

CHAPTER 1: Getting Started with Java 10

You can redirect the output destination to a file by specifying the greater than angle

bracket (>) followed by a filename. For example, java DumpArgs Curly Moe Larry
>out.txt stores the DumpArgs application’s output in a file named out.txt.

NOTE: Instead of specifying System.out.println(), you could specify
System.err.println() to output characters to the standard error device. (System.err
provides the same families of println() and print() methods as System.out.) However,
you should only switch from System.out to System.err when you need to output an error
message so that the error messages are displayed on the screen, even when standard output is
redirected to a file.

Congratulations on successfully compiling your first application source file and running

the application! Listing 1–2 presents the source code to a second application, which

echoes text obtained from the standard input device to the standard output device.

Listing 1–2. Echoing text read from standard input to standard output

public class EchoText
{
 public static void main(String[] args) throws java.io.IOException
 {
 System.out.println("Please enter some text and press Enter!");
 int ch;
 while ((ch = System.in.read()) != 13)
 System.out.print((char) ch);
 System.out.println();
 }
}

After outputting a message that prompts the user to enter some text, main() introduces

int variable ch to store each character’s integer representation. (You will learn about int

and integer in Chapter 2.)

main() now enters a while loop (discussed in Chapter 2) to read and echo characters.

The loop first calls System.in.read() to read a character and assign its integer value to

ch. The loop ends when this value equals 13 (the integer value of the Enter key).

NOTE: When standard input is not redirected to a file, System.in.read() returns 13 to
indicate that the Enter key has been pressed. On platforms such as Windows, a subsequent call
to System.in.read() returns integer 10, indicating a line feed character. Whether or not
standard input has been redirected, System.in.read() returns -1 when there are no more
characters to read.

For any other value in ch, this value is converted to a character via (char), which is an

example of Java’s cast operator (discussed in Chapter 2). The character is then output

via System.out.println(). The final System.out.println(); call terminates the current

line without outputting any content.

CHAPTER 1: Getting Started with Java 11

NOTE: When standard input is redirected to a file and System.in.read() is unable to read text
from the file (perhaps the file is stored on a removable storage device that has been removed prior to
the read operation), System.in.read() fails by throwing an object that describes this problem. I
acknowledge this possibility by appending throws java.io.IOException to the end of the
main() method header. I discuss throws in Chapter 4 and java.io.IOException in Chapter 10.

Compile Listing 1–2 via javac EchoText.java, and run the application via java EchoText.

You will be prompted to enter some text. After you input this text and press Enter, the

text will be sent to standard output. For example, consider the following output:

Please enter some text and press Enter!
Hello Java
Hello Java

You can redirect the input source to a file by specifying the less than angle bracket (<)

followed by a filename. For example, java EchoText <EchoText.java reads its text from

EchoText.java and outputs this text to the screen.

Run this application and you will only see EchoText.java’s first line of text. Each one of

this file’s lines ends in a carriage return character (13) (followed by a line feed character,

10, on Windows platforms), and EchoText terminates after reading a carriage return.

In addition to downloading and installing the JDK, you might want to download the

JDK’s companion documentation archive file (jdk-6u18-docs.zip is the most recent file

at time of writing).

After downloading the documentation archive file from the same Java SE Downloads

page (http://java.sun.com/javase/downloads/index.jsp), unzip this file and move its

docs directory to the JDK’s home directory.

To access the documentation, point your web browser to the documentation’s start

page. For example, after moving docs to my JDK’s home directory, I point my browser to

C:\Program Files\Java\jdk1.6.0_16\docs\index.html. See Figure 1–1.

Scroll a bit down the start page and you discover the “API, Language, and Virtual

Machine Documentation” section, which presents a Java 2 Platform API Specification

link. Click this link and you can access the standard class library’s documentation.

TIP: You can read the online documentation by pointing your web browser to a link such as
http://download.java.net/jdk6/archive/b104/docs/, which provides the online
documentation for JDK 6.

CHAPTER 1: Getting Started with Java 12

Figure 1–1. The first part of the Java documentation’s start page

Installing and Exploring Two Popular IDEs
Working with the JDK’s tools at the command line is probably okay for small projects.

However, this practice is not recommended for large projects, which are hard to manage

without the help of an integrated development environment (IDE).

An IDE consists of a project manager for managing a project’s files, a text editor for

entering and editing source code, a debugger for locating bugs, and other features. Two

popular IDEs are NetBeans and Eclipse.

NOTE: For convenience, I use JDK tools throughout this book, except for this section where I use
NetBeans IDE and Eclipse IDE.

CHAPTER 1: Getting Started with Java 13

NetBeans IDE
NetBeans IDE is an open source, Java-based IDE for developing programs in Java and

other languages (such as PHP, Ruby, C++, Groovy, and Scala). Version 6.8 is the current

version of this IDE at time of writing.

You should download and install NetBeans IDE 6.8 (or a more recent version) to follow

along with this section’s NetBeans-oriented example. Begin by pointing your browser to

http://netbeans.org/downloads/ and accomplishing the following tasks:

1. Select an appropriate IDE language (such as English).

2. Select an appropriate platform (such as Linux).

3. Click the Download button underneath the leftmost (Java SE) column.

After a few moments, the current page is replaced by another page that gives you the

opportunity to download an installer file. I downloaded the approximately 47MB

netbeans-6.8-ml-javase-windows.exe installer file for my Windows XP platform.

NOTE: According to the “NetBeans IDE 6.8 Installation Instructions”
(http://netbeans.org/community/releases/68/install.html), you must install JDK
5.0 Update 19 or JDK 6 Update 14 or newer on your platform before installing NetBeans IDE 6.8.
If you do not have a JDK installed, you cannot install the NetBeans IDE.

Start the installer file and follow the instructions. You will need to agree to the NetBeans

license, and are given the options of providing anonymous usage data and registering

your copy of NetBeans when installation finishes.

Assuming that you have installed the NetBeans IDE, start this Java application. You

should discover a splash screen identifying this IDE, followed by a main window similar

to that shown in Figure 1–2.

The NetBeans user interface is based on a main window that consists of a menu bar, a

toolbar, a workspace area, and a status bar. The workspace area initially presents a

Start Page tab, which provides NetBeans tutorials as well as news and blogs.

To help you get comfortable with the NetBeans user interface, I will show you how to

create a DumpArgs project containing a single DumpArgs.java source file with Listing 1–1’s

source code. You will also learn how to compile and run this application.

CHAPTER 1: Getting Started with Java 14

Figure 1–2. The NetBeans IDE 6.8 main window

Complete the following steps to create the DumpArgs project:

1. Select New Project from the File menu.

2. On the resulting New Project dialog box’s initial pane, make sure that

Java is the selected category in the Categories list, and Java Application

is the selected project in the Projects list. Click the Next button.

3. On the resulting pane, enter DumpArgs in the Project Name text field.

You will notice that dumpargs.Main appears in the text field to the right

of the Create Main Class check box. Replace dumpargs.Main with

DumpArgs and click Finish. (dumpargs names a package, discussed in

Chapter 4, and Main names a class stored in this package.)

After a few moments, you will see a workspace similar to that shown in Figure 1–3.

